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In this work, we review how the mass and the width of the f0(500) pole
behave in a regime where temperature is below the critical chiral transition
value. This is attained by considering a large-N O(N + 1)/O(N) invariant
Nonlinear Sigma Model (NLSM) such that we can study the dynamical
generation of an f0(500) resonance. Introducing thermal effects via the
imaginary time formalism allows us to study the behavior of the pole and
relate it to chiral restoration.
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1. Introduction

As lattice simulation results show [1, 2], analyzing low-energy phenom-
ena as chiral symmetry restoration is needed for a proper description of
the hadronic matter created in relativistic heavy-ion collisions experiments
(such as LHC-ALICE). Here, we review a scenario [3] where a set of massless
large-N Nambu–Goldstone bosons [4] interact with themselves and dynam-
ically generate a scalar resonance (the f0(500)), thus breaking the chiral
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symmetry, which should be restored when considering a thermal bath below
the critical value; after attaining this, and since the pions do not gain ther-
mal masses, we obtain that the chiral restoration is a second-order phase
transition.

2. Ellastic pion–pion scattering

2.1. Zero-temperature regime

We begin by considering the following O(N + 1)/O(N) Nonlinear Sigma
Model [4] with a metric and its associated vacuum constraint given by

LNLSM =
1

2
gab(π)∂µπ

a∂µπb , (2.1)

gab(π) = δab +
1

NF 2

πaπb
1− π2/NF 2

, (2.2)

f 2
π = NF 2 . (2.3)

After expanding the non-diagonal term in (2.2) and reminding that we only
want to study elastic scattering processes, we obtain the Feynman diagram
and rule given in the left-hand side of Fig. 1, whose loop integral in the
Dimensional Regularization scheme reads [5]

J(s) = Jε(µ) +
1

16π2
ln

(
µ2

−s

)
, (2.4)

Jε(µ) =
1

16π2

[
2

ε
+ ln 4π − γ − lnµ2

]
+O(ε) . (2.5)

A(s) = +

+ + · · ·

=
s

NF 2[1−s J(s)/2F 2]
.

Zero-Temperature Amplitude

A(p;T ) = +

+ + · · ·

=
sf(Iβ)

NF 2
1

1−sf(Iβ)J(p;T )/2F
2.

Finite-Temperature Amplitude

Fig. 1. Zero-temperature and finite-temperature scattering amplitude for massless
pions. The black circle represents the effective thermal vertex.
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Its proper renormalization is attained by redefining the 4-pion vertex as [6]

s

NF 2
→ s

NF 2
G0(s), G0(s) = 1 +

∞∑
k=1

g0, k

( s

F 2

)k
. (2.6)

After considering this, we will absorb the divergence (2.5) in the bare func-
tion G0(s) as G−1

R (s, µ) = G−1
0 (s) − sJε(s)/F 2, where GR(s, µ) is written

as a series expansion of a set of renormalized low-energy constants gR, k(µ).
Then, the amplitude reads

AR(s) =
s

NF 2

GR(s;µ)

1− sGR(s;µ)
32π2F 2 ln

(
µ2

−s

) . (2.7)

The partial wave associated to the scalar channel I = J = 0 in the large-N
limit is given by

a00(s) =
1

64π

1∫
−1

NAR(s)P0(cos θ)d(cos θ) . (2.8)

This can be fitted to a proper set of data (both experimental and phenomeno-
logical) after choosing a scale compatible with gR, k(µ) = 0. The results are
shown in Fig. 2, and the parameters are listed in Table I. We do not take
into account data neither close to the first threshold (where the pion mass
matters) nor above 800 MeV (since strangeness is not considered).
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Fig. 2. Partial wave fits to the I = J = 0 scalar channel. References for the fit data
are found in [3], whereas the standard values are found in [4].
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TABLE I

Parameters for the Grayer and Peláez data fits and their respective coefficients of
determination.

Parameters Grayer Peláez 1 Peláez 2

F ±∆F [MeV] 63.16± 1.62 65 (fixed) 75.98± 0.16

µ±∆µ [MeV] 1523.35± 143.34 1607.89± 3.62 2763.51± 23.81

R2 0.9958 0.9951 0.9999

2.2. Finite-temperature regime

The whole scattering process (taking into account effects of the thermal
bath via the imaginary time formalism [7]) is given after building an effective
thermal vertex that includes the contribution of all the powers of the tadpole
Iβ = T 2/12 that come from diagrams with 6 or more legs in the expanded
metric (2.2). Taking this into account, we find an amplitude that reads as
shown in the right-hand side of Fig. 1, where f(Iβ) = (1− Iβ/F 2)−1 is the
thermal tadpole function and the loop integral J(p;T ) = Jε(µ)+Jfin(p;T ;µ)
has both zero and finite-temperature contributions. We attain a proper
renormalization of this quantity after redefining the vertices as

s

(NF 2)k+1
→ s

(NF 2)k+1
G k+1

0 (s) , k = 0, 1, 2, 3, . . . (2.9)

Furthermore, we find that the renormalized couplingGR(s, µ) reads the same
as in the zero-temperature case. Thus, the finite-temperature renormalized
amplitude reads

AR(p;T ) =
sGR(s;µ)

NF 2

f [GR(s;µ)Iβ]

1− sGR(s;µ)f [GR(s;µ)Iβ ]

2F 2 Jfin(p;T ;µ)
. (2.10)

3. The f0(500) resonance and its relationship with chiral
symmetry restoration

3.1. Thermal unitarity

After replacing the partial wave expansion (2.8) into the renormalized
amplitude (2.10), we can extract the imaginary part as

Im

[
1

a00 (s+ i0+;T )

]
= −σT(s, 0) , (3.1)

where σT(s, 0) = 1 + 2n(
√
s/2) (here n(x) is the Bose–Einstein distribu-

tion) is the thermal phase space for massless pions. This means that unlike
previous perturbative results [8], unitarity holds exactly in this framework.
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3.2. Mass and width of the f0(500) resonance

Since unitarity was already checked, we can go to the second Riemann
sheet and find the pole of |a00(s, T )|2; after doing this, we will have some
insight about a symmetry-restoring behavior by studying the evolution with
T of the mass and the width of this resonance. We find a stronger ev-
idence of this fact after obtaining the critical temperature and the crit-
ical exponent of the scalar susceptibility, whose p = 0 limit is given as
χS(T ) ∝ 1/Re {s} [9]. Its unitarized form is such that χS(T )/χS(0) =[
M2

P(0)− Γ 2
P(0)/4

]
/
[
M2

P(T )− Γ 2
P(T )/4

]
, whose inverse is plotted in Fig. 3

along with the Inverse Amplitude Method result (IAM) [9] for massless pi-
ons.

Fig. 3. Inverse scalar susceptibility as a function of the temperature for different
parameter sets, along with the IAM result.

TABLE II

Pole positions, critical temperatures and exponents and coefficients of determina-
tion of χS(T ) for the fits considered so far.

Fit Tc [MeV] MP(0) [MeV] ΓP(0) [MeV] γχ R2
γχ

Grayer 92.33 438.81 536.47 0.875 0.99987
Peláez 1 96.00 452.42 546.26 0.938 0.99997
Peláez 2 129.07 535.53 534.59 0.919 0.99995
IAM 118.23 406.20 522.70 1.012 1
Standard 61.20 356.97 566.05 0.842 0.99728
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Table II lists our main results for the critical temperatures and pole
positions, as well as the critical exponents and coefficients of determination
for χS(T ) [3]. We can see that our T = 0 masses and widths can be compared
with those given for a phenomenological fit and that they lie between the
well-known experimental bounds (see [3] for details).

4. Conclusions

Although we work in the Chiral Limit, our analysis of ellastic pion scat-
tering at finite temperature in the large-N expansion grants a description
of the f0(500) pole thermal dependence that is consistent with previous
works [9]. Furthermore, the behavior of χ−1

S (T ) (saturated by the f0(500)
pole) is consistent with a second-order phase transition, as seen in the lat-
tice [2].

We have to point out that our Tc results [3] are not far from the expected
lattice values (about 0.8 Tχ); besides, they are even closer to the result
obtained for NJL-like models, i.e., Tc ≈ 100.7 MeV [10].

Our results for the critical exponents point out that they lie between the
interval 0.54 ≤ γχ ≤ 1, where the lower limit is given for an O(4) three-
dimensional Heisenberg model, and the upper limit is the exact result for a
large-N O(N) four-dimensional nonlinear model (more details in [3]).
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