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Yang–Mills theory is studied in three dimensions using the equations of
motion of the 1PI and 3PI effective actions. The employed self-contained
truncation includes the propagators, the three-point functions and the four-
gluon vertex dynamically. In the gluon propagator, also two-loop diagrams
are taken into account. The higher gluonic correlation functions show siz-
able deviations from the tree-level only at low momenta. Also the couplings
derived from the vertices agree well down to a few GeV. In addition, differ-
ent methods to subtract spurious divergences are explored.
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1. Introduction

The property of asymptotic freedom, which justifies the use of pertur-
bation theory at high momentum transfer, was crucial to establish QCD as
the theory of the strong interaction. However, for many interesting aspects
of QCD, such as dynamical mass generation, confinement or the descrip-
tion of transitions between the phases of strongly interacting matter, non-
perturbative methods are required. One approach among many is functional
equations. In their pure form, they provide a complete description of QCD,
but for concrete calculations they must be truncated. The challenge is then
to understand the effect of any truncation and, if necessary, to improve it.

Understanding the effect of truncations consists in assessing the influence
of discarded diagrams and the effects of employed models. Especially the
latter is difficult as models are often tailored to produce good results for
the calculated quantities. Replacing the models by dynamically calculated
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correlation functions might thus not lead to a quantitative improvement. For
an example, see Ref. [1] where the role of the three-gluon vertex in the gluon
propagator is discussed. Nevertheless, it is necessary to increase the number
of dynamically included quantities and test if the changes become smaller
beyond some level in order to obtain a self-consistent and self-contained
solution. The recent advances in calculating higher correlation functions and
solving systems with dynamical vertices show that this has indeed become
feasible by now [1–7].

Here, I describe the solution of the system of primitively divergent corre-
lation functions of three-dimensional Yang–Mills theory and test the effects
of the truncation by varying some of its specifics. More details can be found
in Ref. [6]. The advantage over four dimensions is that the theory is UV
finite. However, because of the employed cutoff regularization, spurious di-
vergences occur in the gluon propagator DSE. Their treatment is alleviated
in three dimensions, because the dressing functions fall off polynomially in
the UV and the divergences are purely logarithmic and linear. This is in con-
trast to four dimensions, where these divergences are not quadratic beyond
one-loop [8]. This difference allows an easy subtraction in three dimensions
via a fit to the cutoff dependence even when vertices are included dynami-
cally or two-loop diagrams are considered [6].

The truncation considered here includes the propagator, the three-point
functions and the four-gluon vertex; see Figs. 1 and 2 for the corresponding
DSEs. Two different sets of equations are employed. One is the equations of
motion of the 3PI effective action truncated at three-loops. In this case, only
the propagators and the three-point functions are dynamical and the four-
gluon vertex is bare. The second set of equations is the Dyson–Schwinger
equations (DSEs). Their truncation is specified by setting all non-primitively
divergent Green functions to zero. The only freedom left is to choose one
of the two DSEs for the ghost-gluon vertex. They are referred to as the
c- and A-DSE, depending on which external leg is attached to the bare
vertex. It should be noted that these two equations have in their full form
four and twelve diagrams, respectively. However, the specified truncation
always reduces them to three diagrams. The truncation is self-contained in
the sense that there is no model dependence left and the only parameter is
the coupling which sets the scale.

The equations are solved with a simple fixed point iteration using the
framework CrasyDSE [9] together with DoFun to derive the equations
[10,11]. To compare with lattice results, the number of colors is set to 2.



A Non-perturbative Study of the Correlation Functions . . . 391

−1
=

−1−1
2

−1
2

+ −1

6
−1

2

−1
=

−1 −

= + +

Fig. 1. The full gluon propagator DSE, the full ghost propagator DSE and the
truncated ghost-gluon vertex A-DSE. Here and in all other figures, internal prop-
agators are dressed, and thick blobs denote dressed vertices, wiggly lines gluons,
and dashed ones ghosts.
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Fig. 2. The truncated three- and four-gluon vertex DSEs.

2. Results

The result for the gluon propagator calculated within the full DSE sys-
tem is shown in Fig. 3. To relate to a physical scale, which is determined by
the dimensionful coupling constant, the gluon dressing function maximum
is matched with that of lattice results but taking into account a variation
between 90 and 125% because of the deficiency in the region around 1 GeV.
A possible reason for this mismatch is the existence of a family of solutions
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Fig. 3. Left: Gluon propagator from the full system in comparison to lattice results
[12]. The band is obtained by varying the maximum of the gluon dressing function
between 922 and 1282 MeV. Right: Contributions of individual diagrams in the
gluon propagator DSE.
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of the equations which is known from four dimensions typically related to a
boundary condition for the ghost DSE [13, 14]. No boundary condition for
the ghost is set here as the ghost DSE is finite. In Fig. 3, also the contri-
butions from individual diagrams are shown. As expected, the gluon loop
yields the dominant contribution in the UV. Also in the mid-momentum
regime it clearly dominates. In the IR regime, however, the ghost becomes
important. The two-loop diagrams have a clear hierarchy: The sunset di-
agram contributes only very little, whereas the squint diagram yields the
second largest contribution in the mid-momentum regime. Indeed, it was
found that the squint diagram is important for the stability of the equation
under iteration once the gluon bump around 1 GeV reaches a certain height.

To test if different solutions can be obtained, the subtraction of spurious
divergences is modified to set the gluon propagator to a specific value at zero
momentum. This is motivated by calculations with the FRG where a mass
parameter can be varied in the UV leading to different solutions [7]. First
results of this method using a one-loop truncation with bare vertices are
shown in Fig. 4. The magnitude of the observed effect has to be taken with
a grain of salt, since the model vertices do not vary for different solutions
although the full vertices do [2, 3, 5, 7].

0.01 0.10 1 10 100
p[GeV]

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

G(p2)

0.01 0.05 0.10 0.50 1 5 10
p[GeV]

0.5

1.0

1.5

Z(p2)

Fig. 4. Ghost/gluon dressing functions from the one-loop truncation using bare
ghost-gluon and three-gluon vertices. Different solutions correspond to different
values of the gluon propagator at zero momentum.

Some results for vertices are depicted in Fig. 5. The three-gluon ver-
tex agrees very well with the lattice data. The ghost-gluon vertex, on the
other hand, has a shifted maximum [6]. The source of this deviation is cur-
rently unclear. For the four-gluon vertex, three kinematic configurations are
depicted in Fig. 5. The most notable feature is that deviations from the
tree-level become only substantial at low momenta. In addition, a few se-
lected dressing functions beyond the tree-level one were calculated and were
found to be very small [6]. It should be emphasized that this is not due
to the smallness of single diagrams but stems from cancellations between
diagrams. The same applies for the three-gluon vertex.
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Fig. 5. Left: Three-gluon vertex dressing from the full system in comparison with
lattice results [15]. Right: Tree-level dressing of the four-gluon vertex for different
kinematic configurations.

The stability of the truncation is tested by replacing the four-gluon vertex
by a bare one. Another test consists in using the equations of motion of the
3PI effective action. The results for the gluon dressing function are shown
in Fig. 6. In the mid-momentum regime, there is a small difference in the
height of the bump. Larger differences are found in the deep IR, which
become visible in the gluon propagator.
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Fig. 6. Left: Gluon dressing function from three systems: DSEs with a dynamical
or a bare four-gluon vertex and equations of motion from the 3PI effective action.
Right: The coupling constants from the ghost-gluon, three-gluon and four-gluon
vertices.

Figure 6 also shows the couplings as derived from the ghost-gluon, the
three-gluon and the four-gluon vertices. It has to be noted that for this
comparison not the MiniMOM coupling is used, but

αghg

(
p2
)
=
g2

4π
DAc̄c

(
p2, p2, p2

)
G
(
p2
)2
Z
(
p2
)

which is also a suitable definition of a coupling [3]. The good agreement
down to a few GeV and the hierarchy below coincides with the findings
in four dimensions from the FRG in Ref. [7]. The agreement between the
different couplings in the perturbative regime shows that the Slavnov–Taylor
identities are respected as discussed in [7].
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3. Conclusions

The results for the correlation functions of three-dimensional Yang–Mills
theory proved to be stable against several modifications of the truncation.
This might seem in contradiction to the deviation with available lattice re-
sults. However, it is currently not clear whether the obtained solution and
the lattice solution should agree because of the possibility of several solu-
tions. An important result is that the mild deviations of higher gluonic cor-
relation functions from their tree-level behavior above 1 GeV are caused by
cancellations between diagrams and not by the smallness of single diagrams.

Given the many parallels between three- and four-dimensional Yang–
Mills theory, it can be expected that these findings also apply in four di-
mensions. With the functional renormalization group using basically the
same truncation as here (but producing a family of solutions), indeed good
agreement with lattice results can be obtained [7].

Results have been obtained using the Vienna Scientific Cluster (VSC)
and the HPC clusters at the University of Graz. Funding by the FWF
(Austrian science fund) under Contract No. P 27380-N27 is gratefully ac-
knowledged.
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