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The topological susceptibility is an important quantity in QCD, which
can be computed using lattice methods. However, at a fine lattice spacing,
or when using high-quality chirally symmetric quarks, typical simulation
algorithms tend to get stuck in a single topological sector. In such cases, the
computation of the topological susceptibility is not straightforward. Here,
we explore two methods to extract the topological susceptibility from lattice
QCD simulations restricted to a single topological sector. The first method
is based on the correlation function of the topological charge density, while
the second method relies on measuring the topological charge within space-
time subvolumes. Numerical results for two-flavor QCD obtained by using
both methods are presented.
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1. Introduction

In lattice QCD simulations with periodic boundary conditions, the auto-
correlation time of the topological charge can be rather large. In particular,
this is the case for lattice spacings a . 0.05 fm, where the topological charge
is typically frozen [1]. For chirally symmetric quark actions, such a freezing
takes place also at much coarser lattice spacings (cf. e.g. [2]). To over-
come this problem, simulations with open boundary conditions have been
advocated [1]. However, even though promising, they might not always be
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applicable. For example, when using a mixed action setup with light overlap
valence and corresponding Wilson sea quarks, it is extremely difficult to take
the continuum limit correctly, since exact zero modes of the valence Dirac
operator are not compensated by the sea quark determinant [3]. A possible
solution to this problem is to use topology conserving actions (cf. e.g. [4–6])
and to simulate only the topological sector Q = 0, where zero modes are
absent.

In this work, we explore two methods to extract the topological suscepti-
bility from simulations confined to a single topological sector. The first one
is the Aoki–Fukaya–Hashimoto–Onogi (AFHO) method [7], which allows for
the extraction of the topological susceptibility from the correlation function
of the topological charge density. This method has already been studied
in several models and theories including SU(2) Yang–Mills theory [8]. The
second approach is the slab method, where the topological susceptibility is
determined from computations of the topological charge on spacetime sub-
volumes. The method was sketched in [9] and has recently been tested in
lower dimensional models [10]. We will present numerical tests for two-flavor
QCD using both methods.

2. Computation of χt at unfixed topology

To be able to verify that the fixed topology methods yield correct results,
we have first computed the topological susceptibility at unfixed topology.

To this end, we have generated 10 000 gauge link configurations using
two-flavor Wilson twisted mass lattice QCD (cf. [11] for details regarding
the simulation code). The lattice spacing is a ≈ 0.079 fm, the pion mass is
mπ ≈ 650 MeV and the lattice volume is 163 × 32.

On each gauge link configuration, the topological charge has been com-
puted using the field strength definition (cf. e.g. [12]), but with the gradient
flow instead of cooling to reduce UV-fluctuations. Moreover, the topologi-
cal charge has been renormalized by minimizing 〈(αQL − int(αQL))2〉 with
respect to α, where α is a multiplicative renormalization parameter greater
than one, QL is the measured topological charge and int(x) denotes the
integer closest to x.

The topological susceptibility has then been computed via

χt =

〈
Q2
〉

V
, (1)

where V is the spacetime volume and the statistical error has been de-
termined by a bootstrap analysis. Additionally, a systematic error has
been estimated by comparing χt for different flow times. Our result is
χta

4 = 7.76(20)× 10−5 (since we are mainly interested in testing numerical
methods, we always quote χt in units of the lattice spacing).
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3. Computation of χt with the AFHO method

The AFHO method is based on the topological charge density correlation
function at large separations computed in a fixed topological sector,〈

q(t)q(0)
〉
Q,V

=
t→∞

−χt

V

(
1− Q2

χtV

)
+O

(
1

χ2
tV

2
, e−mηt

)
, (2)

where q is the topological charge density and mη the mass of the light-
est I(JP ) = 0(0−) meson. Equation (2) is an expansion in 1/(χtV ) and
Q2/(χtV ), i.e. is valid for 1/(χtV ) � 1 and Q2/(χtV ) � 1. From the un-
fixed topology result of Section 2 follows χtV ≈ 10, which implies that (2)
should be quite accurate for |Q| < 3, while |Q| = 3 has to be treated with
caution and |Q| > 3 must be discarded. Equation (2) shows that at large
separations, the topological charge density correlation function converges to
a constant, from which one can easily extract χt.

Our results have been obtained using the same gauge link configurations
as in Section 2. In Fig. 1, our numerical results are shown, the topologi-
cal charge density correlator 〈q(t)q(0)〉Q,V as a function of the separation
t for different topological sectors. The theoretically expected values, using
χta

4 = 7.76(20) × 10−5 from the previous section, have also been plotted
and are represented by the horizontal lines. The plateau values correspond-
ing to different Q, as predicted in Eq. (2), are clearly distinct. For values
as Q2/(χtV ) � 1 (i.e. |Q| ≤ 2), there is excellent agreement. On the
other hand, for |Q| ≥ 3, there is a slight tension, probably a consequence of
Q2/(χtV ) ≥ 0.88, which is the expansion parameter of Eq. (2) and which
should be small. We obtain χta

4 = 7.69(22)×10−5 via a combined fit to the
|Q| = 0, |Q| = 1 and |Q| = 2 results, which is consistent with our unfixed
topology result from Section 2, χta

4 = 7.76(20)× 10−5.

4. Computation of χt with the slab method

Assuming a Gaussian distribution of the topological charge, this method
uses spacetime subvolumes xV , x ∈ [0, 1] called “slabs”. The probability
of having topological charge Q̄ inside a slab under the condition that the
topological charge of the total volume is Q is straightforward to calculate

p
(
Q̄
)
p
(
Q− Q̄

) ∣∣∣∣
xV,Q

∝ exp

(
− Q̄2

2χtV x

)
× exp

(
−

(
Q− Q̄

)2
2χtV (1− x)

)
. (3)

Defining Q̄′ = Q̄− xQ allows to simplify (3)

p
(
Q̄
)
p
(
Q− Q̄

) ∣∣∣∣
xV,Q

∝ exp

(
− Q̄′2

2χtV x(1− x)

)
. (4)
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Fig. 1. 〈q(t)q(0)〉Q,V as a function of the separation t at flow time τ = 6τ0 for
different values of the topological charge Q. The horizontal lines are the expected
plateaus −(χt/V )(1−Q2/(χtV )) with χta

4 = 7.76× 10−5 from Section 2.

From this expression, one can read off〈
Q̄′2
〉

= χtV x(1− x) . (5)

The method to extract the topological susceptibility is then straightforward:
one has to compute 〈Q̄′2〉, the average of Q̄′2 on the available gauge link con-
figurations with topological charge Q, for several values of x. The resulting
points should be consistent with the parabola (5), i.e. χt can be obtained
with a corresponding fit.

In Fig. 2, numerical results for 〈Q̄′2〉 are shown for |Q| = 0, 1, 2. The slabs
used for the computations have temporal extent xT and spatial volume L3,
periodic in space. We observe that the data points are not fully consistent
with the quadratic curve (5). In particular, at small x and small 1−x, there
are strong discrepancies. On the other hand, the data points in the interval
0.2 ≤ x ≤ 0.8 can be described nicely with (5), if one allows for an additive
constant. Moreover, the corresponding result, χta

4 = 7.63(14) × 10−5, is
then in agreement with the unfixed topology result from Section 2, χta

4 =
7.76(20) × 10−5. The distortions at small x and small 1 − x seem to be
related to the gradient flow: for large flow times, these distortions become
more and more prominent. Understanding this issue in detail is part of our
current research.
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Fig. 2. 〈Q̄′2〉 as a function of x for different values of the topological charge Q (for
better visibility points for Q = 0 (|Q| = 2) are slightly shifted to the left (right)).
The black curve represents the fit of Eq. (5) with an additive constant to the data
points.

5. Summary and conclusions

To conclude, we have presented two methods allowing the extraction of
the topological susceptibility from simulations within a single topological
sector. We have successfully applied them to QCD, demonstrating their
practical use. The slab method has the advantage that one can apply it
to any sufficiently large volume without encountering additional problems,
while for the AFHO method, the signal-to-noise ratio becomes worse when
increasing the volume (cf. [8] for a detailed discussion).

A.D. and M.W. acknowledge support by the Emmy Noether Programme
of the DFG (German Research Foundation), grant WA 3000/1–1. W.B. ac-
knowledges support by DGAPA-UNAM, grant IN107915. K.C. was sup-
ported in part by the Deutsche Forschungsgemeinschaft (DFG), project
No. CI 236/1–1 (Sachbeihilfe). This work was supported in part by the
Helmholtz International Center for FAIR within the framework of the
LOEWE program launched by the State of Hesse. Calculations on the
LOEWE-CSC high-performance computer of Johann Wolfgang Goethe-
University Frankfurt am Main were conducted for this research. We would
like to thank HPC-Hessen, funded by the State Ministry of Higher Educa-
tion, Research and the Arts, for programming advice.



640 A. Dromard et al.

REFERENCES

[1] M. Lüscher, S. Schaefer, J. High Energy Phys. 1107, 036 (2011)
[arXiv:1105.4749 [hep-lat]].

[2] S. Aoki et al., Prog. Theor. Exp. Phys. 2012, 01A106 (2012).
[3] K. Cichy, G. Herdoiza, K. Jansen, Nucl. Phys. B 847, 179 (2011)

[arXiv:1012.4412 [hep-lat]].
[4] H. Fukaya et al., Phys. Rev. D 73, 014503 (2006) [arXiv:hep-lat/0510116].
[5] W. Bietenholz et al., J. High Energy Phys. 0603, 017 (2006)

[arXiv:hep-lat/0511016].
[6] F. Bruckmann et al., Eur. Phys. J. A 43, 303 (2010)

[arXiv:0905.2849 [hep-lat]].
[7] S. Aoki, H. Fukaya, S. Hashimoto, T. Onogi, Phys. Rev. D 76, 054508 (2007)

[arXiv:0707.0396 [hep-lat]].
[8] I. Bautista et al., Phys. Rev. D 92, 114510 (2015)

[arXiv:1503.06853 [hep-lat]].
[9] P. de Forcrand et al., Nucl. Phys. B Proc. Suppl. 73, 578 (1999)

[arXiv:hep-lat/9810033].
[10] W. Bietenholz, P. de Forcrand, U. Gerber, J. High Energy Phys. 1512, 070

(2015) [arXiv:1509.06433 [hep-lat]].
[11] K. Jansen, C. Urbach, Comput. Phys. Commun. 180, 2717 (2009)

[arXiv:0905.3331 [hep-lat]].
[12] W. Bietenholz et al., Phys. Rev. D 93, 114516 (2016)

[arXiv:1603.05630 [hep-lat]].

http://dx.doi.org/10.1007/JHEP07(2011)036
http://dx.doi.org/10.1093/ptep/pts006
http://dx.doi.org/10.1016/j.nuclphysb.2011.01.021
http://dx.doi.org/10.1103/PhysRevD.73.014503
http://dx.doi.org/10.1088/1126-6708/2006/03/017
http://dx.doi.org/10.1140/epja/i2010-10915-1
http://dx.doi.org/10.1103/PhysRevD.76.054508
http://dx.doi.org/10.1103/PhysRevD.92.114510
http://dx.doi.org/10.1016/S0920-5632(99)85143-3
http://dx.doi.org/10.1007/JHEP12(2015)070
http://dx.doi.org/10.1007/JHEP12(2015)070
http://dx.doi.org/10.1016/j.cpc.2009.05.016
http://dx.doi.org/10.1103/PhysRevD.93.114516

	1 Introduction
	2 Computation of chi t at unfixed topology
	3 Computation of chi t with the AFHO method
	4 Computation of chi t with the slab method
	5 Summary and conclusions

