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The initial state fluctuations of the colliding heavy-ion nuclei play a
major role in understanding the anisotropic flow of final state particles.
Furthermore, an important signature of these fluctuations is the flow (event-
plane) angle dependence from pT that induces a measurable effect of fac-
torization breaking in a pure relativistic hydrodynamic picture. Here, the
effect of factorization breaking is described using a new method based on
principal component analysis (PCA) and two-particle correlations. The
method exposes leading and sub-leading mode, the leading corresponding
to the standard elliptic and triangular flow and the sub-leading represent-
ing a new variable that is a direct response to initial state fluctuations.
In this study, first measurements of the subflow are presented, as a func-
tion of transverse momentum in PbPb collisions at

√
sNN = 2.76 TeV and

high-multiplicity pPb collisions at
√
sNN = 5.02 TeV with CMS data.
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1. Introduction

Relativistic heavy-ion collisions are an ideal terrain for studies of strongly
interacting matter. Energies at RHIC (Relativistic Heavy Ion Collider) gave
rise to a new state of matter, the quark–gluon plasma (QGP) [1], as a
cross over medium transitioning from a parton bound interaction following
the QCD phase diagram. The strongest evidence of QGP are high values
of elliptic flow and the presence of jet quenching (suppression) of high pT
hadrons. Relativistic hydrodynamics [2,3] has proven to be a powerful tool in
predicting the flow values, regarding the QGP as a strongly coupled quark–
gluon liquid exhibiting strong partonic collectivity. One of the assumptions
that was used for a long time in the hydrodynamical simulation of a collision
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event is a smooth and symmetrical initial density profile of the overlapping
region. However, it was realised that a more realistic picture of this would be
a non-uniform (lumpy-like) initial density profile which is caused by quantum
fluctuations of nucleons and partons within the nucleus. As an example, the
existence of these initial fluctuations unveiled the full nature of higher flow
harmonics in symmetrical collisions [4].

2. Factorization breaking effect

As mentioned previously, a strong signature of initial state fluctuations
is the presence of higher flow harmonics (n > 2). The harmonics are a
manifestation of spatial anisotropy in the per-event emission of final state
particles in the collision. The single particle distribution in the azimuthal
phase space is expanded as

dN

dφ
=
N0

2π

n=∞∑
n=−∞

Vn(pT, η)e−inφ , (1)

with Vn = υne
inΨn , where υn is the anisotropic flow coefficient and Ψn the

flow (phase) angle. Now, using V−n = V ∗n in the previous equation, it follows

dN

dφ
=
N0

2π

(
1 + 2

∞∑
n=1

υn(pT, η) cos(n(φ− Ψn(pT, η)))

)
. (2)

The single particle harmonic υn is a clear function of pT and rapidity but the
flow angle was considered for a long time as a global phase that fluctuates
randomly from event to event. Recent hydrodynamical studies showed [5–7]
that local hotspots perturb the event plane of a smooth medium which
can, in effect, give high pT particles different values of the flow angle i.e.
Ψn = Ψn(pT). In order to probe this flow angle pT dependence, the so-
called factorization breaking effect is investigated. Referring to the complex
plane definition of azimuthal distribution (1), the two-particle correlation
harmonic will be equal to the averaged product of single particle flow coef-
ficients

Vn∆

(
paT, p

b
T

)
=
〈
Vn(paT)V ∗n

(
pbT

)〉
=
〈
υanυ

b
ne
in(Ψa

n−Ψb
n)
〉
. (3)

Because of parity symmetry, only the cosine term remains. One also con-
cludes that only when the flow angle is a global phase we do have factor-
ization. To investigate the factorization effect, one can use a Pearson-like
coefficient

rn =
Vn∆

(
paT, p

b
T

)√
Vn∆

(
paT, p

a
T

)
Vn∆

(
pbT, p

b
T

) ∼ 〈cos
(
n(Ψn (paT)− Ψn

(
pbT

))〉
(4)
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which is proportional to the underlined cosine term. If the ratio is unity,
factorization holds, if it is below unity, this is evidence of factorization break-
ing. CMS results [8] show a clear sign of factorization breaking, especially
for Pb–Pb data in the case of the elliptic flow and ultra-central collisions,
where initial state fluctuations are dominant.

3. Principal component analysis and event-by-event fluctuations

Recognizing the strong implications of initial state fluctuations on fi-
nal state effects, a new model was introduced [9] that extracts the flow
fluctuations directly from data. The method combines the statistical tool
called principal component analysis and standard two-particle correlations
which, in effect, give a new measurable flow observable. The building block
of the method is constructing a real, symmetrical matrix V̂n∆(paT, p

b
T) of

two-particle harmonics for Nb number of pT differential bins. In a pure
hydro-picture, this is a covariance matrix which is, by definition, positive
semidefinite, hence positive eigenvalues. In practice, PCA procedure makes
a spectral decomposition of the covariance matrix where the principal com-
ponents refer to the orthogonal eigenvectors. The components are ordered
by size (data variance) and isolate the most important fluctuations. The cal-
culated components (modes) V (1)

n (pT), V (2)
n (pT), . . . can be used as a basis

for the event-by-event expansion of harmonic flow

Vn(pT) = ξ(1)n V (1)
n (pT) + ξ(2)n V (2)

n (pT) + . . . , (5)

where ξ(α)n are random complex uncorrelated variables with zero mean i.e.
〈ξ(α)n ξ

(β)
n 〉 = δab and 〈ξ

(α)
n 〉 = 0. Now, calculating the two-particle harmonic

from equation (3) by means of expansion (5), we have

Vn∆

(
paT, p

b
T

)
=

Nb∑
α=1

V (α)
n (paT)V (α)∗

n

(
pbT

)
. (6)

In order to calculate the modes, we rewrite the spectral decomposition as
Vn∆(paT, p

b
T) =

∑
α λ

(α)e(α)(paT)e(α)∗(pbT) which gives

V (α)
n (pT) =

√
λ(α)e(α)(pT) , (7)

where e(α)(pT) are normed eigenvectors and eigenvalues λ(α) follow strict
descending ordering λ(1) > λ(2) . . . > λ(n). Equation (6) directly shows that
only in the case of one mode does factorization hold. Finally, connecting
the modes with anisotropy per particle υn an additional norming step is
needed as

υ(α)n (pT) =
V

(α)
n (pT)

〈M(pT)〉
. (8)



380 D. Devetak

The observable υ(1)n is designated as the leading flow which corresponds to
the standard single particle anisotropy. The observable υ(2)n stemming from
the second mode is the sub-leading flow which is a direct response to initial
state fluctuations. The two-particle harmonics Vn∆(paT, p

b
T) of the covariance

matrix are calculated as in [8] with the exception that no norming per event
is done by number of pairs i.e.,

Vn∆

(
paT, p

b
T

)
= 〈cosn∆φ〉S − 〈cosn∆φ〉B , (9)

where 〈·〉 is averaging by all the events and the last term referring to the non-
uniform acceptance of the detector. In addition, the correlations between
the tracks are done with a rapidity cut of |∆η| > 2 that suppresses jet
contributions which are short-ranged. Since the initial norming definition (8)
is only flow driven (Monte Carlo study [9]), the rapidity cut implies an
additional factor that needs to be added as

Ṽn∆

(
paT, p

b
T

)
=

〈
Nall

p (a, b)

N cut
p (a, b)

〉
Vn∆

(
paT, p

b
T

)
, (10)

where the harmonic is multiplied by the ratio of the total number of pairs
and number of pairs with the rapidity cut. Using this new harmonic the
covariance matrix was built.

4. Results

In this study, measurements of the leading and sub-leading flow are con-
ducted using PbPb data at

√
sNN = 2.76 TeV and high-multiplicity pPb

data at
√
sNN = 5.02 TeV from the CMS experiment. Figure 1 shows

the elliptic leading and sub-leading flow for PbPb collisions as a function
of pT for eight centrality regions. For the purpose of comparison, ALICE
data [10] is also plotted. Observing the leading flow values, we see a very
good agreement with ALICE data, corresponding to the standard single par-
ticle anisotropy as excepted. Here, the new information is the sub-leading
flow that has a clear signal for all centralities with stronger systematic er-
rors for more central regions. We observe a rise of the sub-leading flow
signal with pT which is in correspondence with the factorization breaking
effect. This trend is the same for all centralities but is not linear going from
ultra-central to very peripheral. Figure 2 shows the elliptic leading and sub-
leading flow in the case of high-multiplicity pPb data. The calculations are
done for four high-multiplicity intervals. Here, the leading flow is compared
to data from [11], again being in good agreement with standard single par-
ticle anisotropy. As in the case of Pb–Pb, the sub-leading flow rises with
pT where we observe a fable multiplicity dependence. As it was discussed in
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the previous section, the existence of the sub-leading flow infers the effect of
factorization breaking.
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Fig. 1. Elliptic leading and sub-leading flow as a function of pT for Pb–Pb data at
nucleon–nucleon center-of-mass energy of 2.76 TeV. The results span eight central-
ity regions.
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Fig. 2. Elliptic leading and sub-leading flow as a function of pT for pPb data at
nucleon–nucleon center-of-mass energy of 5.02 TeV. The results span four multi-
plicity intervals.
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We can demonstrate this in an explicit way but expressing the ratio rn
from equation (4) in terms of principal components (modes)

rn ≈ 1− 1

2

[
V

(2)
n (paT)

V
(1)
n

(
paT
) − V

(2)
n

(
pbT
)

V
(1)
n

(
pbT
)]2 , (11)

which gives rn = 1 when the sub-leading flow is zero. The last equation also
shows that the effect of factorization breaking is induced by the ratio of the
sub-leading and leading flow and not by the sub-leading flow itself.

5. Conclusion

Initial state fluctuations prove to be an important factor in understand-
ing the final state correlations in relativistic heavy-ion collisions. One such
signature is the effect of factorization breaking induced by the flow angle pT
dependence. This effect can also be quantified by a new observable called
the sub-leading flow, following a method based on principal component anal-
ysis applied to the two-particle correlation matrix. Here, first measurements
of the sub-leading flow are conducted with lead–lead and proton–lead CMS
data at

√
sNN = 2.76 TeV and

√
sNN = 5.02 TeV, respectively. The results

offer a new insight in the behaviour of factorization breaking and can be
used to further constrain the plasma response to the initial geometry.
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