COMPLEX SCALING IN NEUTRINO MASS MATRIX*

${ }^{\text {a }}$ Saha Institute of Nuclear Physics, HBNI, Kolkata 700064, India
${ }^{\mathrm{b}}$ CAPSS, Bose Institute, Kolkata 700091, India

(Received October 18, 2016)
Using the residual symmetry approach, we propose a complex extension of the scaling Ansatz on M_{ν} which allows a nonzero mass for each of the three light neutrinos as well as a nonvanishing θ_{13}. Leptonic Dirac CP violation must be maximal, while atmospheric neutrino mixing need not be exactly maximal. Each of the two Majorana phases to be probed by the search for $0 \nu \beta \beta$ decay has to be zero or π and a normal neutrino mass hierarchy is allowed.

DOI:10.5506/APhysPolBSupp.9.807

If $G_{i}^{T} M_{\nu} G_{i}=M_{\nu}$ defines a horizontal symmetry for the complex symmetric M_{ν} and $U^{T} M_{\nu} U=M_{d}$, where M_{d} has only real positive diagonal nondegenerate elements, then another unitary matrix $V=U d$ also puts M_{ν} into a diagonal form, where $d=\operatorname{diag}\left(d_{1}, d_{2}, d_{3}\right)$ with $d_{i(i=1,2,3)}= \pm 1$. Moreover, $U^{\dagger} G_{i} U=d_{i}$. Each d_{i} defines a Z_{2} symmetry and the corresponding G_{i} is also a representation of that Z_{2} symmetry. Among eight possible forms of d_{i}, only two can be shown to be independent, taken as $d_{2}=\operatorname{diag}(-1,1,-1), d_{3}=\operatorname{diag}(-1,-1,1)$. Thus, the two independent representations $G_{2,3}$ describe a residual $Z_{2} \times Z_{2}$ flavor symmetry [1, 2] in M_{ν}. In this way, we reinterpret the Simple Real Scaling Ansatz [3] in M_{ν} as a $Z_{2} \times Z_{2}$ symmetry. We further make a complex extension of this invariance and obtain the corresponding M_{ν}. Interesting phenomenological consequences follow. Here, we sketch our method and present the basic results leaving many details to a future lengthier publication [4]. Throughout, we follow the PDG convention.

[^0]The Simple Real Scaling Ansatz [3] attributes the following structure to the neutrino mass matrix

$$
M_{\nu}^{\mathrm{SRS}}=\left(\begin{array}{ccc}
X & -Y k & Y \tag{1}\\
-Y k & Z k^{2} & -Z k \\
Y & -Z k & Z
\end{array}\right)
$$

with X, Y, Z as complex mass dimensional quantities and k as a real positive dimensionless scaling factor. It has one vanishing mass eigenvalue with the corresponding eigenvector $\left(0, \frac{e^{i \frac{\beta}{2}}}{\sqrt{1+k^{2}}}, \frac{k e^{i \frac{\beta}{2}}}{\sqrt{1+k^{2}}}\right)^{T}$. The mixing matrix is

$$
U^{\mathrm{SRS}}=\left(\begin{array}{ccc}
c_{12} & s_{12} e^{i \frac{\alpha}{2}} & 0 \tag{2}\\
-\frac{k s_{12}}{\sqrt{1+k^{2}}} & \frac{k c_{12} e^{i \frac{\alpha}{2}}}{\sqrt{1+k^{2}}} & \frac{e^{i \frac{\beta}{2}}}{\sqrt{1+k^{2}}} \\
\frac{s_{12}}{\sqrt{1+k^{2}}} & -\frac{c_{12} e^{i \frac{\alpha}{2}}}{\sqrt{1+k^{2}}} & \frac{k e^{i \frac{\beta}{2}}}{\sqrt{1+k^{2}}}
\end{array}\right)
$$

with an arbitrary θ_{12} and Majorana phases α, β. Now, $G_{2,3}$ can be calculated from $U d_{2,3} U^{\dagger}$ to be

$$
\begin{align*}
G_{2}^{k} & =\left(\begin{array}{ccc}
-\cos 2 \theta_{12} & \frac{k \sin \theta_{12}}{\sqrt{1+k^{2}}} & -\frac{\sin \theta_{12}}{\sqrt{1+k^{2}}} \\
\frac{k \sin \theta_{12}}{\sqrt{1+k^{2}}} & \frac{k^{2} \cos 2 \theta_{12}-1}{1+k^{2}} & \frac{-k\left(\cos 2 \theta_{12}+1\right)}{1+k^{2}} \\
-\frac{\sin \theta_{12}}{\sqrt{1+k^{2}}} & \frac{-k\left(\cos 2 \theta_{12}+1\right)}{1+k^{2}} & \frac{\cos 2 \theta_{12}-k^{2}}{1+k^{2}}
\end{array}\right), \\
G_{3}^{\text {scaling }} & =\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & \frac{1-k^{2}}{1+k^{2}} & \frac{2 k}{1+k^{2}} \\
0 & \frac{2 k}{1+k^{2}} & \frac{k^{2}-1}{1+k^{2}}
\end{array}\right) . \tag{3}
\end{align*}
$$

The form of $U^{\text {SRS }}$ in (2) implies a vanishing s_{13}. Since this has been experimentally excluded at $>10 \sigma$, the SRS Ansatz has to be discarded. However, we shall retain G_{2}^{k} as well as $G_{3}^{\text {scaling }}$ and propose a complex extension. Our complex extension postulates

$$
\begin{equation*}
\left(G_{3}^{\text {scaling }}\right)^{T}\left(M_{\nu}\right)^{\mathrm{CES}} G_{3}^{\text {scaling }}=\left(M_{\nu}^{\mathrm{CES}}\right)^{*} \tag{4}
\end{equation*}
$$

The corresponding mass matrix M_{ν}^{CES} can be deduced to be

$$
M_{\nu}^{\mathrm{CES}}=\left(\begin{array}{ccc}
x & -y_{1} k+i \frac{y_{2}}{k} & y_{1}+i y_{2} \tag{5}\\
-y_{1} k+i \frac{y_{2}}{k} & z_{1}-w_{1} \frac{k^{2}-1}{k}-i z_{2} & w_{1}-i \frac{k^{2}-1}{2 k} z_{2} \\
y_{1}+i y_{2} & w_{1}-i \frac{k^{2}-1}{2 k} z_{2} & z_{1}+i z_{2}
\end{array}\right)
$$

where $x, y_{1}, y_{2}, z_{1}, z_{2}$ and w are real mass dimensional quantities. Equation (4) implies $U^{\dagger} G_{3} U^{*}=\tilde{d}$ or

$$
\begin{equation*}
G_{3} U^{*}=U \tilde{d} \tag{6}
\end{equation*}
$$

Once again, $\tilde{d}_{l m}= \pm \delta_{l m}$ if the neutrino masses $m_{1,2,3}$ are all nondegenerate. The l.h.s. of (6) can be written out as

$$
\left(\begin{array}{ccc}
-\left(U_{e 1}^{\mathrm{CES}}\right)^{*} & -\left(U_{e 2}^{\mathrm{CES}}\right)^{*} & -\left(U_{e 3}^{\mathrm{CES}}\right)^{*} \tag{7}\\
\frac{1-k^{2}}{1+k^{2}}\left(U_{\mu 1}^{\mathrm{CES}}\right)^{*}+\frac{2 k}{1+k^{2}}\left(U_{\tau 1}^{\mathrm{CES}}\right)^{*} & \frac{1-k^{2}}{1+k^{2}}\left(U_{\mu 2}^{\mathrm{CES}}\right)^{*}+\frac{2 k}{1+k^{2}}\left(U_{\tau 2}^{\mathrm{CES}}\right)^{*} & \frac{1-k^{2}}{1+k^{2}}\left(U_{\mu 3}^{\mathrm{CES}}\right)^{*}+\frac{2 k}{1+k^{2}}\left(U_{\tau 3}^{\mathrm{CES}}\right)^{*} \\
\left.\frac{2 k}{1+k^{2}}\left(U_{\mu 1}^{\mathrm{CES} S}\right)^{*}-\frac{1-k^{2}}{1+k^{2}} U_{\tau 1}^{\mathrm{CESS}}\right)^{*} & \frac{2 k}{1+k^{2}}\left(U_{\mu 2}^{\mathrm{CES}}\right)^{*}-\frac{1-k^{2}}{1+k^{2}}\left(U_{\tau 2}^{\mathrm{CES}}\right)^{*} & \frac{2 k}{1+k^{2}}\left(U_{\mu 3}^{\mathrm{CES}}\right)^{*}-\frac{1 k^{2}}{1+k^{2}}\left(U_{\tau 3}^{\mathrm{CES}}\right)^{*}
\end{array}\right) .
$$

The reality of $\left(U_{\text {PMNS }}\right)_{e 1}$ rules out the possibility $\left(\tilde{d}_{i}\right)_{11}=1$. Now, there are four cases: $\tilde{d}_{\mathrm{a}} \equiv \operatorname{diag}(-1,1,1), \tilde{d}_{\mathrm{b}} \equiv \operatorname{diag}(-1,1,-1), \tilde{d}_{\mathrm{c}} \equiv \operatorname{diag}(-1,-1,1)$, $\tilde{d}_{\mathrm{d}} \equiv \operatorname{diag}(-1,-1,-1)$.

These structures of \tilde{d} and the use of (6) lead to the equations given in the following table.

Elements of U^{CES}	Constraint conditions
$\mu 1$	$2 k U_{\mu 1}^{\mathrm{CES}}=\left(1-k^{2}\right) U_{\tau 1}^{\mathrm{CES}}-\left(1+k^{2}\right)\left(U_{\tau 1}\right)^{*}$
$\tau 1$	$2 k U_{1}^{\mathrm{CES}}=-\left(1-k^{2}\right) U_{\mu 1}^{\mathrm{CES}}-\left(1+k^{2}\right)\left(U_{\mu 1}\right)^{*}$
$\mu 2$	$2 k U_{\mu 2}^{\mathrm{CES}}=\left(1-k^{2}\right) U_{\tau 2}^{\mathrm{CES}}+\eta\left(1+k^{2}\right)\left(U_{\tau 2}\right)^{*}$
$\tau 2$	$2 k U_{\tau}^{\mathrm{CES}}=-\left(1-k^{2}\right) U_{\mu}^{\mathrm{CES}}+\eta\left(1+k^{2}\right)\left(U_{\mu 2}\right)^{*}$
$\mu 3$	$2 k U_{\mu 3}^{\mathrm{CES}}=\left(1-k^{2}\right) U_{\tau 3}^{\mathrm{CES}}+\xi\left(1+k^{2}\right)\left(U_{\tau 3}\right)^{*}$
$\tau 3$	$2 k U_{\tau 3}^{\mathrm{CES}}=-\left(1-k^{2}\right) U_{\mu 3}^{\mathrm{CES}}+\eta\left(1+k^{2}\right)\left(U_{\mu 3}\right)^{*}$

These equations lead to the result that (i) for the case $\mathrm{a}, \alpha=\pi, \beta=0$, (ii) for the case $\mathrm{b}, \alpha=\pi, \beta=\pi$, (iii) for the case $\mathrm{c}, \alpha=0, \beta=0$ and (iv) for the case d, $\alpha=0, \beta=\pi$. Further, $\cos \delta=0$, where δ is the Dirac phase in $U_{\text {PMNS }}$. In addition, we have the prediction $\tan \theta_{23}=k^{-1}$ which implies that the atmospheric mixing angle need not be strictly maximal. We have taken the 3σ ranges [5] for the quantities $\left|\Delta m_{31}^{2}\right|, \Delta m_{21}^{2}, \theta_{12}, \theta_{23}, \theta_{13}$ for our phenomenological analysis. We also take the upper bound 0.23 eV on the sum of the light neutrino masses.

Our conclusions are the following:

1. Both types of neutrino mass hierarchy are now allowed.
2. For normal hierarchy, the lightest mass m_{1} ranges from $10^{-4} \mathrm{eV}$ to 0.07 eV and for inverted hierarchy the lightest mass m_{3} ranges from $10^{-4} \mathrm{eV}$ to 0.068 eV .
3. For both hierarchies, the quantity $\left|m_{e e}\right|$ of relevance to $0 \nu \beta \beta$ decay can reach up to the value 0.14 eV which will be probed by GERDA phase II data.

The work of R.S. and A.G. is supported by the Department of Atomic Energy (DAE), Government of India. P.R. acknowledges support as a Senior Scientist from the Indian National Science Academy.

REFERENCES

[1] C.S. Lam, Phys. Lett. B 656, 193 (2007).
[2] C.S. Lam, Phys. Rev. Lett. 101, 121602 (2008).
[3] L. Lavoura, Phys. Rev. D 62, 093011 (2000); W. Grimus, L. Lavoura, J. Phys. G 31, 683 (2005); R.N. Mohapatra, W. Rodejohann, Phys. Lett. B 644, 59 (2007).
[4] R. Samanta, P. Roy, A. Ghosal, arXiv:1604.06731 [hep-ph].
[5] M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz, Nucl. Phys. B 908, 199 (2016) [arXiv:1512.06856 [hep-ph]].

[^0]: * Presented at the $52{ }^{\text {nd }}$ Winter School of Theoretical Physics, "Theoretical Aspects of Neutrino Physics", Lądek Zdrój, Poland, February 14-21, 2016.
 \dagger rome.samanta@saha.ac.in
 ${ }^{\ddagger}$ probirrana@gmail.com
 § ambar.ghosal@saha.ac.in

