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COMPLEX SCALING IN NEUTRINO MASS MATRIX∗
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Using the residual symmetry approach, we propose a complex extension
of the scaling Ansatz on Mν which allows a nonzero mass for each of the
three light neutrinos as well as a nonvanishing θ13. Leptonic Dirac CP
violation must be maximal, while atmospheric neutrino mixing need not
be exactly maximal. Each of the two Majorana phases to be probed by
the search for 0νββ decay has to be zero or π and a normal neutrino mass
hierarchy is allowed.
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If GTi MνGi = Mν defines a horizontal symmetry for the complex sym-
metric Mν and UTMνU = Md, where Md has only real positive diagonal
nondegenerate elements, then another unitary matrix V = Ud also puts
Mν into a diagonal form, where d = diag(d1, d2, d3) with di(i=1,2,3) = ±1.
Moreover, U †GiU = di. Each di defines a Z2 symmetry and the corre-
sponding Gi is also a representation of that Z2 symmetry. Among eight
possible forms of di, only two can be shown to be independent, taken as
d2 = diag(−1, 1,−1), d3 = diag(−1,−1, 1). Thus, the two independent rep-
resentations G2,3 describe a residual Z2 × Z2 flavor symmetry [1, 2] in Mν .
In this way, we reinterpret the Simple Real Scaling Ansatz [3] in Mν as a
Z2 × Z2 symmetry. We further make a complex extension of this invari-
ance and obtain the corresponding Mν . Interesting phenomenological con-
sequences follow. Here, we sketch our method and present the basic results
leaving many details to a future lengthier publication [4]. Throughout, we
follow the PDG convention.
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The Simple Real Scaling Ansatz [3] attributes the following structure to
the neutrino mass matrix

MSRS
ν =

 X −Y k Y
−Y k Zk2 −Zk
Y −Zk Z

 (1)

withX, Y , Z as complex mass dimensional quantities and k as a real positive
dimensionless scaling factor. It has one vanishing mass eigenvalue with the

corresponding eigenvector (0, ei
β
2√

1+k2
, kei

β
2√

1+k2
)T . The mixing matrix is

USRS =


c12 s12e

iα
2 0

− ks12√
1+k2

kc12e
i α2√

1+k2
ei
β
2√

1+k2

s12√
1+k2

− c12e
i α2√

1+k2
kei

β
2√

1+k2

 (2)

with an arbitrary θ12 and Majorana phases α, β. Now, G2,3 can be calculated
from Ud2,3U

† to be

Gk2 =


− cos 2θ12

k sin θ12√
1+k2

− sin θ12√
1+k2

k sin θ12√
1+k2

k2 cos 2θ12−1
1+k2

−k(cos 2θ12+1)
1+k2

− sin θ12√
1+k2

−k(cos 2θ12+1)
1+k2

cos 2θ12−k2
1+k2

 ,

Gscaling
3 =

−1 0 0

0 1−k2
1+k2

2k
1+k2

0 2k
1+k2

k2−1
1+k2

 . (3)

The form of USRS in (2) implies a vanishing s13. Since this has been experi-
mentally excluded at > 10σ, the SRS Ansatz has to be discarded. However,
we shall retain Gk2 as well as Gscaling

3 and propose a complex extension. Our
complex extension postulates(

Gscaling
3

)T
(Mν)CESGscaling

3 =
(
MCES
ν

)∗
. (4)

The corresponding mass matrix MCES
ν can be deduced to be

MCES
ν =


x −y1k + iy2k y1 + iy2

−y1k + iy2k z1 − w1
k2−1
k − iz2 w1 − ik

2−1
2k z2

y1 + iy2 w1 − ik
2−1
2k z2 z1 + iz2

 , (5)
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where x, y1, y2, z1, z2 and w are real mass dimensional quantities. Equa-
tion (4) implies U †G3U

∗ = d̃ or

G3U
∗ = Ud̃ . (6)

Once again, d̃lm = ±δlm if the neutrino masses m1,2,3 are all nondegenerate.
The l.h.s. of (6) can be written out as

−
(
UCES
e1

)∗ −
(
UCES
e2

)∗ −
(
UCES
e3

)∗
1−k2
1+k2

(
UCES
µ1

)∗
+ 2k

1+k2

(
UCES
τ1

)∗ 1−k2
1+k2

(
UCES
µ2

)∗
+ 2k

1+k2

(
UCES
τ2

)∗ 1−k2
1+k2

(
UCES
µ3

)∗
+ 2k

1+k2

(
UCES
τ3

)∗
2k

1+k2

(
UCES
µ1

)∗
− 1−k2

1+k2

(
UCES
τ1

)∗ 2k
1+k2

(
UCES
µ2

)∗
− 1−k2

1+k2

(
UCES
τ2

)∗ 2k
1+k2

(
UCES
µ3

)∗
− 1−k2

1+k2

(
UCES
τ3

)∗

.
(7)

The reality of (UPMNS)e1 rules out the possibility (d̃i)11 = 1. Now, there are
four cases: d̃a ≡ diag(−1, 1, 1), d̃b ≡ diag(−1, 1,−1), d̃c ≡ diag(−1,−1, 1),
d̃d ≡ diag(−1,−1,−1).

These structures of d̃ and the use of (6) lead to the equations given in
the following table.

Elements of UCES Constraint conditions

µ1 2kUCES
µ1 =

(
1− k2

)
UCES
τ1 −

(
1 + k2

)
(Uτ1)∗

τ1 2kUCES
τ1 = −

(
1− k2

)
UCES
µ1 −

(
1 + k2

)
(Uµ1)∗

µ2 2kUCES
µ2 =

(
1− k2

)
UCES
τ2 + η

(
1 + k2

)
(Uτ2)∗

τ2 2kUCES
τ2 = −

(
1− k2

)
UCES
µ2 + η

(
1 + k2

)
(Uµ2)∗

µ3 2kUCES
µ3 =

(
1− k2

)
UCES
τ3 + ξ

(
1 + k2

)
(Uτ3)∗

τ3 2kUCES
τ3 = −

(
1− k2

)
UCES
µ3 + η

(
1 + k2

)
(Uµ3)∗

These equations lead to the result that (i) for the case a, α = π, β = 0,
(ii) for the case b, α = π, β = π, (iii) for the case c, α = 0, β = 0 and (iv)
for the case d, α = 0, β = π. Further, cos δ = 0, where δ is the Dirac phase
in UPMNS. In addition, we have the prediction tan θ23 = k−1 which implies
that the atmospheric mixing angle need not be strictly maximal. We have
taken the 3σ ranges [5] for the quantities |∆m2

31|, ∆m2
21, θ12, θ23, θ13 for our

phenomenological analysis. We also take the upper bound 0.23 eV on the
sum of the light neutrino masses.

Our conclusions are the following:

1. Both types of neutrino mass hierarchy are now allowed.

2. For normal hierarchy, the lightest mass m1 ranges from 10−4 eV to
0.07 eV and for inverted hierarchy the lightest mass m3 ranges from
10−4 eV to 0.068 eV.
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3. For both hierarchies, the quantity |mee| of relevance to 0νββ decay
can reach up to the value 0.14 eV which will be probed by GERDA
phase II data.
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