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1. Introduction

The dynamics of a quantum field theory is encoded in its Green’s func-
tions. Here, we focus on two fundamental correlation functions of QCD,
namely the quark propagator and the quark–gluon vertex, in the Landau
gauge.

The quark propagator has two form factors, the quark wave function
and the quark running mass. The running mass signals the dynamical sym-
metry breaking mechanism present in QCD. Furthermore, from the quark
propagator, one can access its analytical properties which, hopefully, provide
information on quark confinement.

∗ Presented by O. Oliveira at “Excited QCD 2016”, Costa da Caparica, Lisbon, Portu-
gal, March 6–12, 2016.
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A complete description of the quark–gluon vertex requires the compu-
tation of twelve form factors. This three-point correlation function is of
primary importance for hadronic physics and encodes information on the
hadronic spectrum and on quark confinement.

Lattice simulations allow for first principles calculations of both the
quark propagator and the quark–gluon vertex form factors, or combinations
of form factors, associated with the above mentioned correlation functions.
Once the finite size effects are under control, the results from lattice QCD
simulations may also be used in the validation of continuum approaches to
strong interaction physics as those provided by Dyson–Schwinger or func-
tional renormalisation group equations.

The quark propagator and guark–gluon vertex are gauge-dependent quan-
tities. Here, we report on results for the Landau gauge defined, in the con-
tinuum, by the condition ∂µAaµ = 0, where Aaµ refers to the gluon field. On
the lattice, the Landau gauge condition is satisfied up to O(a2) corrections
in the lattice spacing.

The gauge ensembles in our study use three values for the gauge cou-
pling, corresponding to lattice spacings of a ≈ 0.081 fm, a ≈ 0.071 fm and
a ≈ 0.060 fm, and we use quark masses corresponding to mπ ≈ 290 MeV
and mπ ≈ 420 MeV. The ensembles were generated by the Regensburg
QCD (RQCD) Collaboration [1] with Nf = 2 non-perturbative improved
Sheikholeslami–Wohlert (clover) fermions1. The gauge fixing and the com-
putation of the propagators and vertex functions were performed on the
HLRN [2] supercomputing facilities. The lattice setup and the parameters
used are listed in Table I.

TABLE I

Lattice setup: the lattice spacing and pion masses are taken from [1]. The sub-
tracted bare quark mass is given by mq = 1/(2κ)−1/(2κc) and we read the critical
hopping parameters κc from [1].

β κ a [fm] V mπ [MeV] mq [MeV] Ncfg

5.20 0.13596 0.081 323 × 64 280 6.2 900
5.29 0.13620 0.071 323 × 64 422 17.0 900
5.29 0.13632 0.071 323 × 64 295 8.0 908

643 × 64 290 314
5.40 0.13647 0.060 323 × 64 426 18.4 900

1 We used the ensembles I, III, IV, VI and X referred to in [1], and thank the RQCD
Collaboration for providing us access to them.
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2. The quark propagator

The continuum momentum space quark propagator is given by

S(p) =
1

i 6pA (p2) +B (p2)
=

Z
(
p2
)

i 6p+M (p2)
, (1)

where Z(p2)=1/A(p2) is the quark wave function andM(p2)=B(p2)/A(p2)
is the renormalisation group invariant running mass function. Our lat-
tice simulations use periodic boundary conditions in space and anti-periodic
boundary conditions in time for fermion fields and, therefore, the available
momenta read

pi =
2π

Nia

(
ni −

Ni

2

)
; ni = 1, 2, . . . , Ni , (2)

pt =
2π

Nta

(
nt − 1

2 −
Nt

2

)
; nt = 1, 2, . . . , Nt , (3)

where Ni, Nt refers to the number of lattice points in the spatial and tem-
poral directions, respectively. For Wilson fermions, the lattice quark propa-
gator is given by

SL(pa) =
ZL(pa)

ia 6K(p) + aML(pa)
, (4)

where the lattice momentum variable is

Kµ(p) =
1

a
sin(apµ) . (5)

On the lattice, given that the rotational symmetry is explicitly broken
and one has to use a finite lattice spacing, large lattice artefacts are in-
troduced in the quark propagator form factors. Here, we rely on tree-level
lattice perturbation theory estimation of the rotated propagator, in com-
bination with momentum cuts, to correct for these artefacts — see [3, 4]
for details. The results reported here are derived using the so-called hybrid
correction scheme which provide smoother form factors2. We will also show
the results for the so-called H4 estimations [5, 6] for the correction of the
hypercubic artefacts. The tree-level corrected wave function and running
mass for the various ensembles can be seen in Figs. 1 and 2.

2 The multiplicative correction scheme introduces some artificial structures on the mass
function at medium momenta. The running masses computed using both the cor-
rection schemes define mass functions which are, at the qualitative level, equal to
the multiplicative scheme producing larger mass values. The two schemes seem to
converge as we go towards higher momentum.
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Fig. 1. Tree-level corrected wave function Z(p) for the 323 × 64 ensembles (left)
and for the two lattice volumes at β = 5.29, κ = 0.13632 (right), as a function of
the momentum p. The momenta have been cylinder cut with a radius of 1 lattice
momentum unit.
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Fig. 2. Tree-level corrected running massM(p) for the 323×64 ensembles (left) and
for the two lattice volumes at β = 5.29, κ = 0.13632 (right), as a function of the
momentum p. On the left plot, the inset shows a close-up of the high-momentum
region. On the right plot, the two insets show a close-up of the low-momentum
region with a logarithmic momentum scale (left) and the high-momentum region
on a log–log scale (right). The momenta have been cylinder cut with a radius of 1
lattice momentum unit.

The quark wave function Z(p2) is suppressed in the infrared region and
is a slightly decreasing function of the momentum for p & 3 GeV. For suf-
ficiently large momentum, Z(p2) should reproduce the perturbative result
which predicts a constant wave function in the Landau gauge. The observed
slow decrease of Z(p2) is an indication that the subtraction scheme does
not completely remove the lattice artefacts. In Fig. 3, we rely on the H4
method to extrapolate away rotational symmetry violating lattice artefacts
for the quark wave function. In the range of momenta where the various
extrapolations are compatible, the H4 method yields larger values for Z(p2)
compared to the tree-level corrections and predicts an essentially constant
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Fig. 3. H4 extrapolation for the quark wave function Z(p) for the 323×64 ensemble
(left) and 644 ensemble (right) at β = 5.29 and for κ = 0.13632.

wave function for pa above ∼ 0.8. The results of Fig. 1 suggest that Z(p2)
has only a mild dependence on the quark mass at large momentum. In con-
trast, at low momentum, the data also show an infrared suppression that
becomes larger for the ensembles with smaller bare quark masses. Figure 1
also reveals clear finite volume effects in the infrared region and mild volume
effects at higher momenta and up to p . 3 GeV.

The running quark mass, see Fig. 2, is a decreasing function of momen-
tum and, in the infrared, M(p2) decreases as mπ approaches its physical
value. For smaller pion masses, our simulations give M(0) ≈ 320 MeV. The
plots in Fig. 2 show finite size effects in M(p2) which are not removed by
the H4 method. Indeed, the H4 method is not able to accommodate well
the dependence of the running mass with the various momentum invariants.

3. The quark–gluon vertex

In general, the quark–gluon vertex is described by twelve form factors
which are functions of p2, q2, k2, respectively, the momentum of the outgoing
quark, the gluon momentum and the momentum of the incoming quark.
However, for the soft gluon limit, where the gluon momentum vanishes, the
vertex requires only three form factors [7] and is given by

Γµ
(
p2
)
= λ1

(
p2
)
γµ − λ2

(
p2
)
4 p/ pµ − λ3

(
p2
)
2 i pµ . (6)

In Fig. 4, we report on the lattice estimates for λ1 after performing the
tree-level corrections for the asymmetric ensembles referred in Table I.

The form factor λ1(p2), which can be used to define the strong coupling
constant, is enhanced at infrared momenta for all simulations. Due to the
finite volume and lattice spacing effects, the dependence of λ1(p2) on the
pion mass is not clear from the plot. A better understanding of the finite
size effects is required before drawing further conclusions.
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Fig. 4. Tree-level corrected λ1(p2) from the 323 × 64 ensembles.

4. Summary and outlook

In this proceeding, we report preliminary results for the quark propagator
and quark–gluon vertex in the Landau gauge using lattice QCD simulations.
We are currently working towards providing results closer to the physical
pion mass and are trying to understand the effects of the lattice artefacts
on both the wave function and running mass. On the other hand, for the
vertex form factors, we are engaged in computing the three form factors that
describe the vertex in the soft gluon limit for all the ensembles in Table I.
We hope to provide final results in a not so distant future.
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