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We study the spectral functions, the poles and their trajectories for
increasing Nc of the vector kaon state K∗(892), characterized by I(JP ) =
1
2 (1−), and of the scalar kaons K∗

0 (800) and K∗
0 (1430), characterized by

I(JP ) = 1
2 (0+). To this end, we use relativistic QFTs Lagrangians with

both derivative and non-derivative terms. In the vector kaonic sector, the
spectral function is well-approximated by a Breit–Wigner function: there
is one single peak and, correspondingly, a single pole in the complex plane.
On the contrary, in the scalar sector, although the Lagrangian contains
only one scalar kaonic field, we find two poles, one corresponding to a
standard quark–antiquark “seed” stateK∗

0 (1430), and one to a “companion”
dynamically generate pole K∗

0 (800). The latter does not correspond to any
peak in the scalar kaonic spectral function, but only to an enhancement in
the low-energy regime.
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1. Introduction

Understanding the nature of the mesonic resonances listed in Ref. [1] is
an important topic of both experimental and theoretical hadron physics. In
the vector kaonic sector with I(JP ) = 1

2(1−) (I stands for isospin, J for
total spin, and P for parity), the resonance K∗(892) corresponds very well
to the expected quark–antiquark states us̄, ds̄, sū, sd̄; moreover, its spectral
function is nicely described by a (relativistic) Breit–Wigner function. On the
contrary, the scalar kaonic sector I(JP ) = 1

2(0+) is much more complicated.
Two resonances are listed in the PDG below 1.5 GeV: the broad but well-
established K∗

0 (1430) and the very broad and light K∗
0 (800) (also known
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as κ), whose existence still requires definitive confirmation (for discussions,
see e.g. Refs. [2–5] and references therein). The inclusion of κ in the summary
table of PDG would allow to complete the nonet of light scalar states in the
energy region below 1 GeV.

The aim of this work, based on Ref. [5], is to study the nature of the vec-
tor and scalar kaonic resonances. By using QFT Lagrangians, we determine
the coordinates of the poles on the complex plane and study their nature
by using the large-Nc limit. We confirm that K∗(892) and K∗

0 (1430) are
standard quark–antiquark states, while K∗

0 (800) is a dynamically generated
state.

2. The model(s)

In order to describe K∗(892) and K∗
0 (1430), we introduce relativistic

Lagrangians that couples them to one kaon and one pion:

Lv = cK∗(892)+µ ∂
µK−π0 + . . . , Ls = aK∗+

0 K−π0 +bK∗+
0 ∂µK

−∂µπ0 + . . .

(1)
The expressions above contain non-derivative and derivative interaction term.
The dots stay for the sum over isospin and Hermitian conjugation. The terms
in Eq. (1) naturally emerge as a subset of more complete mesonic models,
e.g. Ref. [6]. According to our models, the decay widths of K∗(892) and K∗

0
(as a function of the running mass m) are:

ΓK∗(m) = 3

∣∣∣~k1∣∣∣
8πm2

c2

3

[
−M2

π +

(
m2 +M2

π −M2
K

)2
4m2

]
FΛ(m) , (2)

ΓK∗
0
(m) = 3

∣∣∣~k1∣∣∣
8πm2

[
a− b

m2 −M2
K −M2

π

2

]2
FΛ(m) , (3)

where the form factor FΛ(m) = exp(−2~k21/Λ
2) has been introduced. Λ is an

energy scale, ~k1 the three-momentum of one outgoing particle, MK the
kaon mass and Mπ the pion mass. The on-shell decay widths are ob-
tained by setting m to the masses of K∗(892) or K∗

0 (1430): this is ac-
curate in the former case, but quite imprecise in the latter. The (scalar
part of the) propagator of the resonances is given by ∆K∗/K∗

0
(p2 = m2) =

[m2−M2
0 +Π(m2)+ iε]−1, whereM0 is the bare mass of K∗(892)/K∗

0 (1430)
and Π(m2) = Re(m2) + iIm(m2) is the one-loop contribution. The spec-
tral function which determines the probability that resonance has a mass
between m and m + dm reads: dK∗/K∗

0
(m) = 2m

π |Im∆K∗/K∗
0
(p2 = m2)|.

Spectral functions must be normalized to unity. For details of the used
formalism, see Ref. [7].
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The spectral functions ofK∗(892) andK∗
0 (1430) are shown in Fig. 1. For

the vector kaon, we observe a single peak close to 0.9 GeV and a (unique!)
pole at 0.89–i0.028 GeV. In the scalar sector, there is a broad peak at about
1.4 GeV, but no peak corresponding to the light κ (there is only a broad
enhancement in the low-energy regime). In this channel, it turns out that
there are two poles: (1.413±0.057)–i(0.127±0.011) GeV, which corresponds
to the seed state K∗

0 (1430), and (0.745±0.029)–i(0.263±0.027) GeV, which
corresponds to K∗

0 (800) as an additional companion pole. The parameters
for the scalar channel were determined via a fit to existing pion–kaon data,
see Ref. [5] for details.

Fig. 1. Spectral functions of K∗(892) (left panel) and K∗
0 (1430) and K∗

0 (800) (right
panel), for different values of λ = 3/Nc.

We studied the change of the spectral function for different values of the
number of colors Nc with the rescaling a → a

√
3/Nc (and so for b and c).

When Nc increases, the interaction becomes smaller. In both channels, we
observe that the peak becomes narrower and higher. However, in the scalar
sector, the enhancement of the κ becomes smaller for increasing Nc.
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Fig. 2. Movement of the poles ofK∗(892) (left panel) and ofK∗
0 (1430) andK∗

0 (800)

(right panel) for different values of λ = 3/Nc.
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In Fig. 2, we show the trajectories of the poles for increasing Nc. One
sees that the poles of K∗(892) and K∗

0 (1430) tend to the real axis, while
that of K∗

0 (800) goes away from it and finally disappears for Nc ' 13. In
conclusion, all these results, with special focus on Fig. 2 which is the main
outcome of the present proceedings, confirm that K∗

0 (800) is a dynamically
generated non-quarkonium meson.

3. Conclusions

We have discussed the nature of K∗(892), K∗
0 (800), and K∗

0 (1430) by
using QFT models presented in Ref. [5]. We find thatK∗(892) andK∗

0 (1430)
are regular quark–antiquark mesons (see the quark-model review in [1]). In
both cases, the spectral function has a well-pronounced peak; in the large-
Nc limit, the positions of the poles tend to the real axis, as it should for
conventional mesons. On the contrary, K∗

0 (800) does not correspond to
a peak of the scalar spectral function, but there is a related pole in the
complex plane. The original Lagrangian contains a single scalar field, which
is associated to K∗

0 (1430), hence K∗
0 (800) emerges as a companion pole of

K∗
0 (1430). In the large-Nc limit, the pole of K∗

0 (800) disappears, confirming
its non-quarkonium nature.
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