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We use a χ2 minimization procedure to parameterize the Polyakov
loop and (axial-)vector meson extended Nf = 2 + 1 flavor linear sigma
model (LσM) based on tree-level decay widths and vacuum scalar and
pseudoscalar curvature masses which includes the contribution of the con-
stituent quarks. Using a quark improved Polyakov loop potential and a
simple approximation for the grand potential, we determine and compare
with lattice results the pressure and thermodynamical observables derived
from it. We also determine the location of the critical end point of the
µB–T phase diagram.
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1. Introduction

In view of the planned experimental facilities (FAIR and NICA), where
the strongly interacting matter can be investigated at high densities and
nonzero temperatures, effective model studies of certain aspects of the chi-
ral phase transition could be of some relevance. In the present work, we
use the SU(3)L × SU(3)R (axial-)vector meson extended LσM, for which a
parametrization method was developed in [1], and, as in [2], we incorporate
further degrees of freedom in the form of constituent quarks and Polyakov
loop variables. The study of the model done in [2] under the assumption that
the mesons are qq̄ states showed that in order to have a thermodynamics
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consistent with continuum extrapolated lattice results light scalar particles
should be assigned to the scalar nonet. In this work, we use the assignment
aq̄q0 → a0(980), K?,q̄q

0 → K?
0 (800), fL,q̄q

0 → f0(500), fH,q̄q
0 → f0(980) (L/H

denotes the lower/higher mass state in the mixing sector) and study the
thermodynamics of the model with a different form of the Polyakov loop
potential than the one used in [2]. We have chosen here the above assign-
ment because the minimization procedure of [2] showed that the parameters
which lead to acceptable values of the pseudocritical temperature at µB = 0
give, in this case, the smallest χ2 value among all the 40 possible ways of
assigning five f0, two a0 and two K?

0 particles to the states of the scalar
nonets.

In Section 2, we discuss the parametrization of the model and the ap-
proximations we use to solve it; in Section 3, we present our results and we
conclude in Section 4.

2. The model and the approximation used to solve it

The Lagrangian of the model is

L = LM(Sa, Pa, Va, Aa, A
µ
e ) + Ψ̄ iγµD

µΨ − gFΨ̄
8∑

a=0

(Sa + iγ5Pa)TaΨ , (1)

where LM, depending on the pseudoscalar (P ), scalar (S), vector (V ), axi-
alvector (A) nonet and the electromagnetic field (Aµe ), can be found in [1].
The constituent quark fields Ψ are only coupled to the (pseudo)scalars. The
covariant derivative Dµ = ∂µ − iGµ contains the gluonic field Gµ. In the
mean field approximation, the gauge field is taken to have only a temporal
component G4, which is constant and diagonal in color space. This gives rise
to the Polyakov loop Φ and its conjugate Φ̄ when calculating the partition
function Z (for details, see [2]). For the Polyakov loop potential, we use

U
(
Φ, Φ̄

)
T 4

= −a(T )

2
ΦΦ̄+ b(T ) lnMH

(
Φ, Φ̄

)
+
c(T )

2

(
Φ3 + Φ̄3

)
+ d(T )

(
ΦΦ̄
)2
,

(2)
whereMH(Φ, Φ̄) = 1−6ΦΦ̄+4(Φ3 +Φ̄3)−3(ΦΦ̄)2 is the SU(3) Haar measure.
The parameters are determined in [3] from lattice data on the equation of
state, the Polyakov loop expectation value and its susceptibilities. To the
above Polyakov loop potential, we apply the improvement of Ref. [4], which
takes into account also the effect of the quarks on the pure gluonic sector.
This potential, which in addition to the transition temperature of the YM
theory involves a new temperature scale T glue

c , was previously applied at
finite densities in Ref. [5].
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The grand potential Ω(T, µq) = −(T lnZ)/V of the symmetric quark
matter (µq = µB/3, for q = u, d, s) is constructed in the simplest approxi-
mation: the mesonic part of the potential U(φN, φS) is classical and written
in terms of the strange and nonstrange scalar condensates φS and φN, while
the fermionic part (determinant) is computed also neglecting the mesonic
fluctuations. Adding the Polyakov loop potential, one has

Ω (T, µq) = U (φN, φS) + U
(
Φ, Φ̄

)
+Ω

(0)v
q̄q +Ω

(0)T
q̄q (T, µq) , (3)

where the renormalization of the vacuum part of the fermionic determinant
Ω

(0)v
q̄q introduces the renormalization scale M0 and the thermal part can be

written in terms of modified Fermi–Dirac distribution functions involving the
Polyakov loop and its conjugate. The approximation we use involves also the
replacing the Polyakov loops by their expectation values (for which we use
the same notation for simplicity) which at µq 6= 0 are treated as independent
and real quantities. The values of Φ, Φ̄, φN, and φS are obtained from the
4 coupled field equations

∂Ω

∂φN
=
∂Ω

∂φS
=
∂Ω

∂Φ
=
∂Ω

∂Φ̄
= 0 . (4)

The explicit expression of these equations can be found in [2].

2.1. Parametrization

The parameters of the model are determined using the multiparametric
χ2 minimization method of [6] in which, given a set of parameters p and a
set of observables O, one computes

χ2(p) =

|O|∑
i=1

[
Qi(p)−Qexp

i

δQi

]2

, (5)

where for the ith observable, Qi(p) is the value calculated within the model,
Qexp
i is the experimental value taken from the Particle Data Group and δQi is

the assigned error, which typically is 20% for scalar masses and their decay
widths, 10% for the constituent quark masses and 5% for other vacuum
quantities. For observables, we use in addition to 29 vacuum quantities
also the pseudocritical temperature Tc at µB = 0, with 10% error. The
inclusion of Tc drastically improved the efficiency of the scanning through
the parameter space. The vacuum quantities we used are: 8 (pseudo)scalar
curvatures masses, 5 tree-level (axial-)vector masses, 2 tree-level constituent
quark masses, 12 tree-level decays width and 2 PCAC relations. For further
details, we refer to [2].
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In the present work, using 5 × 104 points of the parameter space, we
did a χ2 minimization at fixed renormalization scale M0 = 0.3 GeV, then
we minimized also for M0. We followed this procedure for three values of
T glue

c , namely 182, 210, and 240 MeV (T glue
c influences the value of Tc) and,

in each case, we used the parameters giving the minimal χ2 value to obtain
the figures of the next section1.

3. Results

Now, we briefly summarize our results which are very similar to those
obtained in [2], where a more detailed investigation was done using a different
form of the Polyakov loop potential. In Fig. 1, we compare with the lattice

result of [7] the subtracted condensate ∆l,s =
(φN−hNφS/hS)|

T

(φN−hNφS/hS)|
T=0

obtained at

three different values of T glue
c . For T glue

c = 182 MeV, we also show the effect
of the χ2 minimization by comparing at fixed M0 = 0.3 GeV the value of
∆l,s obtained with the minimal χ2 (χ2/d.o.f. = 1.14) with the one given by
the 100th best solution (χ2/d.o.f. = 1.42) of the minimization procedure.
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Fig. 1. The subtracted chiral condensate∆l,s at µB = 0 as a function of the reduced
temperature t = T/Tc − 1.

In Fig. 2, we compare with the lattice result of [8] the pressure obtained
at µB = 0 from (3) to which we also added the thermal contribution of the
π,K and fL

0 mesons. We see that the pressure overshoots the lattice data,
but it is interesting to note that if one scales the pressure by a given factor

1 For the sake of completeness, we give the parameters obtained for T glue
c = 210 MeV:

λ1 = −1.692, λ2 = 24.279, h1 = 29.274, h2 = 4.625, h3 = 5.227, g1 = 5.635,
g2 = 2.551, gF = 4.671, φN = 0.1373 GeV, φS = 0.1393 GeV, c1 = 1.404 GeV,
M0 = 0.368 GeV, δs = 0.1135 GeV, m2

0 = 2.908E−3 GeV2, m2
1 = 1.575E−6 GeV2.
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Fig. 2. (Color online) The normalized pressure as a function of the reduced tem-
perature (see the text for the dashed/blue curve).

(0.82 for T glue
c = 240 MeV), then one almost recovers the lattice data (see

the dashed/blue curve). However, as seen in Fig. 3, the interaction measure
cannot be completely reproduced with this rescaling. A rescaling was also
used in [9], where the reduction of the hadronic part in the pressure was
motivated with a decrease in the degrees of freedom, an idea supported by
a calculation in a field theoretical model constructed based on the spectral
function. We use this observation just to explain why, although the pressure
overshoots the lattice data, the lattice data for c2

s (t) = dp/dε and p/ε(t) is
relatively well-reproduced, as shown in Fig. 3: this is because the scaling
factor drops out from these quantities.
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Fig. 3. The interaction measure (left panel) and the square of the speed of sound c2s
and the appropriately shifted ratio of the pressure to the energy density p/ε (right
panel) as a function of t = T/Tc − 1 for three values of T glue

c .
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In Fig. 4, we show the phase diagram in the µB–T plane in comparison
with the chemical freeze-out curve of [10]. Using T glue

c = 210 MeV, the
CEP is located at (µB, T )CEP = (864, 67) MeV. For the curvature κ of the
chiral crossover transition curve at µB = 0, we find κ = 0.0197, which is
compatible with the lattice result κ = 0.020(4) reported in [11].
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Fig. 4. The phase diagram obtained with T glue
c = 210 MeV. The inset shows the

influence of the T glue
c on the location of the CEP.

4. Conclusions

The (2 + 1) flavor LσM extended with (axial-)vector meson, constituent
quarks and Polyakov loop degrees of freedom is able to reproduce, to an
acceptable degree, the QCD pressure obtained on the lattice at µB = 0 and
the thermodynamical observables derived from it, even with a rather crude
approximation for the computation of the pressure, provided that the quark
improved Polyakov loop potential of Ref. [4] is used. The best parametriza-
tion of the model based on curvature (pseudo)scalar meson masses and tree-
level decay widths allows for the existence of a CEP in the µB–T plane
with low T and high µB coordinates. Since the mass of the lightest scalar–
isoscalar state mσ ≡ mfL0

corresponding to the best set of parameter is
below 300 MeV, an extension of the model with tetraquark states seems
necessary. It would be also interesting to couple the constituent quarks to
the (axial-)vector mesons in order to see the influence of the fermions on the
curvature mass of these mesons.
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