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The spectrum of excited hadron resonances in QCD is studied using
Monte Carlo path integration techniques formulated on a large 323 × 256
anisotropic space-time lattice. A large number of probe interpolating op-
erators are used, and calculation of temporal correlations is accomplished
using a stochastic method of treating the low-lying modes of quark propaga-
tion that exploits Laplacian Heaviside quark-field smearing. Plans to use an
effective Hamiltonian to interpret the finite-volume energies and determine
the masses and widths of the resonances are outlined. The construction of
tetraquark operators is discussed.
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1. Introduction

In a series of papers [1–6], we have been working towards computing the
finite-volume stationary-state energies of QCD using Markov-chain Monte
Carlo integration of the QCD path integrals formulated on a space-time
lattice. In this paper, we report on our progress using a large 323 × 256
anisotropic lattice for which the pion mass is around 240 MeV. A stochastic
method [5] of dealing with the low-lying modes of quark propagation using
Laplacian Heaviside quark-field smearing allows us to calculate all needed
Wick contractions very efficiently. We are able to extract large numbers of
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levels in each symmetry channel. Overlap factors are used for level identi-
fication. Our plans for determining resonance masses and widths from the
finite-volume energies are outlined below. New experimental findings mo-
tivate us to incorporate tetraquark operators into our correlation matrices.
The construction of such operators is also described.

2. Excited-state energies from correlation matrices

The stationary-state energies in a particular symmetry sector can be ex-
tracted from a Hermitian correlation matrix Cij(t) = 〈0|Oi(t+t0)Oj(t0) |0〉,
where the operators Oj act on the vacuum to create the states of interest
at source time t0 and are accompanied by conjugate operators Oi that can
annihilate these states at a later time t+ t0. Estimates of Cij(t) are obtained
with the Monte Carlo method using the stochastic LapH method [5] which
allows all needed quark-line diagrams to be computed.

Our single-hadron operators are assembled using basic building blocks
which are gauge-covariantly-displaced, LapH-smeared quark fields, as de-
scribed in Refs. [1, 5, 6]. Each of our single-hadron operators creates and
annihilates a definite momentum. Group-theoretical projections are used to
construct operators that transform according to the irreducible representa-
tions of the space group O1

h, plus G-parity, when appropriate. In order to
build up the necessary orbital and radial structures expected in the hadron
excitations, we use a variety of spatially-extended configurations. Our two-
hadron operators are combinations of single-hadron operators of definite
momenta. Again, group-theoretical projections are employed to produce
two-hadron operators that transform irreducibly under the symmetry oper-
ations of our system. This approach is efficient for creating large numbers
of two-hadron operators, and generalizes to three or more hadrons.

In finite volume, all energies are discrete so that each correlator matrix
element has a spectral representation of the form

Cij(t) =
∑
n

Z
(n)
i Z

(n)∗
j e−Ent , Z

(n)
j = 〈0|Oj |n〉 , (1)

assuming temporal wrap-around (thermal) effects are negligible. We extract
energies from our correlation matrices using a “single rotation” or “fixed
coefficient” method [7]. QCD is a complicated interacting quantum field
theory, so characterizing its stationary states in finite volume might not be
simply done. Estimates of the overlap factors Z(n)

j are obtained to help

identify the eigenstates. If the Z(n)
j factors for a particular level n are only

appreciable for operators j that are quark–antiquark operators, we classify
this level as predominantly single-hadron. If the Z(n)

j factors for a particular
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level n are only significant for operators j that are two-hadron operators,
we classify this level as predominantly two-hadron. Levels with significant
overlaps with both quark–antiquark and two-meson operators are considered
admixtures of single- and two-meson states.

Here, we present results obtained using a set of 412 gauge-field configura-
tions on a large 323×256 anisotropic lattice with a pion massmπ ∼ 240MeV.
An improved anisotropic clover fermion action and an improved gauge field
action are used [8]. The spatial grid size is as ∼ 0.12 fm, whereas the tem-
poral spacing is at ∼ 0.035 fm. In our operators, a stout-link [9] staple
weight ξ = 0.10 is used with nξ = 10 iterations. For the cutoff in the
LapH smearing, we use σ2s = 0.33, which translates into the number Nv of
LapH eigenvectors retained being Nv = 264 for our 323 lattice. We use Z4

noise in all of our stochastic estimates of quark propagation. Our variance
reduction procedure is described in Ref. [5]. On the 323 lattices, we use
8 widely-separated source times t0.

Our results in the I = 1, S = 0, T+
1u channel of total zero momentum are

shown in Fig. 1. This channel has odd parity, even G-parity, and contains
the spin-1 and spin-3 mesons. We used 14 single-meson (quark–antiquark)
operators, 23 isovector–isovector meson operators, 31 operators that combine
an isovector with a light isoscalar (using only u, d quarks), 31 operators
that combine an isovector with an ss isoscalar meson, and 9 kaon–antikaon
operators. We obtained results for the lowest 50 energy levels using the
(323|240) ensemble from our 108 × 108 correlation matrix. In our single
pivot rotation of the correlation matrices, we used τ0 = 5 and τD = 8. This
figure demonstrates that the extraction of a large number of energy levels in
lattice QCD is now possible, opening up the study of excited states. Keep in
mind that we have not included any three-meson operators in our correlation
matrix.

Figure 1 shows a comparison of our quark–antiquark dominated finite-
volume energies to the experimental masses of resonances that should occur
in this channel. The finite-volume energies should agree with the experiment
only to within the widths of the infinite-volume resonances. We believe we
have extracted all meson resonances that are quark–antiquark excitations.
One observes more levels in experiment, although the experimental observa-
tions are controversial in some cases. Keep in mind that resonances that are
not quark–antiquark excitations, such as so-called molecular states, would
not be identified by our quark–antiquark operator overlaps. To identify
resonances of molecular type, additional techniques are necessary.

Extracting infinite-volume resonance masses and widths from finite-
volume energies can, in principle, be done by a complicated procedure de-
scribed in Refs. [10, 11]. We have used this procedure for determining the
width of the ρ resonance [12]. However, the goal of our investigation of higher
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Fig. 1. (Top) Energies m as ratios of the kaon mass mK for the first fifty states
excited by our single- and two-hadron operators in the I = 1, S = 0, T+

1u zero-
momentum channel. (Bottom) Comparison of the experimental spectrum of res-
onances with our finite-volume energies corresponding to quark–antiquark excita-
tions. In the left-hand side, dark gray (dark red) boxes indicate the experimental
masses, with the vertical heights showing the uncertainties in the mass measure-
ments. The light gray (light red) boxes indicate the experimental widths of the
resonances. In the right-hand side, our masses for the quark–antiquark excitations
are shown by black (dark blue) boxes, whose heights indicate statistical uncertain-
ties only. This T+

1u channel includes both ρ (spin 1) and ρ3 (spin 3) states.

lying excited states is a first glimpse of the spectrum, so high precision is not
necessary. We are working on developing more qualitative methods, such as
the use of effective Hamiltonians [13], to help interpret our finite volume
energies and extract information concerning excited resonances.

During the last few years, there has been a surge of new experimen-
tal findings in hadron spectroscopy. New resonances, collectively known as
XY Z mesons, have been found, whose interpretations suggest new struc-
tures unlike those of conventional mesons and baryons. This has motivated
us to design and incorporate tetraquark operators into our correlation ma-
trices. As with our single meson and baryon operators, we assemble these
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operators using gauge-covariantly displaced LapH-smeared quark fields, but
with a very different color structure. Schematic depictions of the tetraquark
operators we will use are illustrated in Fig. 2. We plan to add such oper-
ators to our correlation matrices and obtain the overlap Z factors for such
operators with respect to the QCD eigenstates.

3 6 8

Fig. 2. Schematic depiction of the tetraquark operators we have designed. Again,
we assemble these operators using gauge-covariantly displaced LapH-smeared quark
fields, indicated by the circles with a connecting line which represents the displace-
ment. Quark fields are displaced using stout-smeared link variables. The central
displacement between the two diquarks can be a product of link variables in the
3-dimensional fundamental representation of SU(3) color, or in the 6-dimensional
or 8-dimensional adjoint representation.

3. Conclusion

In this paper, our progress in computing the finite-volume stationary-
state energies of QCD was described. Results in the zero-momentum bosonic
I = 1, S = 0, T+

1u symmetry sector of QCD on a large 323×256 anisotropic
lattice for mπ ∼ 240 MeV using a correlation matrix of 108 operators were
presented. All needed Wick contractions were efficiently evaluated using the
stochastic LapH method. Issues related to level identification were discussed.
Although a procedure is known for relating two-particle finite-volume ener-
gies to the infinite-volume S matrix, it is a very complicated method and
is practical in only a handful of scattering cases. The need for simpler,
more qualitative methods will be important for interpreting our higher-lying
finite-volume excited-state energies. Techniques based on effective Hamilto-
nians are showing promise. Lastly, we described our efforts to design and
implement extended tetraquark operators to study their role in the QCD
resonance spectrum.
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