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COMPLEX LANGEVIN IN LATTICE QCD: DYNAMIC
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Complex Langevin simulations provide an alternative to sample path
integrals with complex weights and, therefore, are suited to determine the
phase diagram of QCD from first principles. We use our proposed method
of Dynamic Stabilisation (DS) to ensure improved convergence to the right
limit and present new systematic tests of this technique. We also show
results on QCD in the limit of heavy quarks and an analysis of DS compared
to known results from reweighting.
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1. Introduction

The QCD phase diagram is subject of active research both theoretically
and experimentally. On the theoretical side, the phase structure of QCD
has implications for the understanding of the early and modern universe,
where the quark–gluon plasma and compact astrophysical objects still pose
unanswered questions. For experimentalists, it, of course, serves as guide for
current and future experiments and facilities.

Studies of the phase diagram at non-zero chemical potential µ are ex-
tremely difficult due to a complex statistical weight, which results in what
is known as the sign problem. In QCD this behaviour is caused by the quark
determinant, after the quark fields have been integrated out

[detM(U, µ)]∗ = detM(U,−µ∗) , (1)

∗ Presented by F. Attanasio at “Excited QCD 2016”, Costa da Caparica, Lisbon, Por-
tugal, March 6–12, 2016.
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where U generically represents the gauge links. This leads to an exponen-
tially small overlap between the full theory and the “phase quenched” version
which can be simulated using Monte Carlo techniques. A review of different
methods for the QCD phase diagram can be found in [1].

2. Complex Langevin equation

The complex Langevin method is based on stochastic quantisation [2]. In
this framework, the dynamical variables are evolved along a fictitious time
direction θ according to a Langevin equation. On the lattice for an SU(3)
gauge theory, the equation for the gauge links U reads [3]

Uxµ(θ + ε) = exp
[
iλaXa

xµ

]
Uxµ(θ) , Xa

xµ = −εDa
xµS[U ] +

√
εηaxµ , (2)

where λa are the Gell-Mann matrices normalised to Tr[λaλb] = 2δab, ε is the
Langevin stepsize chosen adaptively [4], ηaxµ are white noise fields satisfying
〈ηaxµηbyν〉 = 2δabδxyδµν , S[U ] is the action, and the gauge group derivative
Da
xµ is defined as

Da
xµf(U) =

∂

∂α
f
(
eiαλ

a
Uxµ

)∣∣∣∣
α=0

. (3)

To deal with the sign problem, we allow the gauge links to be non-
unitary [5–7], which amounts to extending the group SU(3) to SL(3,C).
The latter is a non-compact manifold and, therefore, large excursions into
the imaginary directions may occur during the simulation.

As a way to keep track of such excursions and prevent them from be-
coming large — by using gauge transformations between Langevin updates
— we measure the distance from SU(3),

d =
1

N3
sNτ

∑
x,µ

Tr
[
UxµU

†
xµ − 1

]2
≥ 0 , (4)

where Ns and Nτ are the lattice extents in the spatial and temporal direc-
tions, respectively. These transformations, known as gauge cooling [8], are
constructed to minimise d and are defined as

Uxµ → ΛxUxµΛ
−1
x+µ , Λx = exp [−εαλafax ] , (5)

where
fax = 2Tr

[
λa
(
UxµU

†
xµ − U †x−µ,µUx−µ,µ

)]
. (6)

The parameter α and the number of cooling steps are chosen adaptively
in order to maximise the method’s efficiency [9]. A study of this method
applied to one- and two-dimensional QCD can be found in [10].
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3. QCD with heavy quarks

In the heavy quarks approximation [11,12], the quarks evolve only in the
Euclidean time and the fermion determinant decouples as a product over
spatial points. This corresponds to the leading order in a spatial hopping
expansion,

detM(U, µ) =
∏
~x

{
det
[
1 + (2κeµ)Nτ P~x

]
det
[
1 +

(
2κe−µ

)Nτ P−1~x ]}2
,

(7)
containing the hopping parameter κ, the Polyakov loop and its inverse

P~x =

Nτ−1∏
τ=0

U4(~x) , P−1~x =
0∏

τ=Nτ−1
U−14 (~x) . (8)

This model exhibits a sign problem and a transition to a high density phase.
At zero temperature, this is expected to happen at µ = µ0c ≡ − ln(2κ).

Comparisons with the hopping expansion to all orders [13] as well as
multi-parameter reweighting [14] have been recently investigated. For a
study of a strong coupling expansion (β → 0) combined with hopping param-
eter expansion, see [15, 16]. Effective model studies for heavy quarks QCD
include [17,18]. Complex Langevin investigations can be found in [19–24].
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Fig. 1. Phase boundary of the HDQCD model. The phase boundary was defined
as the region where the Binder cumulant transitions from zero to non-zero values
within statistical precision. At µ/µ0

c > 1, we see a similar pattern, which is an
effect from particle-hole symmetry [27].
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The expectation value of the Polyakov loop is known to be approxi-
mately 0 in a confined phase and non-zero otherwise. We looked at its
Binder cumulant [25] to map the boundary between these phases. The
resulting plot is shown in figure 1, where a lattice spacing of a ∼ 0.15 fm,
determined using the Wilson flow [26], has been used to convert the temper-
ature to physical units. Our analysis included only data with small unitarity
norm (d ≤ 0.03) to allow for reliable predictions, as will be explained later.

4. Dynamic stabilisation

There are situations where gauge cooling is not sufficient to keep the
system from going too far into SL(3,C) and when the distance becomes
O(0.1) observables seem to converge to a wrong limit [9].

We have developed a new technique called dynamic stabilisation, which
consists of adding a SU(3) — but not SL(3,C) — gauge invariant force to
the Langevin drift that is trivial in the continuum limit and grows with d.
It is given by

Ma
x [U ] = ibax (b

c
xb
c
x)

3 , bax =
∑
ν

Tr
[
λaUxνU

†
xν

]
. (9)

To better benefit from this technique, we have also extended our Langevin
equation to the second order in the Langevin stepsize [28]

Uxµ(θ + ε/2) = exp
[
iλaXa

xµ

]
Uxµ(θ) , (10)

Uxµ(θ + ε) = exp
[
iλaγ

(
X ′axµ +Xa

xµ

)]
Uxµ(θ) , (11)

where the new drifts read

Xa
xµ = −εDa

xµS [U(θ)] + iεαDSM
a
x [U(θ)] +

√
ε ηaxµ(θ) , (12)

X ′axµ = −εDa
xµS [U(θ + ε/2)] + iεαDSM

a
x [U(θ + ε/2)] +

√
ε ηaxµ(θ) , (13)

with γ = 1/2 (1 + εCA/6), αDS a real parameter, the noise is 〈ηaxµηbyν〉 =
2(1 − εCA/2)δ

abδxyδµν and CA = 3 is the Casimir invariant in the adjoint
representation.

A comparison between dynamic stabilisation combined with one gauge
cooling step with a known result from reweighting, 〈P 〉 = 0.202717(66), is
shown in figure 2 for different αDSs in a lattice of volume 103 × 4, β = 5.8,
κ = 0.04 and µ = 0.7. Agreement with reweighting results is seen for αDS

sufficiently large. For this setup, gauge cooling gives 〈P 〉 = 0.0027(55) if the
points with unitarity norm larger than 0.03 are included.
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Fig. 2. Polyakov loop in the HDQCD model for different values of αDS. The inset
shows a zoom into the region of agreement.

5. Conclusions and outlook

We have shown that the complex Langevin equation method allows sim-
ulation of theories that exhibit the sign problem, provided that large ex-
cursions into the complex directions are suppressed. The gauge cooling
technique provided the first consistent way of achieving that and allowed us
to map the phase boundary in the limit of heavy quarks.

Our method of dynamic stabilisation, combined with gauge cooling, pro-
vides greater control on how far from SU(3) the system can go. It has been
shown to agree with known results in the heavy quarks approximation. Fur-
ther tests with other physical parameters are needed to ensure its reliability.

The next step is to apply these techniques to QCD with fully dynamical
quarks [29].
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