
Vol. 9 (2016) Acta Physica Polonica B Proceedings Supplement No 2

HIGHLY-ANISOTROPIC HYDRODYNAMICS
FOR CENTRAL COLLISIONS∗

Radoslaw Ryblewski

The Henryk Niewodniczański Institute of Nuclear Physics
Polish Academy of Sciences

Radzikowskiego 152, 31-342 Kraków, Poland

(Received June 14, 2016)

The framework of leading-order anisotropic hydrodynamics is supple-
mented with realistic equation of state and self-consistent freeze-out pre-
scription. The model is applied to central proton–nucleus collisions. The
results are compared to those obtained within standard Israel–Stewart
second-order viscous hydrodynamics. It is shown that the resulting hadron
spectra are highly-sensitive to the hydrodynamic approach that has been
used.

DOI:10.5506/APhysPolBSupp.9.309

1. Introduction

One of the most surprising outcomes of the ultra-relativistic heavy-ion
experiments was to show that the new state of matter, the so-called quark–
gluon plasma (QGP), created in these reactions forms a strongly-coupled
and correlated system with the smallest viscosity in Nature. As a result,
its space-time evolution may be, to the great extent, described within the
framework of relativistic viscous fluid dynamics. The application of the lat-
ter is complicated by the fact that, at the early stages of the evolution, there
are locally large momentum-space anisotropies present in the system, which
eventually make the standard framework to break down. In order to account
for this, a great theoretical development of the relativistic fluid dynamics was
done in the recent years. In particular, a new fluid dynamical framework,
called anisotropic hydrodynamics was proposed [1–11], which is based on
the reorganization of the hydrodynamic expansion around the anisotropic
background. At the same time, in order to account for small viscous-like
corrections, the framework was generalized by adding linear perturbations
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to the leading-order term [12–14]. Already at leading order, the framework
of anisotropic hydrodynamics was shown to agree very well with exact solu-
tions of the underlying relaxation-type kinetic theory equations in the special
cases of the Bjorken [15–17] and Gubser [18–20] velocity profiles. Only re-
cently, the framework of anisotropic hydrodynamics was supplemented with
the realistic quantum chromodynamics (QCD) equation of state and the
freeze-out prescription allowing it to be applied to the central A–A and p–A
collisions [21], see also [22]. In this proceedings contribution, we briefly re-
view the framework presented in Ref. [21] and present its main results for
p–A reactions.

2. Leading-order anisotropic hydrodynamics

In the case of central collisions at ultra-relativistic energies, considered
in this work, one can restrict oneself to the boost-invariant and cylindri-
cally symmetric (1+1)-dimensional system. Using the exact solutions of
the kinetic theory equations [20], it was shown that within this symme-
try, the actual distribution function may be very well approximated by the
ellipsoidal form faniso = f eq

(√
pµΞµνpν/λ

)
[6, 8, 20], where f eq is an equi-

librium distribution function, Ξµν = uµuν + ξµν , and the anisotropy ten-
sor in local rest frame (LRF) reads ξµνLRF = diag (0, ξx, ξy, ξz) and satisfies
ξµµ = 0. The flow four-vector uµ is restricted by the symmetry to the form
uµ = (cosh θ⊥ cosh η, sinh θ⊥ cosφ, sinh θ⊥ sinφ, cosh θ⊥ sinh η). The equa-
tions of motion of anisotropic hydrodynamics are obtained by taking first
and second moments of the Boltzmann kinetic equation in the relaxation-
time approximation [8, 9]. As a result, one obtains four coupled partial dif-
ferential equations for anisotropy parameters αx and αz (αi = 1/

√
1 + ξi ),

transverse momentum scale λ and transverse rapidity of the fluid θ⊥ [8, 9].
For a conformal system, the following equation of state holds [20,21]

E = Eeq(λ)R(αx, αz) ,
Px = Peq(λ)HTx(αx, αz) ,
Py = Peq(λ)HTy(αx, αz) ,
Pz = Peq(λ)HL(αx, αz) ,

where Eeq and Peq are the equilibrium expressions for the temperature de-
pendence of energy density and pressure of the ideal gas of massless particles,
respectively, Pi are pressures acting in ith direction and the functions R and
H are defined in Ref. [21]. In order to include the realistic equation of state,
we exchange energy density and pressure of the ideal gas with the corre-
sponding functions obtained within lattice QCD (lQCD) simulations by the
Wuppertal–Budapest collaboration [23] (Eeq → ElQCD, Peq → PlQCD). An-
other important ingredient required for a realistic description of the QGP
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evolution is the self-consistent description of the decoupling of the system.
For this purpose, we assume that the momentum distribution of hadron
spectra results from the Cooper–Frye formula applied to the ellipsoidal form
faniso on the isothermal freeze-out hypersurface. To set the initial energy
density profile for our simulations, we employ standard optical Glauber
model.

3. Results and conclusions

We apply the leading-order anisotropic hydrodynamics framework to the
central p–Pb collisions, and compare its results with standard Israel–Stewart
hydrodynamics. In Fig. 1, we present the comparison of the resulting π0
pT-spectra (a) together with their logarithmic slope (b) for the two ap-
proaches. One can see that the former (dashed blue lines) predicts much
harder spectra than the viscous hydrodynamics (solid black lines), which
may be traced back to the fact that the pressure anisotropy is significantly
overestimated in Israel–Stewart approach [21]. Moreover, one can also see
that the self-consistent inclusion of anisotropy corrections at the freeze-out
(dashed blue lines), compared to the case where the corrections are neglected
(dash-dotted green lines), leads to large corrections to the final spectra. It
means that in small systems, the off-equilibrium corrections are significant
at the time when the system decouples and must be included properly.

Since the anisotropic hydrodynamics was shown to agree much better
with the underlying kinetic theory than the Israel–Stewart theory [15–20], we
conclude that the anisotropic hydrodynamics leads to dramatic improvement
of the description of the evolution of matter in heavy-ion collisions, especially
when one considers asymmetric p–Pb reactions.
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Fig. 1. (Colour on-line) Transverse-momentum spectra of π0 (a) and their logarith-
mic slope (b) for p–Pb collision obtained within leading-order anisotropic hydro-
dynamics and Israel–Stewart second-order viscous hydrodynamics.
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