
Vol. 9 (2016) Acta Physica Polonica B Proceedings Supplement No 3
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The holographic methods inspired by the gauge/gravity correspondence
from string theory have been actively applied to the hadron spectroscopy in
the last eleven years. Within the phenomenological bottom–up approach,
the linear Regge-like trajectories for light mesons are naturally reproduced
in the so-called “soft-wall” holographic models. I will give a very short
review of the underlying ideas and technical aspects related to the meson
spectroscopy. A generalization of soft-wall description of Regge trajectories
to arbitrary intercept is proposed. The problem of incorporation of the
chiral symmetry breaking is discussed.
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1. Introduction

The hypothesis of AdS/CFT correspondence from the string theory [1]
(also referred to as gauge/gravity duality or holographic duality) has led
to unexpected and challenging ways for description of strongly coupled
systems. Such descriptions are given in terms of weakly-coupled higher-
dimensional gravitational theories. The holographic ideas have penetrated
to many branches of physics. I will consider a traditional (and one of the
first) application of AdS/CFT correspondence — the hadron physics. This
field is very extensive and in the given short report, I discuss only some basic
elements for description of Regge-like meson spectrum within a phenomeno-
logical bottom–up holographic approach.

The physics of hadrons composed of light quarks is highly non-perturba-
tive. Such hadrons represent typical strongly coupled systems. The masses
of hadron states appear in poles of correlation functions of QCD currents
interpolating these states. The AdS/CFT correspondence provides a practi-
cal recipe for calculation of correlation functions in strongly coupled gauge
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theories via the semiclassical expansion of the action of higher-dimensional
dual theory [2]. The correlation functions encode various dynamical infor-
mation. If we are interested only in the mass spectrum (representing a part
of this information), it is sufficient to solve the equations of motion using
the plane-wave Ansatz for physical particles. The obtained infinite tower
of Kaluza–Klein states represents a model for an infinite number of meson
resonances expected in the large-N limit. In the bottom–up approach, one
assumes the existence of a dual theory for QCD, guesses an action for this
theory and uses it to do all necessary calculations in the semiclassical limit.
Below, some examples are demonstrated.

2. The soft-wall model

2.1. Vector mesons

The first and mostly used in practice bottom–up holographic model that
describes the linear Regge-like meson spectrum was constructed in Ref. [3].
The simplest action of this model describing the vector mesons is

S = − 1

4g25

∫
d4x dz

√
g e−az

2
FMNF

MN , (1)

where FMN = ∂MVN − ∂NVM , M = 0, 1, 2, 3, 4 (the metric is mostly nega-
tive), and g5 represents the 5D vector coupling. Action (1) is defined in the
5D anti-de Sitter (AdS5) space. A widely used parametrization of its metric
is: ds2 = R2

z2
(dxµdxµ − dz2). Here, R is the AdS5 radius and z > 0 denotes

the holographic coordinate which has the physical sense of inverse energy
scale. On the boundary of the AdS5 space, z = ε → 0, the vector field
VM corresponds to the source for a QCD operator interpolating the vector
mesons, we will put VM (x, ε) ↔ q̄γµq. The AdS/CFT correspondence pro-
vides various prescriptions for connections between a gauge theory and its
holographic duality [2]. One of them yields the masses of dual fields in the
AdS5 space,

m2
5R

2 = (∆− J)(∆+ J − 4) , (2)

where ∆ is the dimension of the corresponding J-form operator. In practice,
J means just spin. In the case under consideration, ∆ = 3, J = 1, and we
have m5 = 0 in (1).

The linear Regge-like meson spectrum emerges due to the background
e−az

2 in action (1). This background resembles the dilaton coupling in some
string theories. It provides a “soft” way for introducing the mass scale a. The
name “soft-wall” (SW) model is used for such actions in order to distinguish
from the “hard-wall” holographic models proposed earlier [4], where the mass
scale appears via a hard cutoff at some z0 and the spectrum depends on
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the boundary conditions imposed at z0. The meson spectrum of hard-wall
models is not Regge-like. In the SW models, the only boundary condition
is that the action must be finite.

The gauge invariance of action (1) allows to choose a convenient gauge
Vz=0. The physical particles correspond to the plane-wave Ansatz Vµ(x, z)=
v(q, z)eiqxεµ. The equation of motion for the scalar function v(q, z) following
from (1) reads

∂z

(
e−az

2

z
∂zv

)
+
e−az

2

z
q2v = 0 . (3)

The eigenfunctions of Eq. (3) satisfy vn(q, 0) = 0 and the discrete mass
spectrum is given by the corresponding eigenvalues q2n = m2

n

m2
n = 4|a| (n+ 1) , n = 0, 1, 2, . . . (4)

The spectrum does not depend on the sign of a. Note, however, that the
choice a < 0 results in emergence of a non-normalizable massless state [3,5].
This mode gives a finite contribution to the action as usual normalizable
states and, for this reason, leads to an unphysical massless pole in the two-
point vector correlator [5].

2.2. Scalar mesons

The action of SW model for free 5D scalar fields is

S = 1
2

∫
d4x dz

√
g e−az

2 (
∂MΦ∂

MΦ−m2
5Φ

2
)
. (5)

Solving the ensuing equation of motion, one arrives at the spectrum

m2
n = 2|a|

(
2n+ 1 +

√
4 +m2

5R
2 +

a

|a|

)
, n = 0, 1, 2, . . . (6)

Here, the problem with unphysical zero mode at a < 0 does not appear since
its contribution to the action is infinite. In addition, Eq. (6) suggests that
if m2

5R
2 = −4 (the minimal allowed value of the mass squared in the AdS5

space [6]), one has a physical massless state. The given observation provides
a possibility to incorporate the pseudogoldstone π meson [7]. According
to prescription (2), such a 5D mass would correspond to the canonical di-
mension ∆ = 2 of the interpolating operator. The gauge-invariant local
operators in QCD cannot have this dimension. One might speculate that
∆ = 2 corresponds to the current ∂µπ in the low-energy strong interactions,
and that the choice a < 0 in the dilaton background somehow mimics the
dominance of pion background in the deep infrared z →∞.



600 S.S. Afonin

2.3. Higher spin mesons

Two different descriptions of the Higher Spin Fields (HSF) were used in
the SW models: the gauge-invariant one [3] and a more general description
of Ref. [8]. I will discuss the first method.

The free massless HSF are described by symmetric double traceless
tensors ΦM1...MJ

. The corresponding action is invariant under the gauge
transformations δΦM1...MJ

= ∇(M1
ξM2...MJ ), where ∇ denotes the covariant

derivative with respect to the general coordinate transformations and the
gauge parameter ξ is a traceless symmetric tensor. The action for free HSF
in the AdS5 space reads

S(J) = 1
2

∫
d4x dz

√
g e−az

2 (∇NΦM1...MJ
∇NΦM1...MJ + . . .

)
, (7)

where further terms are omitted. In the gauge Φz... = 0, the action for a
rescaled field,

Φ =
( z
R

)2(1−J)
Φ̃ , (8)

contains only the first kinetic term displayed in (7). The equation of motion
for Φ̃(x) results in the mass spectrum [3]

m2
n,J = 4a(n+ J) , n = 0, 1, 2, . . . (9)

Note that a > 0 in spectrum (9). For a < 0, the spectrum is given by
relation (4) for any J . This was another reason in favour of the choice a > 0
in Ref. [3]. In the framework of a more general description of HSF, the
restriction a > 0 is not necessary [8].

The rescaled field Φ̃M1...MJ
corresponds to a twist-two operator with the

canonical dimension∆ = J+2 [3]. Such operators have the lowest dimension
for given spin and play the dominant role in interpolating the hadron states.
It is interesting to observe that action (7) for rescaled fields Φ̃ can be then
written in a compact form using relation (2)

S(J) = 1
2

∫
d4x dz

√
g

(
R

z

)R2m2
5

e−az
2∇N Φ̃M1...MJ

∇N Φ̃M1...MJ , (10)

where R2m2
5 = 4(J − 1).

3. A solvable extension of SW model to arbitrary intercept

The linear Regge spectrum (9) reproduces the prediction of Veneziano
amplitude and the spectral law m2

n,J ∼ n + J seems to agree with avail-
able experimental data on the light non-strange mesons [9]. However, the
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intercept of real Regge trajectories differs from that of (9)

m2
n,J = 4a(n+ J + b) , n = 0, 1, 2, . . . , (11)

where b should be a phenomenological parameter regulating the phenomeno-
logical intercept. The question appears, how to reproduce spectrum (11) in
simple solvable SW models? A seemingly straightforward idea is to change
the 5D masses. However, these masses are already fixed by the requirement
that we interpolate the meson states by the quark currents of lowest canoni-
cal dimension. It looks more reasonable to modify the dilaton background in
the SW action. A method for derivation of modified background that leads
to spectrum (11) in the vector case J = 1 was proposed in Ref. [10]. This
method can be extended to arbitrary spin. Below, we give the final answer
for a > 0 that generalizes expression (10)

S(J) =
1

2

∫
d4x dz

√
g

(
R

z

)R2m2
5

U2
(
b,−|J − 1|; az2

)
e−az

2L(J) , (12)

where U is the Tricomi hypergeometric function, J = 0, 1, 2, . . . , and we
must set R2m2

5 = 2 in the case of J = 0. The HSF in the Lagrangian L(J)
are implied in the rescaled form (8) as in (10). It should be noted that the
background in (7) is universal for any spin J . However, in terms of “physical”
rescaled fields (8), it becomes spin-dependent as can be seen in (10). The
generalized background in action (12) is also spin-dependent.

4. On the chiral symmetry breaking

In the presented approach, the hadron masses depend on the dimension
∆ and spin J of the corresponding interpolating operator. This leads to
degeneracy of states with opposite space parity when they are described by
operators with equal ∆ and J , e.g. the ρ and a1 mesons. It is commonly
accepted that the observable large mass splittings between such states are
caused by the Chiral Symmetry Breaking (CSB) in QCD. The hard-wall
model incorporates the CSB in much the same way as traditional chiral
effective theories [4]. Such a description of the CSB dynamics does not work
however, in simple SWmodels [3]. The description of CSB in Ref. [4] requires
introduction of cubic, quartic and higher vertices which give rise to meson
decays and interactions. As the CSB effect is (most likely) not suppressed by
large number of colours N , it is difficult to adjust such a description with the
large-N limit, in which the holographic duality is formulated. In addition,
this description does not provide the mass splittings between parity partners
among higher spin mesons in which apparently the splittings are of the same
order as between ρ and a1 mesons [9].
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In my opinion, a self-consistent holographic description of CSB should
be based on quadratic in fields 5D actions. But this is an open problem. A
solution might lie in reinterpretation of what we call spin in the holographic
models. An interesting possibility was put forward by the light-front holo-
graphic QCD [8] where, similarly to the non-relativistic potential models,
the mass degeneracy of parity partners is lifted due to different orbital mo-
mentum of quark constituents. An alternative option could consist in inter-
pretation of intercept parameter b in spectrum (11): As was advocated in
Ref. [10] for vector mesons, the sign of b depends on parity.

5. Conclusion

In summary, the bottom–up holographic approach is an interesting and
mathematically nice method for description of excited hadron spectrum even
if in reality, it is not rigorously related with some underlying string theory.

The work was supported by the Saint Petersburg State University re-
search grant 11.38.189.2014 and travel grant 11.41.601.2016, and also by the
RFBR grant 16-02-00348-a.

REFERENCES

[1] J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998); Int. J. Theor.
Phys. 38, 1113 (1999).

[2] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998); S.S. Gubser,
I.R. Klebanov, A.M. Polyakov, Phys. Lett. B 428, 105 (1998).

[3] A. Karch, E. Katz, D.T. Son, M.A. Stephanov, Phys. Rev. D 74, 015005
(2006).

[4] J. Erlich, E. Katz, D.T. Son, M.A. Stephanov, Phys. Rev. Lett. 95, 261602
(2005); L. Da Rold, A. Pomarol, Nucl. Phys. B 721, 79 (2005).

[5] A. Karch, E. Katz, D.T. Son, M.A. Stephanov, J. High Energy Phys. 1104,
066 (2011).

[6] P. Breitenlohner, D.Z. Freedman, Ann. Phys. 144, 249 (1982).
[7] G.F. de Teramond, S.J. Brodsky, Nucl. Phys. Proc. Suppl. 199, 89 (2010).
[8] S.J. Brodsky, G.F. de Teramond, H.G. Dosch, J. Erlich, Phys. Rep. 584, 1

(2015).
[9] S.S. Afonin, Phys. Lett. B 639, 258 (2006); Eur. Phys. J. A 29, 327 (2006).
[10] S.S. Afonin, Phys. Lett. B 719, 399 (2013).

http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a1
http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a2
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://dx.doi.org/10.1103/PhysRevD.74.015005
http://dx.doi.org/10.1103/PhysRevD.74.015005
http://dx.doi.org/10.1103/PhysRevLett.95.261602
http://dx.doi.org/10.1103/PhysRevLett.95.261602
http://dx.doi.org/10.1016/j.nuclphysb.2005.05.009
http://dx.doi.org/10.1007/JHEP04(2011)066
http://dx.doi.org/10.1007/JHEP04(2011)066
http://dx.doi.org/10.1016/0003-4916(82)90116-6
http://dx.doi.org/10.1016/j.nuclphysbps.2010.02.010
http://dx.doi.org/10.1016/j.physrep.2015.05.001
http://dx.doi.org/10.1016/j.physrep.2015.05.001
http://dx.doi.org/10.1016/j.physletb.2006.06.057
http://dx.doi.org/10.1140/epja/i2006-10080-2
http://dx.doi.org/10.1016/j.physletb.2013.01.055

	1 Introduction
	2 The soft-wall model
	2.1 Vector mesons
	2.2 Scalar mesons
	2.3 Higher spin mesons

	3 A solvable extension of SW model to arbitrary intercept
	4 On the chiral symmetry breaking
	5 Conclusion

