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FROM THE HADRON RESONANCE GAS
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A heavy quark placed in the medium modifies its specific heat. Using
a renormalization group argument, we show a low-energy theorem in terms
of the defect in the trace of the energy-momentum tensor which allows
the unambiguous determination of the corresponding entropy shift after
imposing the third principle of thermodynamics for degenerate states. We
show how recent lattice QCD data can be understood in the confined phase
in terms of a singly-heavy hadronic spectrum and above the phase transition
through power corrections which are analysed by means of a dimension-2
gluon condensate of the dimensionally reduced theory.
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1. Introduction

The Polyakov loop has been a major ingredient in the development of
QCD at finite temperature, where lattice calculations routinely used the
bare Polyakov loop as an order parameter for the crossover between the
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confined hadronic phase and the quark–gluon plasma. Its renormaliza-
tion was first accomplished in perturbative QCD (pQCD) by Gava and
Jengo [1] and non-perturbatively by the Bielefeld group [2]. In a series of
works [3–6], we have pointed out that, instead of pQCD features, unexpected
inverse power corrections in temperature dominate above the phase transi-
tion, a non-perturbative feature which finds a natural explanation in terms
of dimension-2 condensates of the dimensionally reduced theory. On the
other extreme, we have also found a hadronic representation in the confined
phase both for the Polyakov loop [7,8] and its correlators [9] (see also [10]).
For a pedagogical review, see e.g. [11].

Perturbative calculations of the renormalized Polyakov loop have been
pursued to NNLO [12–14]. The mysterious power corrections have been
confirmed on the lattice for Nc = 3, 4, 5 [15]. Quite recently, the TUM lattice
calculation for physical quark masses in 2+1 flavours has been carried out
in the temperature range of 125 MeV ≤ T ≤ 6000 MeV [16] concluding that
at earliest pQCD to NNLO [14] might set in at 5800 MeV. Here, we display
the power correction pattern over a huge range of temperatures and argue
on the missing singly-heavy hadronic states below the phase transition.

2. Renormalization group

The Polyakov loop is a local operator which in the static gauge reads
Tr(Ω(~x)) = Tr(eigA0(~x)/T ) (Tr(1) = Nc). Its expectation value is a ratio of
two partition functions (we take conventionally ~x = 0)

〈Tr(Ω)〉 =
ZQ
Z0

=

∫
DADq̄Dq e−

∫
d4xL(x) Tr(Ω)∫

DADq̄Dq e−
∫

d4xL(x)
≡ e−∆FQ/T , (1)

where the QCD Lagrangian for Nf = 3 flavours u, d, s reads, in terms of the
re-scaled gluon field Āµ =

∑
a gA

a
µTa with Tr(TaTb) = δab/2,

L(x) =
1

4g2

(
Ḡaµν

)2
+

∑
q=u,d,s

q̄(i /D +mq)q . (2)

The renormalized Polyakov loop is uniquely defined up to a constant factor
which corresponds to ∆FQ → ∆FQ + cΩ. There is no natural way to fix the
ambiguity, but it can be removed by using the corresponding entropy

∆SQ = −
∂∆FQ
∂T

=
∂

∂T
[T log〈Tr(Ω)〉] . (3)

As ∆SQ is dimensionless, one should have ∆SQ = ϕ(g(µ), log µ
T , log µ

mq(µ)),
with µ the renormalization scale. Renormalization group invariance requires

0 = µ
d∆SQ

dµ
= β(g)

∂∆SQ
∂g

−
∑
q

mq(1 + γq)
∂∆SQ
∂mq

− T
∂∆SQ
∂T

, (4)
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where the beta function and the mass anomalous dimension are

β(g) = µ
dg

dµ
, γq(g) = −d logmq

d logµ
, (5)

respectively. Direct evaluation yields the shift in the specific heat

∆cQ = T
∂∆SQ
∂T

=
∂

∂T

{
T

∫
d4x

[
〈Tr(Ω)Θ(x)〉
〈Tr(Ω)〉

− 〈Θ(x)〉
]}
≡
∂∆UQ
∂T

,

(6)
where Θ is the trace of the energy momentum tensor1,

Θ ≡ Θµµ =
β(g)

2g
Tr
(
G2
µν

)
+
∑
q

mq(1 + γq)q̄q . (7)

The entropy shift can be obtained by integrating with suitable boundary
conditions featuring the dimensions of the Hilbert space with and without
Polyakov loop. At low temperatures, ZQ ∼ 2Nfe

−M0/T for Nf degenerate
flavours and Z0 ∼ 1, whereas at high temperatures ZQ ∼ NcZ0, thus

∆SQ(0) = log (2Nf) , ∆SQ(∞) = logNc . (8)

The first condition is the third principle of thermodynamics for degener-
ate states. The recent TUM lattice calculations directly provide the en-
tropy in the range of 125 MeV ≤ T ≤ 6000 MeV [16] taking the con-
vention STUM

Q (∞) = 0 in harmony with their normalization e−F
TUM
Q /T =

〈Tr(Ω)〉/Nc which, unlike ours, is not a partition function at low tempera-
tures. The critical temperature was found to be Tc = 150 MeV.

3. Singly-heavy hadron resonance gas

In the confined phase, we expect a hadronic representation of the Polyakov
loop [7,8]. There, the ambiguity comes from the heavy quark mass which is
subtracted from the hadron total mass. In [7], we explicitly reconstructed
the entropy d(T logL(T ))/dT although the available lattice data were nois-
ier than the recent ones [16].

In Fig. 1, we show the lattice entropy results [16] and compare them
with the hadron resonance gas using either the bag model (centred at the

1 Here, we extend to ∆SQ the argument of Ref. [17, 18]. The entropy shift is not a
true entropy. For instance, the true entropy must be a monotonous function of the
temperature since from Z = Tr e−H/T , it follows c = T∂TS = 〈(H − 〈H〉)2〉/T 2 > 0.
Thus, both cQ > 0 and c0 > 0 but the sign of ∆cQ is not fixed. The exact relations
for thermodynamics of heavy quarks [19] are still subjected to ambiguities which are
removed in the specific heat.
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heavy quark source), the PDG or the RQM of Isgur, Godfrey and Capstick
for mesons and baryons [20, 21] taking either the charm or the bottom as
the putative heavy quark. We have noted in previous works that these
RQM singly-heavy states follow a Hagedorn-like pattern with a Hagedorn–
Polyakov temperature of about TH = 200 MeV for b-quarks. Results from a
simple constituent quark model (CQM) are also shown

L =
∑

q=u,d,s

gqe
−(MQ̄q−mQ)/T +

∑
q,q′=u,d,s

gq,q′e
−(MQ̄qq′−mQ)/T + . . . (9)

with MQ̄q = 2M + mq + mQ and MQ̄qq′ = 3M + mq + mq′ + mQ and spin
degeneracies gq = 2, gqq′ = 4− δq,q′ .
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Fig. 1. The entropy as a function of temperature. We show results from various
hadronic models: the bag model including all (Qq̄, Qqq, Qq̄g and Qqqg) states
and just hadrons, the RQM with one c- or b-quark and the PDG states with one
c-quark. The Hagedorn extrapolation of the b-spectrum is also displayed. We
also plot the CQM with uds quarks and constituent mass M = 300 MeV and the
bare mu = 2.5 MeV, md = 5 MeV, ms = 95 MeV masses. Horizontal lines mark
∆SQ(0) = log 2Nf , with Nf = 2 the number of light degenerate flavours, and
∆SQ(∞) = log(Nc). Lattice data for 2+1 flavours are taken from Ref. [16].

4. Dimension-2 condensate and power corrections

At high temperatures, the Polyakov loop can be expanded in powers of
Ā0 [3]

〈Tr(Ω)〉 = Nc − g2

〈
(Aa0)2

〉
4T 2

+O
(
g6
)
∼ Nc exp

[
−
〈
Tr
(
Ā2

0

)〉
2NcT 2

]
. (10)
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〈(Aa0)2〉 has both perturbative (pert) and non-perturbative (NP) contribu-
tions, whence the entropy reads

∆SQ(T ) = log(Nc)+∆Spert(T )+

〈
A2
〉NP

2T 2
,

〈
A2
〉NP ≡ 1

Nc

〈
Tr
(
Ā2

0

)〉NP
,

(11)
where ∆Spert(T ) is a slowly varying function with temperature. In Fig. 2,
we display the recent TUM data [16] as a function of (Tc/T )2. A clear
straight line behaviour emerges over a huge range of temperatures. A fit for
Tc ≤ T ≤ 5000 MeV, neglecting the T dependence in ∆Spert(T ), gives〈

A2
〉NP

2T 2
c

= 3.40(2) , ∆Spert(T ) = 0.195(3) (12)

with χ2 = 108 for Ndat = 92. This gives χ2/ν = 108/(92 − 2) = 1.2 which
is within the expected 1±

√
2/ν.
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Fig. 2. Left panel: TUM lattice data for the entropy [16] as a function of the inverse
squared temperature in units of the critical temperature. The straight line is the
fit using the dim-2 condensate. Right panel: Correlation plot between the dim-2
condensate and the perturbative entropy.

5. Conclusions

When a heavy colour source in the fundamental representation of the
SU(Nc) group is placed into the hadronic vacuum, there arises an entropy
shift as a measurable and unambiguous observable. We noted long ago
that lattice data for the corresponding free energy display corrections to the
perturbative result in the unequivocal form of an inverse second power of
temperature. This behaviour has been corroborated by subsequent lattice
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studies. The present analysis improves on previous ones thanks to the quality
of the TUM lattice data, and the fact that the unambiguous entropy is used
for the comparison. At low temperatures, the quick increase in the number
of active states, N = e∆S , suggests that there are missing states in the
singly-heavy hadronic spectrum. At high temperatures, power corrections
dominate over the perturbative contributions, in harmony with our previous
findings. Taken at face value, the impressive agreement calls for a deeper
understanding on the nature of these power corrections above the phase
transition.
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