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calculate the bulk and shear viscosities of the system of gluons at high
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1. Introduction

In this proceedings contribution, I discuss recent results obtained in col-
laboration with Ryblewski, Su, and Tywoniuk [1, 2] that describe the bulk
and shear viscosity coefficients of the Gribov–Zwanziger (GZ) plasma. The
idea of such a system follows from the use of the Gribov dispersion relation
for gluons [3],

E(k) =

√
k2 +

γ4
G

k2 , (1)

to describe hot and dense gluonic matter. In Eq. (1), k is the three-momen-
tum of gluons and E denotes their energy. The parameter γG appears during
the quantisation of the Yang–Mills theory. It takes into account the expected
behavior of gluons in the infrared region [3–7].

Thermodynamic properties of the GZ plasma have been studied in [8,9].
The main results are obtained with the dispersion relation (1) used in the
Bose–Einstein distribution function

fGZ =
1

exp(E(k)/T )− 1
, (2)

where T is the system’s temperature. This approach provides good agree-
ment with the lattice results [10]. Encouraged by the success connected with
the use of Eq. (1) in equilibrium, in Refs. [1, 2] an attempt has been made
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to construct a simple kinetic theory that incorporates (1) and may describe
transport phenomena. In particular, in [1], we obtained the formula for the
bulk viscosity coefficient. The latter attracts more and more attention in
the last years [11–15].

2. Lorentz covariance and boost-invariance

Equation (1) is derived in the Coulomb gauge that violates Lorentz in-
variance. In order to regain a covariant framework for fluid dynamics, one
has to make assumptions about the Lorentz transformation properties of the
quantities that appear in (1). The strategy to recover covariant description
is not straightforward and this issue is discussed in more detail in [2]. In
our approach, formula (1) is transformed into the covariant expression of the
form [1,2]

E(k · u) =

√
(k · u)2 + γ4

G

(k · u)2
, (3)

where u is the four-velocity of the fluid element. The Coulomb gauge as
well as the in-medium value of the Gribov parameter γG are fixed in the
local rest frame where uµ = (1, 0, 0, 0). One introduces k0 ≡ |k|, which is
the magnitude of the three-vector k ≡ (kx, ky, k‖), and k⊥ =

√
k2
x + k2

y such

that kµ = (k0,k) satisfies the condition k2 = kµkµ = 0. The four-vector k
may be interpreted as the four-momentum of a perturbative, non-interacting
gluon.

A convenient way to obtain viscosity coefficients is to analyze a (0+1)-
dimensional, boost-invariant and transversally homogeneous system. In con-
trast to the problem of Lorentz covariance, which is the fundamental issue
connected with the use of the Coulomb gauge, imposing boost-invariance is
just a technical method that facilitates our manipulations.

The boost-invariant (Bjorken) flow has the form of uµ = (t/τ, 0, 0, z/τ)
[16]. Moreover, all scalar functions of space and time depend, in this case,
only on the proper time τ =

√
t2 − z2. One may furthermore introduce the

boost-invariant variables v = k0t− k‖z and w = k‖t− k0z [17]. In this case,
the gluon energy is

E (τ, w, k⊥) =

√
w2

τ2
+ k2
⊥ +

γ4
G

w2

τ2
+ k2
⊥
. (4)

The covariant momentum integration measure can be written as∫
dK(. . .) =

g0

(2π)3

∞∫
−∞

dw

τ

∫
d2k⊥(. . .) , (5)
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where g0 is the number of internal degrees of freedom. We note that the
phase-space distribution function f , which is also a Lorentz scalar, may
depend in our case only on τ , w and k⊥, namely f = f(τ, w, k⊥) [17].

3. Kinetic equation

The arguments presented in [1,2] suggest that one can use the standard
kinetic equation in the relaxation-time approximation (RTA) [18–20]

∂f (τ, w, k⊥)

∂τ
=
fGZ (τ, w, k⊥)− f (τ, w, k⊥)

τrel(τ)
, (6)

where τrel is the relaxation time and the effective temperature T that defines
the equilibrium distribution function fGZ is determined from the condition∫

dKE (τ, w, k⊥) fGZ (τ, w, k⊥) =

∫
dKE (τ, w, k⊥) f (τ, w, k⊥) . (7)

Equation (7) is known as the Landau matching condition for the energy.
The formal solution of Eq. (6) is [21–23]

f (τ, w, k⊥) = f0 (w, k⊥)D(τ, τ0) +

τ∫
τ0

dτ ′

τrel(τ ′)
D(τ, τ ′)fGZ

(
τ ′, w, k⊥

)
, (8)

where the damping function D(τ2, τ1) has the form of

D(τ2, τ1) = exp

− τ2∫
τ1

dτ

τrel(τ)

 . (9)

Inserting the formal solution (8) into the Landau matching condition (7), one
finds the time dependence of the system’s temperature, T (τ). This, in turn,
when used in (8), allows us to find the time dependence of various system’s
characteristics such as the energy density and transverse and longitudinal
pressures.

Besides the exact treatment of the kinetic equation that has been sketched
above, we may use the linear response method. In this case, we seek the
solution of Eq. (6) in the form of

f ≈ fGZ + δf + . . . , (10)

where δf = −τreldfGZ/dτ . This leads directly to the expression

δf = −E τrel

Tτ

 w2

E2τ2

1− γ4
G(

w2

τ2
+ k2
⊥

)2

+ c2
s

 fGZ (1 + fGZ) . (11)
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The speed of sound squared, c2
s , can be calculated from the equation of

state. The correction to the distribution function (11) can be used further
to obtain the shear tensor πµν and the bulk pressure Π. These quantities
define directly the bulk and shear viscosities if the Navier–Stokes limit is
considered. Straightforward calculations lead to the following expression for
the bulk viscosity [1]

ζ =
g0γ

5
G

3π2

τrel

T

∞∫
0

dy

[
c2

s −
1

3

y4 − 1

y4 + 1

]
fGZ (1 + fGZ) , (12)

where fGZ = {exp[γG

√
y2 + y−2/T ]− 1}−1. Similarly, one obtains the shear

viscosity [1, 2]

η =
g0γ

5
G

30π2

τrel

T

∞∫
0

dy

(
y4 − 1

)2
y4 + 1

fGZ(1 + fGZ) . (13)

4. Numerical results

Let us now turn back to the discussion of the exact solutions of the kinetic
equation. Knowing the time dependence of the effective temperature T , we
find the longitudinal and transverse pressures from the equations

P‖ =

∫
dK

w2

τ2E(τ, w, k⊥)

[
1− γ4

G(
w2/τ2 + k2

⊥
)2
]
f , (14)

P⊥ =

∫
dK

k2
⊥

2E(τ, w, k⊥)

[
1− γ4

G(
w2/τ2 + k2

⊥
)2
]
f , (15)

and the total pressure is obtained as P = 1
3(P‖+2P⊥) (note that the parallel

pressure acts in the direction of the beam axis, while the transverse pressure
acts in the transverse direction to the beam). Given P‖ and P⊥, one finds
the shear and bulk viscous pressures from the expressions

π = 2
3

(
P⊥ − P‖

)
, Π = P − PGZ . (16)

The last two equations allow us to define the effective shear and bulk vis-
cosities

π =
4

3

ηeff

τ
, Π = −ζeff

τ
. (17)

The effective coefficients should agree with the standard coefficients when
the system is close to equilibrium. This is demonstrated in Figs. 1 and 2.
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Fig. 1. Temperature dependence of the bulk viscosity scaled by the relaxation time
and entropy density. Triangles, circles and squares show the effective bulk viscosity
for three different values of the relaxation time (defined in the figure), whereas the
solid line shows the result of the linear-response formula.
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Fig. 2. The same as Fig. 1 but for the shear viscosity.



502 W. Florkowski

5. Conclusions

It has been shown before that the Gribov–Zwanziger quantisation of the
Yang–Mills theory leads to the dispersion relation that can be successfully
used in the studies of gluon thermodynamics. In this contribution, I have
presented an extension of this approach to non-equilibrium situations. The
results for the bulk and shear viscosities of the Gribov–Zwanziger plasma
have been presented, which may be useful for future phenomenological ap-
plications in ultrarelativistic heavy-ion collisions.

This research has been supported in part by the Polish National Science
Center grant No. DEC-2012/06/A/ST2/00390.
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