# LIGHT QUARK MASS DIFFERENCES IN THE $\pi^{0}-\eta-\eta^{\prime}$ SYSTEM* 

A.A. Osipov, B. Hiller, A.H. Blin, J. Moreira<br>CFisUC, Department of Physics, University of Coimbra<br>3004-516 Coimbra, Portugal

(Received June 30, 2016)
A generalized 3 flavor Nambu-Jona-Lasinio Lagrangian, including the explicit chiral symmetry breaking interactions which contribute at the same order in the large $1 / N_{\mathrm{c}}$ counting as the $\mathrm{U}_{\mathrm{A}}(1)$ 't Hooft flavor determinant, is considered to obtain the mixing angles in the $\pi^{0}-\eta-\eta^{\prime}$ system and related current quark mass ratios in close agreement with phenomenological values. At the same time, an accurate ordering and magnitude of the splitting of states in the low-lying pseudoscalar nonet is obtained.

DOI:10.5506/APhysPolBSupp.9.413

Properties related to the mixing in the $\pi^{0}-\eta-\eta^{\prime}$ system are a subject of continued interest, as they address the complexity of non-perturbative QCD subject to the combined effects of chiral symmetry breaking and the $\mathrm{U}_{\mathrm{A}}(1)$ anomaly [1]. In addition, this system is a standard probe used in the determination of the values of the current quark masses [2-5], and is a process of considerable importance in the studies of weak [6] and strong CP violation [7].

We report on our results for the $\pi^{0}-\eta-\eta^{\prime}$ mixing angles [8] that rely on an effective multi-quark low-energy Lagrangian for QCD [9], operational at the scale of spontaneous breaking of chiral symmetry, of the order of $\Lambda_{\chi \mathrm{SB}} \sim$ $4 \pi f_{\pi}$ [10], and generalizes the Nambu-Jona-Lasinio (NJL) model [11] (where this scale is also related to the gap equation and given by the ultra-violet cutoff $\Lambda$ of the one-loop quark integral) as follows: generic vertices $L_{i}$ of non-derivative type that contribute to the effective potential as $\Lambda \rightarrow \infty$

$$
\begin{equation*}
L_{i} \sim \frac{\bar{g}_{i}}{\Lambda^{\gamma}} \chi^{\alpha} \Sigma^{\beta} \tag{1}
\end{equation*}
$$

[^0]where powers of $\Lambda$ give the correct dimensionality of the interactions (below, we use also unbarred couplings, $g_{i}=\frac{\bar{g}_{i}}{A \gamma}$ ); the $L_{i}$ are C, P, T and chiral $\mathrm{SU}(3)_{\mathrm{L}} \times \mathrm{SU}(3)_{\mathrm{R}}$ invariant blocks, built of powers of the sources $\chi$ which at the end give origin to the explicit symmetry breaking (ESB) and have the same transformation properties as the $\mathrm{U}(3)$ Lie-algebra valued field $\Sigma=$ $\left(s_{a}-i p_{a}\right) \frac{1}{2} \lambda_{a}$; here, $s_{a}=\bar{q} \lambda_{a} q, p_{a}=\bar{q} \lambda_{a} i \gamma_{5} q$, and $a=0,1, \ldots, 8, \lambda_{0}=$ $\sqrt{2 / 3} \times 1, \lambda_{a}$ being the standard $\mathrm{SU}(3)$ Gell-Mann matrices for $1 \leq a \leq 8$.

The interaction Lagrangian without external sources $\chi$ is well-known,

$$
\begin{align*}
L_{\mathrm{int}}= & \frac{\bar{G}}{\Lambda^{2}} \operatorname{tr}\left(\Sigma^{\dagger} \Sigma\right)+\frac{\bar{\kappa}}{\Lambda^{5}}\left(\operatorname{det} \Sigma+\operatorname{det} \Sigma^{\dagger}\right) \\
& +\frac{\bar{g}_{1}}{\Lambda^{8}}\left(\operatorname{tr} \Sigma^{\dagger} \Sigma\right)^{2}+\frac{\bar{g}_{2}}{\Lambda^{8}} \operatorname{tr}\left(\Sigma^{\dagger} \Sigma \Sigma^{\dagger} \Sigma\right) . \tag{2}
\end{align*}
$$

The second term is the 't Hooft determinant [12], the last two, the 8 quark (q) interactions [13] which complete the number of relevant vertices in 4D for dynamical chiral symmetry breaking [14]. The interactions dependent on the sources $\chi$ contain eleven terms $[9]^{1}$

$$
\begin{equation*}
L_{\chi}=\sum_{i=0}^{10} L_{i} \tag{3}
\end{equation*}
$$

$$
\begin{array}{ll}
L_{0}=-\operatorname{tr}\left(\Sigma^{\dagger} \chi+\chi^{\dagger} \Sigma\right), & L_{2}=\frac{\bar{\kappa}_{2}}{\Lambda^{3}} e_{i j k} e_{m n l} \chi_{i m} \Sigma_{j n} \Sigma_{k l}+\text { h.c. } \\
L_{3}=\frac{\bar{g}_{3}}{\Lambda^{6}} \operatorname{tr}\left(\Sigma^{\dagger} \Sigma \Sigma^{\dagger} \chi\right)+\text { h.c. }, & L_{4}=\frac{\bar{g}_{4}}{\Lambda^{6}} \operatorname{tr}\left(\Sigma^{\dagger} \Sigma\right) \operatorname{tr}\left(\Sigma^{\dagger} \chi\right)+\text { h.c. } \\
L_{5}=\frac{\bar{g}_{5}}{\Lambda^{4}} \operatorname{tr}\left(\Sigma^{\dagger} \chi \Sigma^{\dagger} \chi\right)+\text { h.c. }, & L_{6}=\frac{\bar{g}_{6}}{\Lambda^{4}} \operatorname{tr}\left(\Sigma \Sigma^{\dagger} \chi \chi^{\dagger}+\Sigma^{\dagger} \Sigma \chi^{\dagger} \chi\right), \\
L_{7}=\frac{\bar{g}_{7}}{\Lambda^{4}}\left(\operatorname{tr} \Sigma^{\dagger} \chi+\text { h.c. }\right)^{2}, & L_{8}=\frac{\bar{g}_{8}}{\Lambda^{4}}\left(\operatorname{tr} \Sigma^{\dagger} \chi-\text { h.c. }\right)^{2}
\end{array}
$$

The $N_{\mathrm{c}}$ assignments are $\Sigma \sim N_{\mathrm{c}} ; \Lambda \sim N_{\mathrm{c}}^{0} \sim 1 ; \chi \sim N_{\mathrm{c}}^{0} \sim 1^{2}$. We get that exactly the diagrams which survive as $\Lambda \rightarrow \infty$ also survive as $N_{\mathrm{c}} \rightarrow \infty$ and comply with the usual requirements.

At LO in $1 / N_{\mathrm{c}}$, only the $4 q$ interactions $(\sim G)$ in Eq. (2) and $L_{0}$ contribute. The OZI rule violating vertices are always of the order of $\frac{1}{N_{\mathrm{c}}}$ with respect to the leading contribution. Non-OZI-violating Lagrangian pieces scaling as $N_{\mathrm{c}}^{0}$ represent NLO contributions with one internal quark loop

[^1]in $N_{\mathrm{c}}$ counting; their couplings encode the admixture of a four-quark component $\bar{q} q \bar{q} q$ to the leading $\bar{q} q$ at $N_{\mathrm{c}} \rightarrow \infty$. Diagrams tracing OZI rule violation are: $\kappa, \kappa_{2}, g_{1}, g_{4}, g_{7}, g_{8}$; diagrams with admixture of 4 quark and 2 quark states are: $g_{2}, g_{3}, g_{5}, g_{6}$.

Putting $\chi=\frac{1}{2} \operatorname{diag}\left(m_{u}, m_{d}, m_{s}\right)$, the current quark masses, we obtain a consistent set of explicitly breaking chiral symmetry terms.

One ends up with 5 parameters needed to describe the LO contributions (the scale $\Lambda$, the coupling $G$, and the $\left.m_{i}\right)$ and 10 in $\operatorname{NLO}\left(\bar{\kappa}, \bar{\kappa}_{2}, \bar{g}_{1}, \ldots, \bar{g}_{8}\right)$.

The details of bosonization in the framework of functional integrals, which lead from $L=\bar{q} i \gamma^{\mu} \partial_{\mu} q+L_{\text {int }}+L_{\chi}$ to the long distance effective mesonic Lagrangian can be found in $[9,13,16]$, here, we only collect the result for the kinetic and mesonic pseudoscalar mass terms

$$
\begin{align*}
L_{\mathrm{kin}}+L_{\mathrm{mass}}= & \frac{N_{\mathrm{c}} I_{1}}{8 \pi^{2}}\left(\partial \phi_{a}\right)^{2}+\frac{N_{\mathrm{c}} I_{0}}{4 \pi^{2}} \phi_{a}^{2} \\
& -\frac{N_{\mathrm{c}} I_{1}}{24 \pi^{2}}\left\{\left[\phi_{u}^{2}\left(2 M_{u}^{2}-M_{d}^{2}-M_{s}^{2}\right)+\phi_{d}^{2}\left(2 M_{d}^{2}-M_{u}^{2}-M_{s}^{2}\right)\right.\right. \\
& \left.\left.+\phi_{s}^{2}\left(2 M_{s}^{2}-M_{u}^{2}-M_{d}^{2}\right)\right]\right\}+\frac{1}{2} h_{a b}^{(2)} \phi_{a} \phi_{b}+\ldots \tag{5}
\end{align*}
$$

where $h_{a b}^{(2)}$ carries all the dependence on the model couplings and current quark masses, and $M_{i}\{i=u, d, s\}$ are the constituent quark masses obtained by solving the model's gap equations. The kinetic term requires a redefinition of meson fields $\phi_{a}=g \phi_{a}^{R}, g^{2}=\frac{4 \pi^{2}}{N_{\mathrm{c}} I_{1}}=\frac{\left(M_{u}+M_{d}\right)^{2}}{2 f_{\pi}^{2}}$, which are related to the flavor $\{u, d, s\}$ and the strange-non-strange basis as $\phi_{u}=\phi_{3}+\frac{\sqrt{2} \phi_{0}+\phi_{8}}{\sqrt{3}}=$ $\phi_{3}+\eta_{\mathrm{ns}}, \phi_{d}=-\phi_{3}+\frac{\sqrt{2} \phi_{0}+\phi_{8}}{\sqrt{3}}=-\phi_{3}+\eta_{\mathrm{ns}}, \phi_{s}=\sqrt{\frac{2}{3}} \phi_{0}-\frac{2 \phi_{8}}{\sqrt{3}}=\sqrt{2} \eta_{\mathrm{s}}$. Defining $m_{\Delta}=\frac{1}{2}\left(m_{d}-m_{u}\right), m_{\Sigma}=\frac{1}{2}\left(m_{d}+m_{u}\right), h_{\Delta}=\frac{1}{2}\left(h_{d}-h_{u}\right)$ and $h_{\Sigma}=\frac{1}{2}\left(h_{d}+h_{u}\right)$, one has, for example, for the matrix elements relevant for $\pi^{0}-\eta$ and $\pi^{0}-\eta^{\prime}$ mixing

$$
\begin{align*}
\sqrt{6}\left(h_{03}^{(2)}\right)^{(-1)}= & h_{\Delta}\left(2 g_{2} h_{\Sigma}+\kappa+g_{3} m_{\Sigma}\right) \\
& +m_{\Delta}\left[g_{3} h_{\Sigma}+2\left(\kappa_{2}-g_{8}\left(m_{s}+2 m_{\Sigma}\right)\right.\right. \\
& \left.\left.-\left(g_{5}-g_{6}\right) m_{\Sigma}\right)\right] \tag{6}
\end{align*}
$$

and a quite similar expression for $\left(h_{38}^{(2)}\right)^{(-1)}$. Note that both elements vanish in LO in $N_{\mathrm{c}}$ and that explicit $m_{i}$ dependence occurs only in presence of ESB interactions at NLO. In their absence, the effects of ESB are present in the difference of the condensates $h_{\Delta} \neq 0$ if the conventional QCD mass term $m_{u} \neq m_{d}$. In this case, only the 't Hooft $\sim \kappa$ and the $8 q \sim g_{2}$ contribute to (6).

The physical states $\pi_{0}, \eta, \eta^{\prime}$ are obtained by diagonalizing the symmetric meson mass matrix $B_{a b}$ in the subspace $\{0,3,8\}$ of (5). Since one is free to transform between the states, we chose to represent the mixing angles with the strange-non-strange basis as reference ${ }^{3}$ by the following transformation $\mathcal{S}=\mathcal{U} \mathcal{V}$

$$
\left(\phi_{3}, \phi_{0}, \phi_{8}\right) S^{-1} S\left(\begin{array}{ccc}
B_{33} & B_{03} & B_{38} \\
B_{03} & B_{00} & B_{08} \\
B_{38} & B_{08} & B_{88}
\end{array}\right) S^{-1} S\left(\begin{array}{c}
\phi_{3} \\
\phi_{0} \\
\phi_{8}
\end{array}\right)
$$

rotating first to this basis through the orthogonal involutory matrix $\mathcal{V}$

$$
\left(\begin{array}{c}
\phi_{3} \\
\eta_{\mathrm{ns}} \\
\eta_{\mathrm{s}}
\end{array}\right)=\mathcal{V}\left(\begin{array}{c}
\phi_{3} \\
\phi_{0} \\
\phi_{8}
\end{array}\right) ; \quad \mathcal{V}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
\sqrt{3} & 0 & 0 \\
0 & \sqrt{2} & 1 \\
0 & 1 & -\sqrt{2}
\end{array}\right)
$$

and then using the unitary transformation $\mathcal{U}$ to obtain the physical states [4]

$$
\left(\begin{array}{c}
\pi^{0}  \tag{7}\\
\eta \\
\eta^{\prime}
\end{array}\right)=\mathcal{U}\left(\epsilon_{1}, \epsilon_{2}, \psi\right)\left(\begin{array}{c}
\phi_{3} \\
\eta_{\mathrm{ns}} \\
\eta_{\mathrm{s}}
\end{array}\right) .
$$

$\mathcal{U}$ is linearized in the $\pi^{0}-\eta$ and $\pi^{0}-\eta^{\prime}$ mixing angles, since it is assumed that $\phi_{3}$ couples weakly to the $\eta_{\mathrm{ns}}$ and $\eta_{\mathrm{s}}$ states, decoupling in the isospin limit, while the mixing for the $\eta-\eta^{\prime}$ system is strong ${ }^{4}$

$$
\mathcal{U}=\left(\begin{array}{ccc}
1 & \epsilon_{1}+\epsilon_{2} \cos \psi & -\epsilon_{2} \sin \psi  \tag{8}\\
-\epsilon_{2}-\epsilon_{1} \cos \psi & \cos \psi & -\sin \psi \\
-\epsilon_{1} \sin \psi & \sin \psi & \cos \psi
\end{array}\right)
$$

We checked this hypothesis in our model calculations by diagonalizing the mass matrix also exactly using the explicit analytical expressions for the eigenvalues of a symmetric $3 \times 3$ matrix $M$ [17]

$$
\begin{aligned}
& \lambda_{1}=\xi-\sqrt{\varsigma}(\cos [\varphi]+\sqrt{3} \sin [\varphi]), \\
& \lambda_{2}=\xi-\sqrt{\varsigma}(\cos [\varphi]-\sqrt{3} \sin [\varphi]), \\
& \lambda_{3}=\xi+2 \sqrt{\varsigma} \cos [\varphi],
\end{aligned}
$$

where we use the abbreviations: $\xi=\frac{\operatorname{tr}[M]}{3}, \mathcal{M}=M-\xi \boldsymbol{I}, \varsigma=\frac{1}{6} \sum_{i} \sum_{j}\left(\mathcal{M}_{i j}\right)^{2}$, $\vartheta=\frac{1}{2} \operatorname{det}[\mathcal{M}], \varphi=\frac{1}{6} \operatorname{ArcTan}\left[\frac{\sqrt{\sqrt{3}^{3}-\vartheta}}{\vartheta}\right]$. The eigenvectors can then be obtained by normalizing the vectors given by

$$
\overrightarrow{v_{i}}=\left(\left(\vec{M}_{1}-\lambda_{i} \hat{e}_{1}\right) \times\left(\vec{M}_{2}-\lambda_{i} \hat{e}_{2}\right)\right)^{*},
$$

[^2]where $\vec{M}_{j}$ corresponds to the $j$ column of $M$. These are then used to build the diagonalization matrix with the standard parametrization of the CKM matrix (with the abbreviation $C_{i j} \equiv \cos \left[\theta_{i j}\right], S_{i j} \equiv \sin \left[\theta_{i j}\right], \theta_{12}=-\epsilon$, $\theta_{13}=-\epsilon^{\prime}, \theta_{23}=\psi$ and phase $\left.=0\right)$
\[

U=\left[$$
\begin{array}{ccc}
C_{12} C_{13} & -S_{12} C_{23}-C_{12} S_{13} S_{23} & S_{12} S_{23}-C_{12} S_{13} C_{23} \\
S_{12} C_{13} & C_{12} C_{23}-S_{12} S_{13} S_{23} & -C_{12} S_{23}-S_{12} S_{13} C_{23} \\
S_{13} & C_{13} S_{23} & C_{13} C_{23}
\end{array}
$$\right] .
\]

The numerical deviations, as compared to (8), are within $2 \%$ for the cases considered. The results are shown in Tables I-III. One sees that the explicit symmetry breaking interactions of the generalized NJL Lagrangian considered are crucial to obtain the phenomenological quoted value for the ratio $\frac{\epsilon}{\epsilon^{\prime}}$, Table IV. We obtain values for the $\epsilon$ mixing angle which lie within the results discussed in the literature. Unfortunately, the value for $\epsilon^{\prime}$ is much less discussed. The values $\epsilon$ and $\epsilon^{\prime}$ are reasonably close to the ones indicated in [3, 4] for the renormalization group invariant mass ratio $m_{u} / m_{d}$ and current quark mass values in agreement with the presently quoted average values, $\frac{m_{u}}{m_{d}}=0.46(5), m_{u}=2.15(15) \mathrm{MeV}, m_{d}=4.70(20) \mathrm{MeV}$, $m_{s}=93.5 \pm 2.5 \mathrm{MeV}[22]$.

TABLE I
Empirical fits (input marked by (*), also in Tables II, III) for set A (with NLO ESB interactions), and B (LO ESB). Masses in units of MeV, angle $\psi$ in degrees.

| Set | $m_{\pi}^{0}$ | $m_{\pi}^{ \pm}$ | $m_{\eta}$ | $m_{\eta}^{\prime}$ | $m_{K}^{0}$ | $m_{K}^{ \pm}$ | $f_{\pi}$ | $f_{K}$ | $\psi$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | $136^{*}$ | 136.6 | $547^{*}$ | $958^{*}$ | 500 | $494^{*}$ | $92^{*}$ | $113^{*}$ | $39.7^{*}$ |
| B | $136^{*}$ | 137.0 | 477 | $958^{*}$ | 501 | $497^{*}$ | $92^{*}$ | $116^{*}$ | $39.7^{*}$ |

TABLE II
The couplings emerging from the fits have the following units: $[G]=\mathrm{GeV}^{-2},[\kappa]=$ $\mathrm{GeV}^{-5},\left[g_{1}\right]=\left[g_{2}\right]=\mathrm{GeV}^{-8},\left[\kappa_{2}\right]=\mathrm{GeV}^{-3},\left[g_{3}\right]=\left[g_{4}\right]=\mathrm{GeV}^{-6},\left[g_{5}\right]=\left[g_{6}\right]=$ $\left[g_{7}\right]=\left[g_{8}\right]=\mathrm{GeV}^{-4} . \Lambda=828.5^{*} ; 835.7 \mathrm{MeV}$ in A, B.

| Set | $G$ | $-\kappa$ | $g_{1}$ | $g_{2}$ | $\kappa_{2}$ | $g_{3}$ | $g_{4}$ | $g_{5}$ | $g_{6}$ | $g_{7}$ | $g_{8}$ |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 10.48 | 116.8 | 3284 | 1237 | 6.24 | 2365 | 1182 | 160 | 712 | 580 | 44 |
| B | 9.79 | 137.4 | $2500^{*}$ | 117 | $0^{*}$ | $0^{*}$ | $0^{*}$ | $0^{*}$ | $0^{*}$ | $0^{*}$ | $0^{*}$ |

$\frac{m_{u}}{m_{d}}=0.46^{*}$, current and constituent quark masses $m_{u}, m_{d}, m_{s}, M_{u}, M_{d}, M_{s}$ in $\mathrm{MeV}, \pi^{0}-\eta, \pi^{0}-\eta^{\prime}$ mixing angles $\epsilon$ and $\epsilon^{\prime}$.

| Set | $m_{u}$ | $m_{d}$ | $m_{s}$ | $M_{u}$ | $M_{d}$ | $M_{s}$ | $\epsilon$ | $\epsilon^{\prime}$ | $\frac{\epsilon}{\epsilon^{\prime}}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 2.179 | 4.760 | $95^{*}$ | 372 | 375 | $544^{*}$ | $0.014^{*}$ | $0.0037^{*}$ | 3.78 |
| B | 3.774 | 8.246 | 194 | 373 | 380 | 573 | 0.022 | 0.0025 | 8.78 |

TABLE IV
$\epsilon$ and $\epsilon^{\prime}$ values in the literature.

|  |  |  | $\epsilon^{\prime}$ |
| :--- | ---: | :---: | :---: |
| [3] phen. | 0.014 | 0.0037 | $\frac{\epsilon}{\epsilon^{\prime}}$ |
| [4] phen. | $0.017 \pm 0.002$ | $0.004 \pm 0.001$ | $4.25 \pm 1.17$ |
| [18] ChPt NLO | $0.014 \div 0.016$ | - | - |
| [19] phen. | 0.021 | - | - |
| [20] Exp. | $0.030 \pm 0.002$ | - | - |
| [21] Exp. | $0.026 \pm 0.007$ | - | - |

B.H. thanks the organizers for the kind invitation.

## REFERENCES

[1] G. 't Hooft, Phys. Rev. Lett. 37, 8 (1976); Phys. Rep. 142, 357 (1986);
G. Veneziano, Nucl. Phys. B 159, 213 (1979); E. Witten, Ann. Phys. 128, 363 (1980).
[2] D.J. Gross, S.B. Treiman, F. Wilczek, Phys. Rev. D 19, 2188 (1979); J. Gasser, H. Leutwyler, Ann. Phys. 158, 142 (1984); Nucl. Phys. B 250, 465 (1985).
[3] T. Feldmann, P. Kroll, B. Stech, Phys. Lett. B 449, 339 (1999).
[4] P. Kroll, Int. J. Mod. Phys. A 20, 331 (2005); Mod. Phys. Lett. A 20, 2667 (2005).
[5] M.K. Volkov, D.G. Kostunin, Phys. Rev. D 86, 013005 (2012).
[6] A.J. Buras, J.-M. Gérard, W.A. Bardeen, Eur. Phys. J. C 74, 2871 (2014).
[7] R.F. Dashen, Phys. Rev. D 3, 1879 (1971); M. Creutz, Phys. Rev. Lett. 92, 201601 (2004); K. Kawarabayashi, N. Ohta, Nucl. Phys. B 175, 477 (1980).
[8] A.A. Osipov, B. Hiller, A.H. Blin, Phys. Rev. D 93, 116005 (2016) [arXiv:1501.06146 [hep-ph]].
[9] A.A. Osipov, B. Hiller, A.H. Blin, Eur. Phys. J. A 49, 14 (2013); Phys. Rev. D 88, 054032 (2013).
[10] A. Manohar, H. Georgi, Nucl. Phys. B 234, 189 (1984).
[11] Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961); 124, 246 (1961).
[12] G. 't Hooft, Phys. Rev. D 14, 3432 (1976); G. Kunstatter, J.W. Moffat, Phys. Rev. D 18, 2199 (1978).
[13] A.A. Osipov, B. Hiller, J. da Providência, Phys. Lett. B 634, 48 (2006); A.A. Osipov, B. Hiller, A.H. Blin, J. da Providência, Ann. Phys. 322, 2021 (2007).
[14] A.A. Andrianov, V.A. Andrianov, Theor. Math. Phys. 94, 3 (1993); Int. J. Mod. Phys. A 8, 1981 (1993).
[15] D.B. Kaplan, A.V. Manohar, Phys. Rev. Lett. 56, 2004 (1986).
[16] A.A. Osipov, B. Hiller, Phys. Lett. B 515, 458 (2001); Phys. Rev. D 64, 087701 (2001); Eur. Phys. J. C 35, 223 (2004); A.A. Osipov, B. Hiller, J. Moreira, A.H. Blin, Eur. Phys. J. C 46, 225 (2006).
[17] O.K. Smith, Commun. ACM 4, 168 (1961) ISSN 0001-0782; J. Kopp, Int. J. Mod. Phys. C 19, 523 (2008).
[18] J.L. Goity, A.M. Bernstein, B.R. Holstein, Phys. Rev. D 66, 076014 (2002).
[19] S.A. Coon, B.H.J. McKellar, M.D. Scadron, Phys. Rev. D 34, 2784 (1986).
[20] J.Z. Bai et al. [BES Collaboration], Phys. Rev. D 70, 012006 (2004).
[21] W.B. Tippens et al., Phys. Rev. D 63, 052001 (2001).
[22] K.A. Olive et al. [Particle Data Group], Chin. Phys. C 38, 090001 (2014).


[^0]:    * Presented at "Excited QCD 2016", Costa da Caparica, Lisbon, Portugal, March 6-12, 2016.

[^1]:    ${ }^{1}$ We omit $L_{1}, L_{9}, L_{10}$ from the list, as they refer to Kaplan-Manohar ambiguity [15] within the model, which allows to set the couplings to 0 .
    ${ }^{2}$ The counting for $\Lambda$ is a direct consequence of the gap equation $1 \sim N_{\mathrm{c}} G \Lambda^{2}$.

[^2]:    ${ }^{3}$ We show that the decay constants transform as the states in this basis in our model [8].
    ${ }^{4}$ The usual redefinitions $\epsilon=\epsilon_{2}+\epsilon_{1} \cos \psi, \epsilon^{\prime}=\epsilon_{1} \sin \psi$ are adopted.

