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Mesons are extended objects, hence their interaction can be described
by utilizing form factors. At the Lagrangian level, one can use nonlocal
interaction terms. Here, we describe two possible nonlocal Lagrangians
leading to a 3D form factor: the first one is simple but does not fulfill
covariance (if one insists on a 3D cutoff), the second extension is more
involved but guarantees covariance. Such form factors are useful when
calculating mesonic loops. As an important example, we discuss the scalar
kaonic sector, I(JP ) = 1

2 (0
+). The Lagrangian contains a single scalar kaon

(the well-establish state K∗
0 (1430)), but through loops K∗

0 (800) emerges as
a dynamically generated companion pole (which disappears in the large-Nc

limit).
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1. Introduction

Mesonic Lagrangians are often used to describe the decays and the spec-
tral functions of resonances listed in the PDG [1]. Such Lagrangians make
use of some symmetries of the underlying QCD (such as flavor or chiral sym-
metry), e.g. chiral perturbation theory [2] and (extended) sigma models [3].
In particular, in the case of some enigmatic resonances, such as the light
K∗0 (800) meson addressed in this work, the role of mesonic loops turns out
to be extremely important, see e.g. Refs. [4–9] and references therein.

Yet, mesons are not elementary particles but are extended objects with
a radius of about 0.5 fm. Some type of form factor is needed. Already in
the 3P0 model, e.g. Ref. [10], a form factor reducing the decay for increasing
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phase space is present. This form factor is also useful when calculating quan-
tum fluctuations (loops), since all contributions become finite (see Sec. 2). It
is possible to include a form factor directly in the Lagrangian by using non-
local interaction terms, e.g. Refs. [11–13]. In many studies of mesons, a 3D
form factor is employed for simplicity. This is usually regarded as a break-
ing of covariance. Here, we discuss how to introduce nonlocal terms which
deliver the desired 3D cutoff (Sec. 3). Interestingly, an extension which pre-
serves covariance is possible [14]. Implications for the scalar kaonic sector
and conclusions are discussed in Sec. 4.

2. The ‘ad hoc’ introduction of a form factor

In general, effective Lagrangians contain both derivative and nonderiva-
tive interaction terms [2, 3]. A prototype of such a Lagrangian in which a
(scalar) state S interacts with two (pseudoscalar) particles ϕ1 and ϕ2 reads

LSϕ1ϕ2 = aSϕ1ϕ2 + bS∂µϕ1∂
µϕ2 . (1)

The scalar kaonic sector is obtained upon identifying S = K∗+0 (in first
approximation corresponding to K∗0 (1430)) and ϕ1 ≡ π0 and ϕ2 ≡ K−

(other isospin combinations are here neglected). The tree-level decay width
S → ϕ1ϕ2 as a function of the ‘running’ mass m of S reads

ΓS→ϕ1ϕ2(m) =

∣∣∣~k1∣∣∣
8πm2

[
a− bm

2 −m2
1 −m2

2

2

]2
, (2)

where m1 is the mass of ϕ1 and m2 the mass of ϕ2. The quantity |~k1| is the
modulus of the three-momentum of (one of the) outgoing particle(s)

∣∣∣~k1∣∣∣ =
√
m4 +

(
m2

1 −m2
2

)2 − 2m2
(
m2

1 +m2
2

)
2m

. (3)

The actual value of the tree-level decay width is obtained by settingm to the
tree-level (nominal) mass mS of the field S, ΓS→ϕ1ϕ2(mS). Lagrangian (1),
as it stands, is not suitable for loop calculations. One can regularize the
theory by considering an ad hoc modification of both vertices via a form
factor

a→ afΛ

(
~k21

)
, b→ bfΛ

(
~k21

)
with fΛ

(
~k21

)
= e−

~k21/Λ
2
. (4)

The quantity Λ is often called ‘cutoff’ (a smooth cutoff here). The choice of
a Gaussian is part of the modelling and is obviously not unique. Anyway,
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there is a clear physical motivation behind Λ: it is the energy scale which
takes into account that mesons are extended objects. The dimension of
the system is roughly given by 1/Λ. Numerically Λ lies between 0.5 and
1 GeV [7]. The ‘local’ limit is recovered for Λ → ∞. As a consequence of
Eq. (4), the decay width changes as

ΓS→ϕ1ϕ2(m)→ ΓΛS→ϕ1ϕ2
(m) = ΓS→ϕ1ϕ2(m)f2Λ

(
~k21

)
, (5)

and is similar to the form factor implemented in the 3P0 model (see e.g. [10]
and the ‘quark model’ review in Ref. [1]).

The contribution of the loop Π(m2) in which the particles ϕ1 and ϕ2

circulate as calculated from the original local Lagrangian (1) reads

Π
(
m2
)
=

∫
d4k1
(2π)4

[a− b (k1 · k2)]2[
k21 −m2

1 + iε
] [
k22 −m2

2 + iε
] , (6)

where the constraint k2 = p − k1 is understood and p is the momentum of
the unstable particle S. In its reference frame, p = (m,~0 ). As mentioned
above, this loop contribution is divergent (with Λ4). Substitution (4) makes
it convergent thanks to the form factor

Π
(
m2
)
→ ΠΛ

(
m2
)
=

∫
d4k1
(2π)4

[a− b (k1 · k2)]2 f2Λ
(
~k21

)
[
k21 −m2

1 + iε
] [
k22 −m2

2 + iε
] . (7)

At this point, one may object that the form factor breaks covariance, since
it depends on the three-momentum only. We will show in the next section
that this is not necessarily the case. Once the form factor is introduced,
the full propagator of the particle S is calculated as ∆S(p

2 = m2) = [m2 −
M2

0 + ΠΛ(m
2) + iε]−1, where M0 is the bare mass of S and ImΠΛ(m

2) =
mΓΛS→ϕ1ϕ2

(m). At the one-loop level, the Breit–Wigner mass of S is defined
as m2

S−M2
0 +ReΠ(m2

S) = 0, while the pole mass is obtained by solving the
equation s−M2

0 +Π(s) = 0 in the complex s-plane, see e.g. Ref. [8,15] for
the scalar I = 1/2 and I = 1 sectors.

The real part of the loop can be also obtained as ReΠΛ(s = m2) =

c + 1
πPP

∫∞
m1+m2

ImΠΛ(s
′)

s′−s ds′, where c is an additional constant due to a
subtlety of QFT containing derivatives, see Ref. [15] for details. For Λ→∞,
ImΠΛ(s

′) scale as s′2, then a three-time subtracted dispersion relation would
be needed. This is quite cumbersome and reinforces the viewpoint that —
for the particular case of hadronic physics — a physical cutoff is a meaningful
procedure.
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3. Nonlocal Lagrangians

The modification of Eq. (4) and, consequently, the form factor in Eqs. (5)
and (7) have been introduced as an ad hoc change of the Feynman rules. Yet,
it is possible to modify the Lagrangian in order that the modified equations
automatically follows from it.

Nonlocal extension 1: The easiest way (see Refs. [11,12]) is to consider
the following nonlocal Lagrangian (for simplicity, we discuss here only the
a-term in Eq. (1), but the b-term is very similar)

aSϕ1ϕ2 → aS

∫
d4yϕ1(x+ y/2)ϕ2(x− y/2)Φ(y) . (8)

The Feynman rule at the a-vertex is modified (upon defining k1 = p/2 + q,
k2 = p/2− q, hence: q = (k1 − k2)/2)

a→ a

∫
d4ye−iqyΦ(y) = aϕ(q) . (9)

For Φ(y) = δ(4)(y), one reobtains the local limit. A covariant form factor
requires a dependence Φ(y2), hence ϕ(q2) follows. Quite interestingly, if the
masses of ϕ1 and ϕ2 are equal and on-shell, q2 = −~k21, in agreement with
Eq. (5) upon setting ϕ(q2) = eq

2/Λ2 . However, the loop is different from
Eq. (7) since it involves ϕ2(q2) = ϕ2(4(k1 − p)2) into the integral [and not
simply f2Λ(~k

2
1)]. A generalization in the case of unequal masses is discussed

in Ref. [13].
The choice Φ(y) = δ(y0)φ(~y ) leads to the desired result ϕ(q) = fΛ(~k

2
1)

of Eq. (4) and also of Eqs. (5) and (7), but it explicitly breaks covariance.
This result is anyway valuable since it shows that it is possible to get the
desired 3D cutoff form, but should be used only in the reference frame of
the decaying particle.

Nonlocal extension 2: We aim to determine the Lagrangian which
generates the vertex function (4) in a covariant manner [14]. We start from
the general nonlocal expression

aSϕ1ϕ2 → g

∫
d4zd4y1d

4y1S(x+ z)ϕ1(x+ y1)ϕ2(x+ y2)Φ(z, y1, y2) , (10)

where the vertex function Φ(z, y1, y2) in position space has been introduced.
The case Φ(z, y1, y2) = δ(z)δ(y1)δ(y2) delivers the local limit (1). The vertex
function in momentum space is given by

ϕ(p, k1, k2) =

∫
d4zd4y1d

4y2e
ipze−ik1y1e−ik2y2Φ(z, y1, y2) .
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Here, we assume that Φ(z, y1, y2) is such that

ϕ(p, k1, k2) = ϕ

(
p, q =

k1 − k2
2

)
= fΛ

(
q2p2 − (q · p)2

p2

)
. (11)

It respects covariance because the final form factor is a function of Lorentz
products. Nevertheless, in the rest frame of S, one recovers the desired
dependence

q2p2 − (q · p)2

p2
= ~k21 (for p = (m, 0)) .

Note, in order to get the desired expression, Φ(z, y1, y2) = ξ(z, y1−y2)δ(y1+
y2), out of which ϕ(p, k1, k2) =

∫
d4zd4yeipze−i2qyξ(z, y) with y = y1 − y2

and Y = y1 + y2. This line of reasoning shows that it is — at least in
principle — possible to reconcile covariance with a 3D form factor in the
rest frame of the decaying particle.

4. Discussions and conclusions

In this work, we have discussed form factors entering in mesonic inter-
action terms. We have started from a local Lagrangian and we have ad
hoc modified the interaction vertex by introducing a function of the three-
momentum of one outgoing particle. Then, we have presented two nonlocal
extensions of the Lagrangian that deliver the desired expressions without
the need of modifying by hand the Feynman rules. The first nonlocal exten-
sion is relatively simple but delivers the desired form factor at the price of
breaking covariance. The second extension is more involved but delivers a
3D cutoff in the rest frame of the decaying particle by respecting covariance.

Recently, the expressions of the propagator described in Sec. 2 (which
are then justified by our study of Sec. 3) were used to study the positions
of the poles in the complex plane in both the isodoublet- and isovector-
scalar sectors. In both cases, the Lagrangians contains only one seed state,
corresponding to the quark–antiquark resonances a0(1450) and K∗0 (1430),
respectively. Yet, the loops (with the necessary presence of a form fac-
tor) are strong enough to generate two additional resonances: a0(980) and
K∗0 (800). These are companion poles, and hence dynamically generated
states. Moreover, these states disappear in the large-Nc limit, confirming
their nonconventional nature. In particular, K∗0 (800) is not yet confirmed in
the PDG [1]. The study based on the formalism described in these proceed-
ings unequivocally finds a pole: (0.745± 0.029)− i(0.263± 0.027) GeV [8].
This is in agreement with other works, e.g. Ref. [9] and references therein,
and reinforces the need of accepting this state in the PDG.

In both Refs. [8, 15], one obtains a similar values of the cutoff: Λ '
0.6 GeV. Moreover, in Ref. [8], different form factors have been tested. It
is found that they cannot fit the pion–kaon scattering data as well as the
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Gaussian form factor. Thus, even if there is, in principle, no fundamental
reason behind a Gaussian function, it nevertheless seems to be the best
choice in order to describe hadronic phenomenology.

We thank T. Wolkanowski and G. Pagliara for valuable discussions.
F.G. thanks also for past conversations on the topic with Th. Gutsche and
V. Lyubovitskij.
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