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1. Introduction

Twisted mass fermions is a prominent discretization of QCD due to some
very advantageous features such as automatic O(a) improvement, absence
of exceptional configurations and fast dynamical simulations [1] in a well-
established theoretical framework. Present day simulations are performed
in the deep chiral regime with physical value of the pion mass [2]. However,
due to the non-commutativity of the chiral and the continuum limit, Wilson
fermions exhibit artificial phases with no continuum analogue. Such sce-
narios include the Aoki phase [3] that one reaches via a second order phase
transition or the first order Sharpe–Singleton scenario [4]. One can study the
phase diagram of twisted mass fermions in a lattice augmentation of Chiral
Perturbation Theory (χ-PT) particularly extended for Wilson fermions. In
Wilson χ-PT, one takes explicitly into account the lattice artifacts in the
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chiral expansion and ends with new terms which come with new Low Energy
Constants (LECs). These LECs are particular to the lattice action but their
knowledge is extremely important in order to gain access to the physical
LECs such as the chiral condensate Σ and the pion decay constant Fπ. In
addition to that, their relative strength and sign determine the potential
of the effective theory and thus the phase structure [5–8]. There has been
substantial analytical [9–14] and numerical [15–17] effort dedicated to their
determination. Methods previously used include, among others, pion mass
splittings [16], unitarity violations in a mixed action setup [15] as well as pion
scattering in Wilson χ-PT [14]. Here, we follow a different approach first
applied in quenched studies [18–20], where one matches analytical results
from Wilson χ-PT for a sector with fixed index ν of the Wilson–Dirac oper-
ator with results obtained on the lattice. These results were also presented
in the Lattice 2015 meeting [21].

2. The theoretical background

We make use of the analytical results for the microscopic spectral density
for Nf = 2 derived in [22], starting from the supersymmetric extension of
the chiral Lagrangian in the ε regime in a sector of fixed index ν. In the
microscopic power counting, m ∝ ε4 and a ∝ ε2, and terms up to O(ε4) are
taken into account. In this regime, the partition function factorizes and one
ends up with a unitary matrix integral which, in our case, reads

Zν3|1
(
Ẑ; â

)
=

∫
Gl(3|1)/U(1)

dU Sdet(iU)νe+
i
2
Str(Ẑ[U+U−1])+â2Str(U2+U−2) , (2.1)

where Ẑ ≡ diag(iẑt,−iẑt, ẑ, ẑ ′) and the integration manifold is exactly the
one that we encounter in continuum partially quenched χ-PT calculations.
Here, we have introduced the rescaled variables â = a

√
W8V/2 (with W8

a new LEC parametrizing lattice artifacts) and ẑt = ztV Σ, where zt is the
twisted mass, a is the lattice spacing, Σ is the chiral condensate and V is
the lattice volume. Note that the two other LECs which contribute to LO
in a2 have been ignored in this study.

3. The computational setup and numerical results

In this study, we employ in the fermionic sector the twisted mass ac-
tion [23] and in the gauge sector, the Iwasaki improved action [24].

We refer the reader to [21] for the technicalities of the lattice action em-
ployed in this study. We computed the topological charge of the gauge config-
urations utilizing the Wilson Flow [25] which is a low-cost method providing
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a good definition of the topological charge at finite lattice spacing. Since we
diagonalize the Dirac operator in sectors of fixed topological charge in order
to have high statistics for given ν, we employed a very long ensemble of the
ETM Collaboration which actually has Nf = 2 + 1 + 1. The heavy strange
and charm quarks are completely quenched from a spectral viewpoint and
do not affect the comparison with the Nf = 2 analytical results. The pion
mass of the employed configurations is 390 MeV, L ∼ 2.5 fm and MπL ∼ 5,
meaning that our results are practically already extrapolated to infinite vol-
ume. Note that this is not an ε-regime simulation where MπL� 1, but this
is not an issue, since the smallest Dirac eigenvalues can be in the ε regime.
The scale below which eigenvalues are given by RMT is called the Thouless
energy and for QCD, it is Ec = F 2

π/ΣL
2 [26]. We measured the topo-

logical charge of 5000 independent configurations and we diagonalized the
ones with |ν| = 0, 1, 2, 3. In Fig. 1, we show the analytical results for ρ5 for
|ν| = 0, cf. [21] for results corresponding to the other topological sectors,
versus histograms of lattice data. We observed that due to the large value
of ẑt, the results are very close to the quenched ones, while due to the large
value of â, the structure of the former zero modes, that one would expect for
|ν| = 1, 2, is completely dissolved. In order to extract the chiral condensate
Σ and additionally W8, we performed constrained fits with W6 = W7 = 0
in the individual topological sectors as well as a combined fit in the sec-
tors with |ν| = 0, 1, 2. Our results with their associated statistical errors
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Fig. 1. The microscopic spectral density of the Hermitian Twisted Mass Wilson
Dirac operator. The solid curves comprise the analytical result derived in [22],
while the data points are the numerical results from a simulation on a 323 × 64

lattice with a = 0.0815 fm [27] and aµ = 0.0055. Fitting results of the topological
sector with ν = 0 and fitting parameters ẑt = 38.5 and â = 0.715.
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are summarized in Table I. The differences between the topological sectors
are attributed to cutoff effects and they give a crude estimate of their size.
We quote the result of the renormalized condensate having used the value
of ZP in the MS scheme at 2 GeV given by the ETM Collaboration to be
ZP = 0.509(4) [27, 28]. In [29], the continuum extrapolated value of Σ that
was quoted can be translated to physical units to Σ1/3 = 290± 11 MeV. We
see that this value is very close to the one extracted from this study, which
gives us confidence that cutoff effects are taken into account to some extent
by the LO Wilson chiral Lagrangian which only includes W8. The extracted
value ofW8 is in complete agreement with [15] but differs by roughly a factor
of 2 from the one determined in [16]. This point requires extra clarification.
Note that the results of the combined fits are still preliminary and they will
be further scrutinized and addressed in an upcoming article.

TABLE I

Extracted values for Σ and W8.

|ν| 0 1 2 Combined

Σ1/3 [MeV] 289.0(2.7) 272.3(4.1) 270.8(6.8) 271.1(7.3)
W8 [r60W 2

0 ] 0.0021(12) 0.0055(19) 0.0064(12) 0.0064(12)

4. Conclusions and outlook

In this study of unquenched twisted mass Dirac spectra, we took the first
step towards the extraction of the LECs of Wilson χ-PT from unquenched
simulations. We determined the chiral condensate as well as W8 by com-
paring analytical results from Wilson χ-PT to numerical data from a lattice
simulation. All the errors quoted in this proceeding are at the moment only
statistical errors which have been computed with the bootstrap method. Re-
garding the systematic errors, as it was already mentioned, finite size effects
are expected to be under control due to the fact that mπL ∼ 5. Discretiza-
tion errors are to a great extent taken into account by the fact that the chiral
Lagrangian contains an a2 term but still there can be contributions by the
other two a2 terms which have been neglected in Ref. [22] and in our study,
but also by higher order terms in the chiral expansion. One part of the
calculation where discretization effects could creep in is in the computation
of the topological charge. In order to minimize this effect, we have taken
into account three different discretizations of the topological charge density.
The first employs the plaquette definition and has cutoff effects of O(a2),
the second definition also includes a clover term and also has cutoff effects
of O(a2), and the last definition contains rectangular clover terms and has
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cutoff effects of O(a4). The agreement among these methods for the given
value of the lattice spacing was above 98%, see [30] for a detailed analysis.
These discretization errors could potentially lead to a misassignment of the
topological charge.

In an upcoming work, we plan to derive the full LO analytical solution
including the LECs W6,W7, since they could potentially have a large effect
in the eigenvalue density. It would be interesting to see how their inclusion
will affect the extracted value of Σ and W8.

This work was in part based on a variant of the ETM Collaboration’s
public lattice Quantum Chromodynamics code [31, 32]. We would like to
thank G. Herdoiza, K. Jansen, J. C. Myers and J. Verbaarschot for fruit-
ful discussions and A. Athenodorou for providing us with the data of the
topological charge. This work was granted access to the HPC resources of
CINES and IDRIS. This work was supported by the Humboldt Foundation
(S.Z.), and the Sapere Aude program of The Danish Council for Indepen-
dent Research (K.S.) and by the Helmholtz International Center for FAIR
within the framework of the LOEWE program launched by the State of
Hesse (K.C.).
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