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INITIAL STATE CORRELATIONS AND THE RIDGE∗
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We point out that Bose enhancement in a hadronic wave function gener-
ically leads to correlations between produced particles. We show explicitly,
by calculating the projectile density matrix in the Color Glass Condensate
approach to high-energy hadronic collisions, that the Bose enhancement of
gluons in the projectile leads to azimuthal collimation of long range rapidity
correlations of the produced particles, the so-called ridge correlations.
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1. Introduction

The ridge structure observed in high multiplicity p–p and p–Pb collisions
at the Large Hadron Collider (LHC) has triggered an intense activity aimed
at understanding the possible physical origin of correlations between emitted
particles. One of the ideas that is suggested is that the final state correlations
carry the imprint of the partonic correlations that exist in the initial state.
“Glasma graph” contributions [1] is one of the proposed models within the
Color Glass Condensate (CGC) approach to explain ridge structure. Even
though the numerical calculations based on the glasma graph approach have
∗ Presented by T. Altinoluk at “Excited QCD 2016”, Costa da Caparica, Lisbon, Por-
tugal, March 6–12, 2016.
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been very successful in reproducing the systematics of ridge correlations,
the physics behind this approach was not completely clear. Recently, it has
been shown that the ridge correlations that are observed in the final state
originate from the Bose enhancement of the gluons in the incoming hadronic
wave function [2].

2. Gluon production and Bose enhancement

2.1. Basics of Bose enhancement

In order to understand the basic idea behind the Bose enhancement, let
us consider a state with fixed occupation numbers of N species of bosons at
different momenta. This state can be written as

∣∣{ni(p)}〉 ≡∏
i,p

1√
ni(p)!

(
a†i (p)√
V

)ni(p)
|0〉 (1)

with a finite volume V and periodic boundary conditions so that momenta
are discrete. The state is translationally invariant with mean particle density

n ≡
〈{
ni(p)

}∣∣ a†i(x)ai(x) ∣∣{ni(p)}〉 =∑
i,p

ni(p) . (2)

Hereafter, we take
∑

p ≈
∫
d3p/(2π)3. The 2-particle correlator in coordi-

nate space is

D(x, y) ≡ 〈{n(p)}|a†i(x)a†j(y)ai(x)aj(y)|{n(p)}〉 . (3)

This is calculated by going to momentum space, where the operator averages
are simple,

〈{n(p)}|a†i(p)a†j(q)ai(l)aj(m)|{n(p)}〉
≈ δ(p− l)δ(q −m)

∑
i

ni(p)
∑
j

nj(q) + δ(p−m)δ(q − l)
∑
i

ni(p)ni(q) ,

(4)

where we have neglected the terms where all momenta are equal, which are
suppressed by a phase-space factor. Using this, the result for D(x, y) reads

D(x, y) = n2 +
∑
i

∣∣∣∣∫ d3p

(2π)3
eip(x−y)ni(p)

∣∣∣∣2 . (5)

The last term expresses the Bose enhancement. It vanishes when the points
are very far away, and gives O(1/N) enhancement when the points coincide.
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The O(1/N) suppression of the second term relative to the first one is due to
the fact that the second term contains a single sum over the species index.
The physics is that only bosons of the same species are correlated with each
other. Technically, the origin of this additional contribution is the “wrong
contraction” term in Eq. (4).

The Bose enhancement is a generic phenomenon, and is not tied specifi-
cally to the state with fixed number of particles. An overwhelming majority
of pure states or quantum density matrices exhibit Bose enhancement at
some degree. There is, however, one type of states that do not exhibit such
behavior, notably classical-like coherent states. Consider a coherent state

|b(x)〉 ≡ exp

{
i

∫
d3x bi(x)

(
ai(x) + a†i(x)

)}
|0〉 . (6)

A trivial calculation in this state gives

〈b(x)|a†i(x)ai(x)|b(x)〉 = bi(x)bi(x) ,

〈b(x)|a†i(x)a†j(y)ai(x)aj(y)|b(x)〉 = bi(x)bi(x)bj(y)bj(y) , (7)

so D(x, y) = n(x)n(y). Thus, in order to exhibit Bose enhancement, a state
has to be nonclassical.

2.2. Gluon production within glasma graph approximation

Our aim is to show that the angular collimation arising from the glasma
graph calculation is due to the Bose enhancement in the projectile wave
function. Following [1], we consider the calculation of inclusive two particle
production.

The glasma graphs that contribute to this observable come in three va-
rieties, see Fig. 1. Type A graphs contribute to the case where two gluons
from the incoming projectile wave function scatter independently on the tar-
get. The incoming gluons have transverse momenta k1 and k2 respectively.
While propagating through the target, the first particle picks up transverse
momentum p − k1 and the second particle picks up transverse momentum
q − k2, so that the outgoing particles have momenta p and q. Type B and
C graphs from the projectile point of view are “interference graphs”, in the
sense that the final state gluon with momentum p comes from the projectile
gluons with different momenta in the amplitude and complex conjugate am-
plitude. Type B and C diagrams contain leading contributions that can be
reinterpreted as Type A but with gluons originating from the target rather
than from the projectile and, additionally, subleading contributions, includ-
ing those that lead to HBT correlations [3, 4]. Therefore, in the following,
we will only discuss those of Type A, keeping in mind this complementary
interpretation of the leading pieces of Type B and C.
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Fig. 1. Glasma graphs for two gluon inclusive production before averaging over the
projectile color charge density ρ.

The Type A contribution to double inclusive gluon production can be
written as

C

∫
k1,k2

〈in|a†ia (k1)a†jb (k2)aka(k1)alb(k2)|in〉
[
δik − ki1k

k
1

p2

][
δjl − kj2k

l
2

q2

]
×N(p− k1)N(q − k2) , (8)

where |in〉 is the wave function of the incoming projectile, C is a constant,
N(p − k) is the probability that the incoming gluon with transverse mo-
mentum k acquires transverse momentum p after scattering and, hereafter,
we use the notation

∫
k ≡

∫
d2k
(2π)2

. This scattering probability is, of course,
determined by the distribution of target fields (within the glasma graph
calculation, the scattering of the two gluons is independent).

We have to understand what is the nature of the projectile state |in〉,
and, in particular, we need to calculate

D(k1, k2) ≡ 〈in|a†ia (k1)a†jb (k2)aka(k1)alb(k2)|in〉 . (9)

Averaging over the projectile state in the standard CGC approach in-
volves two elements. One needs to calculate the average over the soft degrees
of freedom, as well as that over the valence color charge density. Conven-
tionally, this is done in the spirit of the Born–Oppenheimer approximation,
namely first one averages over the soft gluon degrees of freedom at fixed
valence color charge density ρ, and subsequently, averages over the valence
density distribution.

The wave function of the soft fields for fixed valence color charge density
for a dilute projectile is a simple coherent state

|in〉ρ = exp

i
∫
k

bia(k)
[
a†ia (k) + aia(−k)

] |0〉 , (10)

with the Weizsäcker–Williams field bia(k) = gρa(k)
iki

k2
.
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The averaging over the soft degrees of freedom leads to the well-known
expression for the observable in terms of the charge density

D(k1, k2)ρ = bia(k1)b
j
b(k2)b

k
a(−k1)blb(−k2) . (11)

Since at fixed ρ the soft gluon state is a coherent state, this expression does
not seem to exhibit Bose enhancement. This is, however, misleading, since
averaging over ρ is part of the quantum averaging over the initial state wave
function |in〉. It is, therefore, instructive to reverse the conventional order of
averaging, and average over the valence degrees of freedom first. The result
of such a procedure is a density matrix on the soft gluon Hilbert space. The
subsequent averaging over this density matrix is a direct way to find out
whether the projectile wave function exhibits Bose enhancement.

2.3. The soft gluon density matrix

The soft gluon density matrix depends, of course, on the weight for
the valence color charge density. For illustrative purposes, we choose the
same Gaussian weight used in the glasma graph calculation, the McLerran–
Venugopalan model [5],

〈. . .〉ρ = N
∫
D[ρ] . . . e

−
∫
k

1
2µ2(k)

ρa(k)ρa(−k)
, (12)

where N is the normalization factor. Thus, the density matrix of the soft
gluons is given by

ρ̂ = N
∫
D[ρ] e

−
∫
k

1
2µ2(k)

ρa(k)ρa(−k)
ei

∫
q b
i
b(q)φ

i
b(−q)|0〉〈0| e−i

∫
p b
j
c(p)φ

j
c(−p) ,

(13)
where we have defined φia(k) = aia(k) + a†ia (−k). The integral over ρ can be
performed with the result

ρ̂ = e−
∫
k
g2µ2(k)

2k4
kikj φib(k)φ

j
b(−k)

{
+∞∑
n=0

1

n!

 n∏
m=1

∫
pm

g2µ2(pm)

p4m
pimm φimam(pm)

 |0〉
×〈0|

[
n∏

m=1

pjmm φjmam(−pm)
]}

e
−

∫
k′

g2µ2(k′)
2k′4

k′i
′
k′j
′
φi
′
c (k
′)φj

′
c (−k′)

. (14)

The interesting correlator is given by

D(k1, k2) = tr
[
ρ̂a†ia (k1)a

†j
b (k2)a

k
a(k1)a

l
b(k2)

]
(15)
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which can be calculated explicitly thanks to Eq. (14). The result reads

D(k1, k2) = S2
(
N2

c − 1
)2 ki1kk1kj2kl2

k21k
2
2

g4µ2(k1)µ
2(k2)

k21k
2
2

×
{
1 +

1

S (N2
c − 1)

[
δ(2)(k1 − k2) + δ(2)(k1 + k2)

]}
. (16)

3. Discussion

The first term in Eq. (16) is the “classical” term equal to the square of the
number of particles. The second term is the typical Bose enhancement term,
suppressed with respect to the first “classical” term by the total number of
degrees of freedom (color and area). The third term is specific to the density
matrix at hand and it appears due to reality of the gluon field scattering
amplitude. This establishes our point that the soft glue density matrix
exhibits Bose enhancement, so that the likelihood of finding two gluons
with the same transverse momentum is higher than average. Note that this
effect is naturally subleading in Nc as the enhancement is only effective if
both gluons are in the same color state.

As a typical Bose enhancement contribution, the second term in Eq. (16)
is nonvanishing only when the momenta of the two gluons are equal. Note,
however, that k1 and k2 are not the momenta of observed gluons, but rather
the momenta of gluons in the wave function of the incoming projectile. The
two gluons then scatter on the target and acquire momenta p and q with
the probability N(p− k1)N(q − k2), as indicated in Eq. (8).

REFERENCES

[1] A. Dumitru, F. Gelis, L. McLerran, R. Venugopalan, Nucl. Phys. A 810, 91
(2008) [arXiv:0804.3858 [hep-ph]].

[2] T. Altinoluk et al., Phys. Lett. B 751, 448 (2015)
[arXiv:1503.07126 [hep-ph]].

[3] T. Altinoluk et al., Phys. Lett. B 752, 113 (2016)
[arXiv:1509.03223 [hep-ph]].

[4] Y.V. Kovchegov, D.E. Wertepny, Nucl. Phys. A 906, 50 (2013)
[arXiv:1212.1195 [hep-ph]].

[5] L.D. McLerran, R. Venugopalan, Phys. Rev. D 49, 2233 (1994)
[arXiv:hep-ph/9309289].

http://dx.doi.org/10.1016/j.nuclphysa.2008.06.012
http://dx.doi.org/10.1016/j.nuclphysa.2008.06.012
http://dx.doi.org/10.1016/j.physletb.2015.10.072
http://dx.doi.org/10.1016/j.physletb.2015.11.033
http://dx.doi.org/10.1016/j.nuclphysa.2013.03.006
http://dx.doi.org/10.1103/PhysRevD.49.2233

	1 Introduction
	2 Gluon production and Bose enhancement
	2.1 Basics of Bose enhancement
	2.2 Gluon production within glasma graph approximation
	2.3 The soft gluon density matrix

	3 Discussion

