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Baryonic correlation functions provide an ideal tool to study parity dou-
bling and chiral symmetry using lattice simulations. We present a study
using 2 + 1 flavours of anisotropic Wilson clover fermions on the FAST-
SUM ensembles and find clear evidence that parity doubling emerges in
the quark–gluon plasma. This result is confirmed on the level of spectral
functions, which are obtained using a MEM reconstruction. We further
highlight the importance of Gaussian smearing in this study.
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1. Introduction

Symmetries are essential to understand interactions in nature and have
led to many discoveries in the past. Here, we study baryons at non-zero
temperature, for which, in contrast to mesons, not many lattice studies are
available [1–4]. We focus, in particular, on parity doubling and chiral sym-
metry restoration, which are expected to coincide for a phase where chiral
symmetry is manifest. In a previous study [5, 6], we focused on correlation
function itself; here, we extend our study to include spectral functions and
different levels of smearing.
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2. Setup

We use non-perturbatively O(a) improved, anisotropic Wilson fermions
with 2 + 1 flavours on configurations generated by the FASTSUM Collab-
oration [7–9], based on the parameters of the Hadron Spectrum Collabora-
tion [10]. The simulation parameters are listed in Table I. These ensembles
span a wide range in temperatures, ranging from 44MeV to 352MeV and, in
terms of the critical temperature, from 0.24 to 1.9Tc. We use a fixed spatial
lattice spacing of as = 0.1227(8) fm and a finer lattice spacing in the time
directions, such that the anisotropy is as/at = 3.5 [11]. The strange quark
mass has been tuned to its physical value, while the light quarks remain
heavier than in nature, which results in a pion mass of 384(4) MeV [11].
Further details of the ensembles can be found in [7–9].

TABLE I

Simulation parameters.

Ns Nt T [MeV] T/Tc Ncfg Nsrc

24 128 44 0.24 171 2
24 40 141 0.76 301 4
24 36 156 0.84 252 4
24 32 176 0.95 1000 2
24 28 201 1.09 501 4
24 24 235 1.27 1001 2
24 20 281 1.52 1000 2
24 16 352 1.90 1001 2

For the nucleon interpolating operator, we use a standard definition (see
e.g. [12, 13])

ON = εabc ua (ubCγ5 dc) . (1)
With this definition and the projector to positive parity P+ = 1

2 (1+ γ4),
the correlation function of the nucleon can be obtained by

C(t) =
∑
~x

〈
ON (~x, t)P+ON (0)

〉
. (2)

To enhance the overlap with the ground state, we employ Gaussian smear-
ing [14] on the source and the sink operator of the correlation functions,
which will be discussed below. It will become clear that smearing is crucial
for separating out the ground state already at early Euclidean times. Since
Wilson fermions explicitly break chiral symmetry, we do not expect that all
excited states reflect parity doubling and hence, we focus in this work on
the low-energy states. The correlation functions have been computed using
the Chroma software package [15].
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3. Results

The left panel of Fig. 1 shows the correlation functions for various tem-
peratures. The individual correlation function is the result of superposition of
forward-propagating states with positive parity and backward-propagating
states with negative parity. In nature, the ground states in each channel
have different masses resulting in asymmetric correlation functions. This
behaviour is clearly reproduced in Fig. 1 for T < Tc. As the temperature
increases, the correlation function regains more and more of its reflection
symmetry around t T = 1/2, which indicates the emergence of parity dou-
bling in the quark–gluon plasma. To quantify this further, we look at a
weighted average of ratios of correlation functions [3]

R =
1

Z

Nt/2−1∑
i=1

R(ti)

σ2i
, where R(t) =

C(t)− C(Nt − t)
C(t) + C(Nt − t)

(3)

and Z =
∑

i σ
−2
i is the normalization. The right panel of Fig. 1 shows this

ratio R, which shows a crossover behaviour and confirms the coincidence of
parity doubling with the thermal transition.
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Fig. 1. Left: Correlation functions of the nucleon for different temperatures as a
function of t T . Right: The weighted average R, defined in Eq. (3), as a function
of temperature. The error bars in both panels are of the order of the symbol size.

Looking at the spectral decomposition of the correlations functions,

C(t) =

∞∫
−∞

dω

2π
K(t, ω) ρ(ω) , (4)

allows us to study properties of the nucleon system further. The determina-
tion of the spectral function ρ(ω) is an ill-posed problem in itself, which we
study by using the Maximum Entropy Method (MEM) [16] and adapting
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the kernel K(t, ω) to this (fermionic) problem. For the correlator shown in
Fig. 1, the kernel reads [17]

K(t, ω) =
e−ωt

1 + e−ω/T
. (5)

Figure 2 shows the result of this spectral reconstruction. Note that the
spectrum at positive (negative) ω corresponds to the positive (negative)
parity channel. At low temperatures, the ground states in both the positive
and negative parity channels are clearly visible, but they are reduced as the
temperature increases. Above Tc, the spectral function becomes more and
more symmetric, consistent with the analysis from the correlators directly.
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Fig. 2. The spectral function of the nucleon for a variety of temperatures below the
critical temperature (left) and above the critical temperature (right).

As mentioned before, we apply Gaussian smearing [14] to the source and
the sink operator, i.e.

ψ′(x) =
1

A
(1+ κH)n ψ(x) , (6)

where H corresponds to the hopping part of the Dirac operator and A is an
appropriate normalization. The links variables in H are APE smeared [18].
In total, we apply four different settings for the smearing parameters κ and n,

(κ, n) = (0, 0); (1.2, 10); (4.2, 60); (8.7, 140) , (7)

to test the dependence on the smearing, which includes a setup with no
smearing at all. The data shown in the first part of this section, i.e. Figs. 1
and 2, have been obtained using (κ = 8.7, n = 140). The left panel of
Fig. 3 shows the resulting spectral functions for an ensemble with a temporal
extent of Nt = 40. As expected, the overlap with the ground state changes
significantly by changing the spectral weights with the smearing procedure.
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Fig. 3. The effect of smearing on one particular ensemble with Nt = 40, showing
only the positive parity sector. Left: A comparison of various levels of smearing as
listed in Eq. (7). Right: A zoom of the spectral function without smearing.

The position of the first peak, i.e. the mass of the ground state, remains,
however, unchanged. As far as our analysis and uncertainties allow, we
also see no clear change in the width, which still needs more data to be
confirmed. In particular, without any smearing, the ground state is severely
suppressed, but still visible, and this is clearly shown in the right panel of
Fig. 3. Therefore, smearing is absolutely crucial for extracting information
on the ground state.

4. Conclusion

We have presented a lattice study of the spin-12 octet nucleon in the
hadronic phase and quark–gluon plasma, spanning a wide range of temper-
atures across the transition. We find clear evidence of parity doubling and,
thereby, chiral symmetry restoration in the quark–gluon plasma, which is
further confirmed on the level of the spectral functions. Gaussian smearing
has shown to be essential in this work. In future, we will extend our study
to the spin-32 baryon decuplet and include different valence quark masses.
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