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We discuss why the scalar–isoscalar resonance f0(500) should, in prac-
tice, not be included in thermal models describing the freeze-out of heavy-
ion collisions. Its contribution to pion multiplicities is, in principle, relevant
since it is light and that it decays only to pions. However, it is cancelled
to a very good numerical precision by the non-resonant scalar–isotensor
repulsion among pions. Our approach is an application of a well-known
theorem relating spectral function to phase shifts. The numerical results
are solely based on pion–pion scattering data and thus model independent.
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1. Introduction

The scalar–isoscalar resonance f0(500) is now firmly established [1]. The
Particle Data Group (PDG) reports the position of its pole in the range of
(400–550)−i(200–350) [2]. Investigations based on dispersive analysis show
even smaller errors: (400± 6+31

−13)− i(278± 6+34
−43) in Ref. [3] and (457+14

−13)−
i(279+11

−7 ) in Ref. [4].
The resonance f0(500) is the lightest scalar state; moreover, it decays

only into pions. Then, one is lead to think that f0(500) is important for the
determination of pion multiplicities in thermal models for relativistic heavy-
ion collisions (see e.g. Refs. [6, 7] and references therein). Indeed, a simple
inclusion of f0(500) as a Breit–Wigner resonance would lead to a sizable
increase (about 3–5% [8]) of pions. However, in these proceedings (based on
the findings of Ref. [5]), we show that this conclusion is not correct. In fact,
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when the repulsion of pion–pion interaction in the scalar–isotensor channel
is properly taken into account using the formalism developed in Refs. [9–11],
the effect of f0(500) cancels to a very good numerical accuracy. We show
this cancellation in a model-independent way, since the only input is given
by the well-known pion–pion scattering data in these two scalar channels.

As a net result, one can neglect in thermal models both the scalar–
isoscalar attraction due to f0(500) and the non-resonant scalar–isotensor
repulsion.

2. Cancellation of f0(500)

A successful description of hadron emissions at the freeze-out of rela-
tivistic heavy-ion collisions is achieved with the help of thermal models. For
simplicity, we restrict our presentation to a gas which includes stable pions
(I = 0, JPC = 0−+, where I stays for isospin, J for the total spin, and P and
C for parity and charge-conjugation), the ρ-resonance (I = 1, JPC = 1−−),
the resonance f0(500) (I = 0, JPC = 0++), and the non-resonant contribu-
tion of the repulsion in the I = 2, JPC = 0++ channel. (Other contributions
with different I and JPC correspond to heavier mesons and are neglected
here.)

The logarithm of the partition function Z is given by the sum of contri-
butions of all channels

lnZ = lnZπ + lnZ(1,1−−) + lnZ(0,0++) + lnZ(2,0++) .

All other thermodynamic quantities follow: P =−T lnZ/V, ε=−∂β lnZ/V ,
etc. For what concerns stable pions (we do not include chemical potentials),
one has

lnZπ = 3V

∫
p

ln

[
1− e−

√
~p 2+M2

π
T

]−1
,

∫
p

=

∫
d3p

(2π)3
,

where V is the volume, ~p the pion momentum, Mπ the pion mass, and the
factor 3 the isospin degeneracy. Following Refs. [9, 10], we can express the
contribution in the channel I = 1, JPC = 1−− as

lnZ(1,1−−) = 3× 3

Λ1∫
0

dm
dδ(1,1)(m)

πdm

∫
p

ln

[
1− e−

√
p2+m2

T

]−1
, (1)

where δ(1,1) is the measured ππ phase shift as a function of m =
√
s. We

set Λ1 = 1 GeV as maximal energy in the integral, then only the ρ-meson is
present in this range. The spectral function of the ρ-meson can be approxi-
mated as
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dρ(m) =
dδ(1,1)(m)

πdm
. (2)

Thus, one can take into account the ρ-meson in a thermal gas in a model-
independent way by introducing the well-known scattering data in Eq. (1).
For a small width, dρ(m) can be well-approximated by a Breit–Wigner func-
tion, dρ(m) ' Γ

2π

[
(m−Mρ)

2 + Γ 2/4
]−1, and, in the limit of zero width, one

correctly obtains dρ(m) = δ(m −Mρ). Thus, the example of the ρ-meson
shows quite general features of a thermal gas. The approximation of using
a Breit–Wigner expression — typically used in practice — emerges.

We now turn to the main topic of the present work. For I = J = 0, the
contribution of f0(500) is included in the integral

lnZ(0,0++) =

Λ0∫
0

dm
dδ(0,0)

πdm

∫
p

ln

[
1− e−

√
p2+m2

T

]−1
, (3)

where Λ0 ' 0.8 GeV (far above the average mass of f0(500) but below
f0(980), which is not considered here). The spectral function of the f0(500)
is approximated by df0(500)(m) = 1

πdδ(0,0)/dm. The form of df0(500)(m)
is far from being a Breit–Wigner [5] and is even not normalized to unity.
This is in agreement with the fact that the resonances f0(500) is not the
chiral partner of the pion and is not a quark–antiquark field [1] (the chiral
partner of π, the ‘true’ σ of linear Sigma Models, should be identified with
the heavier scalar resonance f0(1370) [12]).

As a last step, we consider the joint contribution of both I = 0 and I = 2
channels

lnZ(0,0++)+lnZ(2,0++) =

Λ0∫
0

dm

[
dδ(0,0)

πdm
+ 5

dδ(2,0)

πdm

]∫
p

ln

[
1− e−

√
p2+m2

T

]−1
,

(4)
where the factor 5 in front of dδ(2,0)/dm is the degeneracy 2I + 1. Data on
pion–pion scattering show the following peculiar fact [5]:

dδ(0,0)

πdm
+ 5

dδ(2,0)

πdm
' 0 for 2Mπ ≤ m . 0.8 GeV , (5)

which is valid to a very good numerical accuracy. Then, lnZ(0,0++) +
lnZ(2,0++) ' 0! The contribution of f0(500) cancels.

3. Conclusions

In these proceedings, we have shown that the resonance f0(500) can, in
practice, be neglected in all isospin-averaged quantities of a thermal hadronic
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gas, e.g. for pion multiplicities. Then, the proton-to-pion puzzle becomes
even stronger, leaving other explanations open [13]. On the other hand, in
correlation studies of pion-pair production, the cancellation does not occur,
hence f0(500) may play a relevant role [14].

A similar cancellation occurs for the not yet confirmed K∗0 (800) (I =
1/2, JPC = 0++, e.g. Ref. [15] and references therein), whose contribution
is (only partly) compensated by the I = 3/2, JPC = 0++ channel [5, 16].
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