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A new approach to quantization of the relativistic Majorana field is
presented. It is based on the expansion of the field into eigenfunctions of
the axial momentum — a novel observable introduced recently. Relativis-
tic invariance is used as the main guiding principle instead of canonical
formalism. The hidden structure of the quantized Majorana field in the
form of real Clifford algebra of Hermitian fermionic operators is unveiled.
All generators of the Poincaré transformations are found as solutions of
certain operator equations, without invoking the principle of correspon-
dence with classical conserved quantities. Also, operators of parity P̂ and
time-reversal T̂ are constructed.

DOI:10.5506/APhysPolB.53.2-A4

1. Introduction

The Majorana field is a very interesting object of theoretical studies for
several reasons. First, it is the most fundamental fermionic field. The more
popular Dirac field is, in fact, composed of two Majorana fields [1]. Further-
more, it is still not excluded by experiments that neutrinos are quanta of the
Majorana field, see, e.g., [2]. In various attempts to go ‘beyond the Standard
Model’ the Majorana neutrinos play an important role. Recently, Majorana
fermions have been widely discussed also in condensed matter physics, see,
e.g., [3, 4].

Quantized Majorana field was introduced already in the pioneering work
[1], straightaway in a remarkably modern form, after a noteworthy discussion
of pseudoclassical Majorana field in terms of bispinors with anticommut-
ing components, including the Hamiltonian formulation. As regards recent
theoretical works involving the quantized Majorana field, we would like to
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mention works on description of neutrino flavor oscillations, see, e.g., [5]
and references therein, and works on the discrete symmetries P and PC, see,
e.g., [6] and references therein.

Our paper is devoted to quantization of a classical Majorana field. Let us
stress that this classical field should not be confused with the more popular
pseudoclassical Majorana field which has anticommuting components and
is considered already in [1]. In our paper, the pseudoclassical field is not
considered. The classical Majorana field has commuting components. It can
be considered in three equivalent forms: as a four-component complex Dirac
bispinor subject to the condition of invariance under the charge conjugation;
as a complex two-component spinor which appears in the general solution
of that condition; or as a four-component real bispinor obtained by taking
the real and imaginary parts of the complex spinor, see, e.g., [7, 8]. We
prefer the latter form because it is in accordance with the fact that the set
of real numbers is the proper algebraic number field for linear space of the
Majorana bispinors1.

There are several reasons for our interest in quantization of the clas-
sical Majorana field. Quantization of classical fields usually begins with
a Lagrangian, canonical momentum and Hamiltonian formulation, but in
the case of classical Majorana field, there is a problem. Our preliminary
investigation shows that the classical massive Majorana field has a nonstan-
dard, nonlocal Lagrangian, as opposed to the pseudoclassical Majorana field
for which one can use essentially the Dirac Lagrangian. Quantization of
this latter field is rather straightforward because one can use the canonical
quantization. Quantization of the classical Majorana field is less obvious,
and this fact makes it interesting. In the quantization presented below, we
do not need the classical Lagrangian at all.

The main feature of the quantum theory of the Majorana field is well-
known: it predicts a relativistic, spin-1/2 particle, without an antiparti-
cle [1]. We would like to check whether one can arrive at this theory starting
from an expansion of the classical Majorana field into eigenfunctions of the
so-called axial momentum, a novel observable which has been introduced
and discussed in our earlier papers [9, 10]. This expansion is distinguished
by the fact that both the eigenfunctions and all coefficients are real, like the
field. This is the second part of our motivation.

There is also a third reason. In the literature, the quantum Majorana
field is often obtained by quantizing the complex Dirac field first, and next
imposing the condition of invariance under the charge conjugation, see, e.g.,
Section 6.2.3 in [2]. Such a shortcut procedure, however, requires a certain

1 We prefer the convenient term ‘bispinor’ because there are four components, not to
suggest that the Majorana bispinor is composed of two spinors. A more precise term
is ‘real spinor’.
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amount of care, as pointed out in [11] and [12]. Therefore, we would like
to have a complete in itself quantization in which only the Majorana field
is considered. Such a self-contained approach seems to be missing in the
literature.

We consider only the massive Majorana field. When the field is massless,
a local gauge symmetry is present, see Section 5.2 in [7]. In consequence,
the structure of the quantum theory is very different from the massive case.
We shall not study it here in order to keep the size of the paper within
reasonable limits.

It turns out that the presented below new path to the old result offers
interesting insights. As the most important one, we would consider the
appearance of the real Clifford algebra generated by the so-called Majorana
basis of Hermitian fermionic operators. This algebra seems to be the right
mathematical structure for the quantized Majorana field. Another virtue of
our approach is that it shows how one can construct the quantum theory
essentially by maintaining the relativistic invariance. Last but not least,
we see that eigenfunctions of the axial momentum can successfully replace
eigenfunctions of the ordinary momentum (i.e., the plane waves) in mode
expansion for the Majorana field, and perhaps also for the Dirac field.

The plan of our paper is as follows. In Section 2, we briefly recall the
expansion of the classical Majorana field into eigenfunctions of the axial
momentum [10] for convenience of the reader and in order to fix notation.
Section 3 is devoted to the quantization. The Majorana basis of operators is
introduced and generators of the Poincaré transformations are found. The
Fock space and particle interpretation are constructed in Section 4. In Sec-
tion 5 we investigate the Majorana field operator in the Fock space. Section 6
contains explicit construction of operators representing in the Fock space the
space inversion (unitary P̂ ) and the time-reversal (antiunitary T̂ ). Summary
and remarks are presented in Section 7. In Appendix A, we have collected
useful formulas pertinent to the Lorentz boosts and the Wigner rotations.
Appendix B contains formulas helpful in computations of commutators in
Sections 3 and 4.

We use the Minkowski metrics η = diag(1,−1,−1,−1). Throughout the
paper, summation over repeated indices is understood.

2. The classical Majorana field in the axial momentum basis

In this section, we fix the notation for the classical Majorana field and
remind the axial momentum operator with its eigenfunctions called the ax-
ial plane waves. Next, we recall the expansion of the field in the basis of
the axial plane waves presented in [10] and adjust it for the present goal.
The amplitudes bα(p) introduced in this expansion are to be replaced by
Hermitian operators in the process of quantization.
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Let us begin with the Dirac equation for the classical Majorana field ψ(x)

iγµ∂µψ(x)−mψ(x) = 0 , (1)

where m > 0 and all matrices γµ are purely imaginary. We use the following
matrices:

γ0 =

(
0 σ2
σ2 0

)
, γ1 = i

(
−I2 0
0 I2

)
, γ2 = i

(
0 σ1
σ1 0

)
,

γ3 = −i
(

0 σ3
σ3 0

)
, γ5 = iγ0γ1γ2γ3 = i

(
0 σ0

−σ0 0

)
.

Here, σk are the Pauli matrices and σ0 is the two by two unit matrix. All
four components ψα of the Majorana field are real-valued functions on the
Minkowski spacetime M .

The space of solutions of Eq. (1) is invariant with respect to the Poincaré
transformations

ψ′(x) = S(L)ψ
(
L−1(x− a)

)
, (2)

where the four-vector a represents a translation in the Minkowski spacetime
and L a proper ortochronous Lorentz transformation. The four by four real
matrix S(L) obeys the condition

S(L)−1γµS(L) = Lµ
ν γ

ν .

We shall consider also the discrete symmetries P and T

ψP (t,x) = ηP iγ
0ψ(t,−x) , ψT (t,x) = ηTγ

0γ5ψ(−t,x) , (3)

where the numerical factors ηP , ηT are equal to 1 or −1.
The axial momentum operator has the form of [9]

p̂5 = −iγ5∇ .

Its normalized eigenfunctions, called the axial plane waves, read

ψp(x) = (2π)−3/2 exp(iγ5px) v ,

where v an arbitrary real, constant and normalized bispinor, vTv = 1, T de-
notes the matrix transposition. The matrix exp(iγ5px) is real and orthog-
onal, because γ∗5 = −γ5 and γT5 = −γ5. Thus,

p̂5ψp(x) = p ψp(x) ,

∫
d3x ψT

p (x) ψq(x) = δ(p− q) .

Note that exp(iγ5px) = cos(px)I4 + iγ5 sin(px). A detailed discussion of
rather interesting properties of the axial momentum operator is given in [9]
and [10].
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The general solution of the Dirac equation (1) can be written as time-
dependent superposition of the axial plane waves, see Section 4 in [10],

ψ(x, t) =
1

(2π)3/2

∫
d3p

Ep

(
eiγ5(px−Ept)v+(p) + e−iγ5(px−Ept)v−(p)

)
, (4)

where Ep =
√
p2 +m2 > 0, and v±(p) are real bispinors which obey the

following relations:(
Epγ

0 − pkγk
)
γ5v±(p) = ±mv∓(p) .

Note that p denotes eigenvalues of the axial momentum, not of the standard
momentum.

Next, we express the bispinor v−(p) by v+(p) and introduce a basis
eα(p), α = 1, 2, 3, 4, in the linear space of real bispinors v+(p),

v+(p) = m
√
Ep eα(p) b

α(p) .

The coefficient m
√
Ep is introduced in order to give the functions bα(p) the

dimension cm3/2 consistent with the postulated anticommutators (8) below.
We obtain

ψ(x, t) =
m

(2π)3/2

∫
d3p√
Ep

[
e−iγ5px +

1

m
eiγ5pxpµγ

µγ5

]
eα(p) b

α(p) , (5)

where p = (pµ) = (Ep, p
1, p2, p3)T, px = Ept−px, and pµγµ = Epγ

0−pkγk.
Note that because γ5 anticommutes with γµ, the order of matrices matters,
e.g., exp(iγ5px) pµγµ = pµγ

µ exp(−iγ5px).
The basis eα(p) is obtained by applying Lorentz boosts H(p) to the

rescaled Cartesian basis at p = 0

eηα(0) =
δαη√
m

; eα(p) = S(H(p))eα(0) ; H(p)
(0)
p = p ,

where
(0)
p = (m, 0, 0, 0)T. The index η = 1, 2, 3, 4 enumerates components of

the bispinor eα. Bispinors are represented by matrices with one column and
four rows. The explicit form of H(p) can be found in Appendix A. The
coefficient 1/

√
m is introduced in order to ensure that the basis bispinors eα

have the same dimensionality as v+, which is cm1/2.
The choice of the basis made above implies the following Lorentz trans-

formations of the functions bα:

b
′α(p) =

√
EL−1p

Ep
S(R(L,p))αβ b

β
(
l−1(p)

)
, (6)
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where the matrix R(L,p) = H−1(p)LH(l−1(p)) leaves
(0)
p invariant. There-

fore, it represents a rotation, known as the Wigner rotation. The matrix
S(R(L,p)) is real and orthogonal, see Appendix A. The argument l−1(p) of
bβ on the r.h.s. of formula (6) is the spatial part of the four-vector L−1p: the
ith component of the three-vector l−1(p) is equal to (L−1)ikp

k + (L−1)i0Ep.
In the case of translations, ψ′(x) = ψ(x− a). In consequence,

b
′α(p)eα(p) = bβ(p) exp(iγ5pa) eβ(p)

and
b
′α(p) = exp(iγ5pa)αβb

β(p) (7)
because

exp(iγ5pa) eβ(p) = exp(iγ5pa)αβ eα(p) .

The matrix exp(iγ5pa) in (7) is real and orthogonal.
Real-valued functions bα(p) parameterize the space of real solutions of

the Dirac equation (1) for the classical Majorana field. They are not re-
stricted by any constraints.

3. Quantization: the algebraic part

Here, we consider algebraic aspects of the would-be quantum operators.
The actual realization of them as Hermitian operators is possible only when
we introduce a Hilbert space, e.g., the Fock space defined in the next section.
For convenience, we shall use the term ‘operator’ already in the present
section.

The quantized Majorana field ψ̂(x) is obtained by replacing the real-
valued functions bα(p) with Hermitian operator valued functions b̂α(p)2,
which obey the anticommutation constraints3[

b̂α(p), b̂β(q)
]
+
= καβ(p) I δ(p− q) ,

where καβ(p) are real-valued, dimensionless functions of p, καβ(p) = κβα(p),
and I is the identity operator. We demand that these constraints are invari-
ant with respect to the Lorentz and translation transformations (6) and (7).
Simple calculations show that in this case, καβ(p) = κ0 δαβ, where κ0 is a
real, dimensionless, positive constant. Rescaling the operators b̂α, we may
put κ0 = 1. Thus, [

b̂α(p), b̂β(q)
]
+
= δαβ I δ(p− q) . (8)

Such a set of Hermitian fermionic operators is known in condensed matter
physics as the Majorana basis of operators.

2 In fact, they turn out to be operator-valued generalized functions of p.
3 We anticipate the fermionic character of the field.
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The crucial point to be addressed is the relativistic invariance of the
quantum theory. In such a theory, transformations (6) and (7) should be
implemented by unitary operators U(Λ, a), where Λ ∈ SL(2,C). SL(2,C) is
the universal covering group of the proper ortochronous Lorentz group. The
two groups are isomorphic in a vicinity of the unit element. Thus, Λ can
be regarded as a function of the Lorentz transformation L. For a detailed
discussion of the relation between these two groups see, e.g., [14]. Our task is
to find the operators U(Λ, a). To this end, it suffices to consider infinitesimal
transformations, i.e., from a small vicinity of the unit element. Then

U(Λ(L), a) ∼= I + iaµP̂µ +
i

2
ωµνM̂µν ,

where aµ parameterize translations in the spacetime and ωµν = −ωνµ pa-
rameterize the proper orthochronous Lorentz group around I4, namely L =
expω, where ω = (ωµ

ν ). Since M̂µν = −M̂νµ, there are six independent
generators of Lorentz transformations.

The Hermitian operators

P̂µ = −i ∂U(σ0, a)

∂aµ

∣∣∣∣
a=0

, M̂µν = −i ∂U(Λ(L), a = 0)

∂ωµν

∣∣∣∣
ω=0

(9)

are identified with, respectively, the total four-momentum and the total
angular momentum of the field — the most important observables for the
quantized field. The matrix σ0 appears because it is the unit element in
the SL(2,C) group. In the second formula (9) the matrix Λ is regarded
as a function of the Lorentz matrix L. The operators P̂µ, M̂µν are called
the generators of the representation because they essentially determine the
representation U(Λ(L), a) [13].

In the case of translations, the postulated quantum version of condi-
tion (7) reads

U−1(σ0, a) b̂
α(p) U(σ0, a) = exp(iγ5pa)αβ b̂

β(p) .

Differentiating both sides of this formula with respect to aµ and putting
a = 0, we obtain the condition for P̂µ[

P̂µ, b̂
α(p)

]
= −pµ(γ5)αβ b̂β(p) , (10)

where p0 = Ep =
√
p2 +m2. As shown in Appendix B, there is a general

formula for operators satisfying such conditions. Condition (10) has the form
of formula (B.1) with P̂µ and rαβ(p, q) = ipµ(γ5)αβδ(p− q) in the place of
X̂ and xαβ(p, q), respectively. Formula (B.2) gives the following Hermitian
operators:
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P̂µ =
1

2

∫
d3p pµ b̂

α(p) (γ5)αβ b̂
β(p) + dµI , (11)

where dµ are arbitrary real constants. These operators commute with each
other [

P̂µ, P̂ν

]
= 0

as expected for the generators of translations. This can be checked with the
help of formulas (B.3), (B.4).

Similar, but more tedious calculations give the generators M̂µν . In order
to obtain conditions for M̂µν analogous to (10), we postulate the quantum
version of the Lorentz transformation (6)

U−1(Λ(L), 0) b̂α(p) U(Λ(L), 0) =

√
EL−1p

Ep
S(R(L,p))αβ b̂

β
(
l−1(p)

)
. (12)

We differentiate both sides of formula (12) with respect to ωjk and next
we put ω = 0. This gives the following condition for M̂jk:[

M̂jk, b̂
α(p)

]
=
i

4

[
γj , γk

]
αβ
b̂β(p)− i

(
pj

∂

∂pk
− pk

∂

∂pj

)
b̂α(p) . (13)

Calculations giving the r.h.s. are explained in Appendix A. Formula (13) has
the form as in (B.1) with

mjk
αβ(p, q) =

1

4

[
γj , γk

]
αβ

δ(p− q)−
(
pj

∂

∂pk
− pk

∂

∂pj

)
δαβ δ(p− q)

in place of xαβ(p, q). Formula (B.2) gives

M̂jk = − i

8

∫
d3p b̂α(p)

[
γj , γk

]
αβ
b̂β(p)

+
i

2

∫
d3p b̂α(p)

(
pj

∂

∂pk
− pk

∂

∂pj

)
b̂α(p) + djkI , (14)

where djk = −dkj are arbitrary real constants.
Similarly, differentiation of formula (12) with respect to ω0k at ω = 0

gives the condition (see Appendix A for details of the calculation of the
r.h.s.)[

M̂0j , b̂
α(p)

]
= − i

4

1

Ep +m
(prδsj − psδrj) (γ

rγs)αβ b̂
β(p)

+
i

2

∫
d3q

((
Ep

∂

∂pj
− Eq

∂

∂qj

)
δ(p− q)

)
b̂α(q) , (15)
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which is satisfied by

M̂0j =
i

8

∫
d3p

1

Ep +m
(prδsj − psδrj) b̂

α(p) (γrγs)αβ b̂
β(p)

− i

4

∫
d3pd3q b̂α(p)b̂α(q)

(
Ep

∂

∂pj
− Eq

∂

∂qj

)
δ(p− q) + d0jI , (16)

where the real constants d0j are arbitrary.
The generators should obey certain commutator relations which follow

directly from the properties of the Poincaré group, see, e.g., [13]. In the
parameterization of the Poincaré group introduced above formula (9), they
have the form of[

P̂µ, P̂ν

]
= 0 , (17)[

M̂ρλ, P̂µ

]
= i

(
ηµρP̂λ − ηµλP̂ρ

)
, (18)[

M̂αβ, M̂µν

]
= i

(
ηαµM̂βν − ηανM̂βµ − ηβµM̂αν + ηβνM̂αµ

)
, (19)

where ηµρ are components of the Minkowski metric tensor.
Our operators (11), (14), and (16) do not obey the commutation rela-

tions (18), (19) unless the constants dµ, dµν vanish. To show this, we use
formulas (B.3), (B.4) from Appendix B for the terms with the b̂α operators.
It turns out that already these terms alone satisfy commutators (18), (19).
The terms with the identity operator of course give vanishing contributions
to the l.h.s. of commutators (18) and (19), but they explicitly appear on the
r.h.s’s. In this way, we obtain from (18), (19) the following conditions:

0 = ηµρdν − ηµνdρ , 0 = ηαµdβν − ηανdβµ + ηβνdαµ − ηβµdαν ,

which imply that dλ = 0 and dµν = 0. Nevertheless, we shall keep these
constants nonvanishing. The reason is that we prefer the normal ordered
generators in the Fock space, discussed in the next section, because their
eigenvalues are consistent with the particle interpretation. Indeed, the nor-
mal ordered generators are regarded as physical observables for the quantized
field, in particular as its total four-momentum and total angular momentum.
The normal ordering can be interpreted as a special choice of the constants
dµ, dµν

4. Thus, because we insist on having the particle interpretation,
the relativistic invariance of the model critically depends on whether the
normal ordered generators, and not the ones above, obey the commutator
relations (17), (18), and (19).

4 In this case, the constants are given by integrals over p which are divergent unless
there is a cutoff.
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Note that the Poincaré generators contain the imaginary unit i as an
overall coefficient. Therefore, the operator U(L(Λ), a) contains products of
the operators b̂α(p) with only real coefficients. Thus, the algebraic struc-
ture described above is a real, infinite-dimensional Clifford algebra with the
operators b̂α(p) as its Hermitian generating elements.

4. The complex Fock space and particle interpretation

First, let us introduce two annihilation and two creation operators âλ(p),
â †
λ(p), where λ = 1, 2

âλ(p) = cλαb̂
α(p) , â†λ(p) = c∗λαb̂

α(p) , (20)

where cλα are constants, ∗ denotes the complex conjugation, α = 1, 2, 3, 4.
By assumption, these operators have the following anticommutators:[

â†λ(p), âσ(q)
]
+

= δλσδ(p− q) I , (21)[
â†λ(p), â

†
σ(q)

]
+

= 0 , [âλ(p), âσ(q)]+ = 0 . (22)

Inserting formulas (20) and using anticommutators (8), we obtain from of
(21), (22) constraints for the constants cλα, namely

cλαcσα = 0 , cλαc
∗
σα = δλσ . (23)

These constraints do not have a unique solution because their l.h.s.’s are
invariant with respect to arbitrary transformations of the form of c′λα =
cλβOβα, where Oβα form a real, orthogonal, four by four matrix.

With the Fock space and particle interpretation as the goal, we would like
to obtain the four-momentum operator in the form typical for the quantum
theory of free fields. In our case, it reads

:P̂µ: =

∫
d3p pµâ

†
λ(p)âλ(p) , (24)

where p0 =
√

p2 +m2, λ = 1, 2, and : : denotes the normal ordering
of products of the operators âλ, â

†
λ. We start from formula (11) for the

operator P̂µ, in which we substitute

b̂α(p) = c∗λαâλ(p) + cλαâ
†
λ(p) . (25)

This formula is inverse to (20). The constants cλα, c∗λα obey conditions (23).
In the resulting expression for P̂µ, there are unwanted terms with the prod-
ucts âλâσ and â†λ â

†
σ. These terms vanish when the constants cλα obey the

following conditions:
cλα (γ5)αβ cσβ = 0 . (26)
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If we add yet another condition, namely,

cλα(γ5)αβc
∗
σβ = δλσ , (27)

the four-momentum operator acquires the form

P̂µ =
1

2

∫
d3p pµ

(
â†λ(p)âλ(p)− âλ(p)â

†
λ(p)

)
+ dµI .

In the last step, we apply the normal ordering and drop the term dµI. On a
heuristic level, one can say that the term generated by the normal ordering,
which is proportional to I, is canceled by the term dµI with appropriately
chosen constant dµ. The final form of the four-momentum operator is given
by formula (24).

At this point, it is clear that we may use the standard Fock space as the
complex Hilbert space for the quantized Majorana field. In particular, the
Fock vacuum state |0⟩ is defined by the conditions

â1(p)|0⟩ = 0 , â2(p)|0⟩ = 0 . (28)

The Fock basis of quantum states of the field is created by the operators
â†λ(p) acting on the vacuum state. Such states are eigenvectors of the :P̂µ:
operators. Note that the Fock space is linear over the set of complex num-
bers C, while the classical Majorana field is real-valued.

We see that the energy operator :P̂0: is non-negative. Let us recall that
when quantizing the Dirac field at a certain stage, one has to redefine the
vacuum state: an empty vacuum defined by conditions analogous to (28)
is abandoned in favor of the state known as the Dirac sea, otherwise, the
energy operator is not bounded from below. In the Majorana case, such
redefinition is not needed. In this sense, the Dirac sea is absent here.

Condition (27) is satisfied if c∗σβ are components of two orthonormal
eigenspinors of the matrix γ5 corresponding to eigenvalue +1. Thus,

(γ5)αβc
∗
σβ = c∗σα

(σ = 1, 2 enumerates the eigenvectors). Since γ5 is imaginary, cσβ give other
two eigenspinors which correspond to the eigenvalue −1. Condition (26)
is then reduced to cλα cσα = 0, which coincides with the first condition
in (23). Also, the second condition in (23) is satisfied if the eigenspinors
are orthonormal. The eigenvalues of γ5 are double degenerate, hence the
orthonormal eigenspinors are not fixed uniquely. We take

(c∗1 α) =
1√
2


i
0
1
0

 , (c∗2 α) =
1√
2


0
i
0
1

 .
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The resulting relation between the operators b̂α and âλ, â
†
λ can be summa-

rized in the matrix form
b̂1(p)

b̂2(p)

b̂3(p)

b̂4(p)

 =
1√
2


i 0 −i 0
0 i 0 −i
1 0 1 0
0 1 0 1




â1(p)
â2(p)

â†1(p)

â†2(p)

 . (29)

The matrix on the r.h.s. of formula (29) (with the factor 1/
√
2 included) is

unitary.
The three generators of spatial rotations, : M̂12 :, : M̂23 :, and : M̂31 :,

are obtained from formula (14). We use formula (29) for b̂α(p), next we
apply the normal ordering, and remove by hand the terms proportional to
the identity operator I. It turns out that the spin part comes out in a
nonstandard form, namely M̂12 ⊃ σ1, M̂23 ⊃ σ2, M̂31 ⊃ σ3. Therefore, we
apply additional unitary transformation(

â1(p)
â2(p)

)
= Q

(
d̂1(p)

d̂2(p)

)
, (30)

with the matrix Q

Q =
1√
2

(
1 −i
1 i

)
.

This transformation cyclically permutes the Pauli matrices5

Q†σ1Q = σ3 , Q†σ2Q = σ1 , Q†σ3Q = σ2 .

Anticommutators of the operators d̂λ(p), d̂
†
λ(p) have the form of (21), (22)

of course, [
d̂ †
λ(p), d̂σ(q)

]
+

= δλσδ(p− q) I ,[
d̂ †
λ(p), d̂

†
σ(q)

]
+

= 0 ,
[
d̂λ(p), d̂σ(q)

]
+
= 0 .

Definition (28) of the vacuum state can be equivalently written as

d̂λ(p)|0⟩ = 0 .

Transformations (29) and (30) together give the following unitary transfor-
mation: 

b̂1(p)

b̂2(p)

b̂3(p)

b̂4(p)

 =
1

2


i 1 −i 1
i −1 −i −1
1 −i 1 i
1 i 1 −i




d̂1(p)

d̂2(p)

d̂ †
1 (p)

d̂ †
2 (p)

 . (31)

5 It follows that Q3 commutes with the Pauli matrices. Indeed, Q3 = exp(iπ/4)σ0.
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Transformation (30) applied in the four-momentum operator gives

:P̂µ: =

∫
d3p pµd̂

†
λ(p)d̂λ(p) .

The final result for the generators M̂ik reads

:M̂ik := ϵikj

∫
d3p d̂ †

λ(p)

(
−1

2
(σj)λη + iδλη ϵjmnp

m ∂

∂pn

)
d̂η(p) . (32)

Here, (σj)λη denotes matrix elements of the Pauli matrices and ϵikl is the
totally antisymmetric symbol, ϵ123 = +1. We notice the spin part with the
Pauli matrices and the angular momentum part with the derivatives ∂/∂pn.

The generators of boosts : M̂0k : are obtained from formula (16) in a
similar manner

:M̂0k :=

∫
d3p d̂ †

λ(p)

(
ϵkjl p

l

2(Ep +m)
(σj)λη − i

(
Ep

∂

∂pk
+

pk

2Ep

)
δλη

)
d̂η(p) .

(33)
The normal ordered generators satisfy commutator relations (17), (18),

and (19). This can be checked with the help of formula (B.5) from Ap-
pendix B. We conclude that the constructed quantum model in the Fock
space is relativistically invariant.

The index λ = 1, 2 can be related to the eigenvalues of the operator Σ̂3,
which is the 3rd component of the spin operator

Σ̂i =
1

2

∫
d3p d̂ †

κ(p)(σi)κηd̂η(p)

in the single-particle subspace of the Fock space. Such a subspace is spanned
on the basis states

|p λ⟩ = d̂ †
λ(p)|0⟩ ,

which are eigenstates of :P̂µ: and Σ̂3

:P̂µ: |p λ⟩ = pµ|p λ⟩ , Σ̂3|p 1⟩ = 1
2 |p 1⟩ , Σ̂3|p 2⟩ = −1

2 |p 2⟩ ,

where p0 =
√

p2 +m2.
The general single-particle state has the form of |ψ⟩ =

∫
d3p ψλ(p) |pλ⟩.

Such states form a subspace of the Fock space which is invariant under the
Poincaré transformations generated by the operators : P̂µ :, : M̂ik :, and
: M̂0k :. In fact, we have obtained the unitary irreducible representation of
the Poincaré group in the single-particle subspace of the Fock space. It is
characterised by spin-1/2, the time-like four momentum pµp

µ = m2 > 0,
and the positive energy Ep > 0.
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5. The field operator in the Fock space

The quantum field operator in the Fock space is obtained from for-
mula (5) by replacing the classical variables bα(p) with the operators b̂α(p)

ψ̂(x, t) =
m

(2π)3/2

∫
d3p√
Ep

[
e−iγ5px +

1

m
eiγ5pxpµγ

µγ5

]
eα(p) b̂

α(p) , (34)

where b̂α(p) are to be eliminated with the help of relation (31).
This form of the field operator can be significantly modified. First, using

the definition of the basis eα(p) and formula S(H(p))−1pµγ
µS(H(p)) =

mγ0, we may rewrite it as

ψ̂(x, t) =
m

(2π)3/2

∫
d3p√
Ep

S(H(p))
[
eiγ5(px−Ept)

+e−iγ5(px−Ept)γ0γ5

]
eα(0) b̂

α(p) .

Next, we substitute exp(±iγ5px) = cos(px)I4 ± iγ5 sin(px) and notice that

the matrices iγ5, iγ0, and γ0γ5 =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 merely permute

the basis bispinors eα(0) and, in some cases, change their sign. The sin and
cos functions are expressed by exp(±ipa) functions. Finally, we introduce
the creation and annihilation operators using formula (31). After all these
steps, we obtain the field operator in a more transparent form

ψ̂(x, t) =
√
m

∫
d3p√
(2π)3Ep

[
e−ipx vλ(p) d̂λ(p) + eipx v∗λ(p) d̂

†
λ(p)

]
, (35)

where v1(p) = S(H(p))v1, v2(p) = S(H(p))v2, and

v1 =
1√
2


0
i
1
0

 , v2 =
1√
2


1
0
0
i

 .

The constant bispinors vλ, v∗λ are normalized eigenvectors of the matrix γ0

γ0vλ = vλ , γ0v∗λ = −v∗λ . (36)

The definition of the boosted bispinors v1(p), v2(p) implies that(
mγ0 + piγ0γi

)
vλ(p) = Ep vλ(p) , vλ(p)vσ(p) = δλσ ,
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where vλ(p) = v†λ(p)γ
0. The first equation shows that they are eigenvec-

tors of the Hermitian matrix mγ0 + piγ0γi (which coincides with the Dirac
Hamiltonian), while the second one gives the normalization of the boosted
bispinors. For the boosted complex conjugate bispinors, v∗1(p) = S(H(p))v∗1
and v∗2(p) = S(H(p))v∗2, we have(

mγ0 + piγ0γi
)
v∗λ(−p) = −Ep v

∗
λ(−p) , v∗λ(p)v

∗
σ(p) = −δλσ .

The quantized Majorana field obeys the Dirac equation. First, using
formulas (35) and (36), we write

mψ̂(x, t) =

∫
d3p

√
m√

(2π)3Ep

S(H(p))
[
e−ipx mγ0vλ d̂λ(p)−eipx mγ0v∗λ d̂

†
λ(p)

]
.

Next, we apply on the r.h.s. the formula S(H(p))mγ0S(H(p))−1 = pµγ
µ

mψ̂(x, t) =

∫
d3p

√
m√

(2π)3Ep

[
e−ipx pµγ

µS(H(p))vλ d̂λ(p)

−eipx pµγ
µS(H(p))v∗λ d̂

†
λ(p)

]
= iγµ∂µψ̂(x) .

The field ψ̂(x, t) obeys also the following equation:

∂tψ̂(x, t) = i
[
:P̂0:, ψ̂(x, t)

]
. (37)

It has the form of the evolution equation for quantum operators in the
Heisenberg picture. For this reason, we may consider :P̂0: as the Hamiltonian
of the quantized Majorana field, and the time-dependent field ψ̂(x, t) as the
field operator in the Heisenberg picture. It is an important conceptual step.
The point is that the presented above quantization is not based on canonical
formalism, in particular, we have not considered any classical Hamiltonian.
The operator :P̂0: has been introduced in Section 4 as the generator of time
translations in the context of representations of the Poincaré group, not as
a quantum version of certain classical Hamiltonian.

The field operator (35) is local in the sense proper for fermionic fields:
bilinear local operators of the form ψ̂α(x)Aαβ ψ̂

β(x), ψ̂α(y)Bαβ ψ̂
β(y), where

Aαβ, Bαβ are complex numbers, commute if (x− y)2 < 0. The commutator
of such operators is proportional to the anticommutator [ψ̂α(x), ψ̂β(y)]+
which can be calculated easily[

ψ̂α(x), ψ̂β(y)
]
+
=

((
imI4 − γµ

∂

∂xµ

)
γ0

)
αβ

∆(x− y) , (38)

where ∆(x− y) is the Jordan–Pauli function, ∆(x− y) = 0 if (x− y)2 < 0.
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Let us close this section with a remark on the well-known current den-
sity jµ(x) = ψ̄(x)γµψ(x), where ψ is the classical Majorana field, ψ̄(x) =
ψ(x)Tγ0. Its existence poses a puzzle. Because the current is conserved,
∂µj

µ = 0 if ψ is a solution of the Dirac equation (1), there exists the con-
served charge Q =

∫
d3x j0(x, t). Usually, such a conserved charge is associ-

ated with a U(1) symmetry, or rather SO(2) because the field is real — we
invoke here the inverse Noether’s theorem. However, in the Majorana case,
it is hard to point out such a symmetry. Analyzing this problem, the first
question is about the existence of Lagrangian for the classical real-valued
Majorana field, because a Lagrangian is needed in the Noether theorem.
Rather surprisingly, it turns out that the answer is not quite trivial. Since
this topic clearly lies far outside the scope of the present paper, we will not
pursue it here. (We plan a separate manuscript devoted to it.) Instead, let
us consider the quantum counterpart of the current density jµ(x). In order
to write it, one has to regularize the product of field operators preserving
the Hermiticity of the current. We choose the point-splitting regularization,

ĵµϵ (x) =
1

2

(
ψ̂(x)Tγ0γµψ̂(x+ ϵ) + ψ̂(x+ ϵ)Tγ0γµψ̂(x)

)
,

where the four-vector ϵ is constant and non-vanishing. Since all matrices
γ0γµ are symmetric,

ĵµϵ (x) =
1

2

(
γ0γµ

)
βα

[
ψα(x), ψβ(x+ ϵ)

]
+

=
1

2
Tr

(
γ0γµ

(
imI4 − γν

∂

∂xν

)
γ0

)
∆(−ϵ) = 0 .

The last equality follows from Tr γµ = 0 and ∂∆(−ϵ)/∂xν = 0. This result
for the regularized current suggests that the current and the related charge
may not exist in the quantum theory of the Majorana field.

6. The discrete symmetries P and T

6.1. The space inversion P

As mentioned in Section 2, the space of solutions of the Dirac equation (1)
is invariant with respect to the transformation

ψP (x, t) = ηP iγ
0ψ(−x, t) , (39)

which represents the space inversion P : x → −x. The coefficient ηP is real.
Note that (ψP )P (x, t) = −η2P ψ(x, t). Since P 2 = I, we expect that (ψP )P
is physically equivalent to ψ. This is the case when η2P = 16. Inserting

6 It is a well-known fact that the overall sign of fermionic fields is physically irrelevant.
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formula (5) for the Majorana field in (39) and using the definition of the
basis bispinors eα(p), we obtain the corresponding transformation of the
functions bα(p)

bαP (p) = ηP i(γ5)αβb
β(−p) . (40)

The space inversion can be implemented in the quantum theory by con-
structing a unitary operator P̂ in the Fock space such that

P̂ b̂α(p)P̂−1 = ηP i(γ5)αβ b̂
β(−p) . (41)

Formula (41) and transformation (31) give

P̂ d̂λ(p)P̂
−1 = ηP i d̂λ(−p) , P̂ d̂ †

λ(p)P̂
−1 = −ηP i d̂ †

λ(−p) . (42)

The second formula in (42) determines the linear operator P̂ provided
that we know how it acts on the vacuum state. We assume that the vacuum
state is invariant7

P̂ |0⟩ = |0⟩ . (43)

This assumption is consistent with the first formula in (42). (It would be
inconsistent if, for example, on the r.h.s. of that formula there was the
operator d̂ †

λ.) The basis in the n-particle sector of the Fock space is formed
by vectors

|p1λ1, p2λ2, . . .pnλn⟩ =
1√
n!
d̂ †
λ1
(p1)d̂

†
λ2
(p2), . . . d̂

†
λn
(pn)|0⟩ . (44)

It is clear that

P̂ |p1λ1, p2λ2, . . .pnλn⟩ = (−ηP i)n | − p1λ1, −p2λ2, · · · − pnλn⟩ . (45)

Note that the |(−ηP i)n| = 1, therefore, transformation (45) does not change
the norm of the basis vectors. Formulas (43) and (45) are taken for the
definition of the operator P̂ in the Fock space. In order to calculate its
action on an arbitrary state, it is sufficient to expand that state in the (44)
basis. Formulas (42), as well as the unitarity of P̂ , now reappear as easy to
prove theorems.

The four-momentum operator : P̂µ : has the standard four-vector trans-
formation law with respect to the space inversion, namely,

P̂ :P̂ 0: P̂−1 = :P̂ 0: , P̂ :P̂ i : P̂−1 = − :P̂ i : .

7 Discussion of this point within the general framework of the relativistic quantum
theory of fields can be found in Section 3.4 of Ref. [14].



2-A4.18 H. Arodź

Transformation law of the field operator ψ̂ mimics formula (39) for the
classical field

P̂ ψ̂(x, t)P̂−1 = ηP iγ
0ψ̂(−x, t) .

To see this, compute P̂ ψ̂(x, t)P̂−1 using formulas (35) and (42). Next,
recover the matrix γ0 with the help of Eqs. (36), and move it to the left using
formula S(H(p))γ0 = γ0S(H(−p)). In the last step, change the integration
variable from p to −p.

6.2. The time reversal T

Time reversal T acts on the classical field as follows:

ψT (x, t) = ηTγ
0γ5ψ(x,−t) . (46)

It is a symmetry of the Dirac equation (1) in the sense that if ψ(x, t) is a
solution of it, so is ψT (x, t). The coefficient ηT is real. Similarly as in the
case of space inversion, η2T = 1 and (ψT )T (x, t) = −ψT (x, t). Calculations
analogous the ones leading to formula (40) give

bαT (p) = ηT
(
γ0γ5

)
αβ
bβ(−p) .

In order to implement this transformation in the Fock space, we seek a
unitary, or antiunitary, operator T̂ such that

T̂ b̂α(p)T̂−1 = ηT i
(
γ0γ5

)
αβ
b̂β(−p) . (47)

Moreover, it should leave the vacuum state unchanged

T̂ |0⟩ = |0⟩ . (48)

It turns out that the unitary option has to be abandoned, as expected on
the basis of general experience with other models. To see this, let us assume
that T̂ is unitary, hence linear. Operators b̂α(p) in (47) are expressed by
d̂α(p) according to formula (31). Simple algebraic calculations show that

T̂ d̂1(p)T̂
−1 = −ηT i d̂ †

2 (−p) , T̂ d̂2(p)T̂
−1 = ηT i d̂

†
1 (−p) .

Here, the linearity of the operator T̂ has been used in order to move this
operator close to d̂λ(p), to the position as on the l.h.s.’s of the formulas right
above. We see that condition (48) is not consistent with these formulas, e.g.,
T̂ d̂1(p)T̂

−1|0⟩ = 0, while d̂ †
2 (−p)|0⟩ = | − p 2⟩ ≠ 0.
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On the other hand, antiunitary T̂ is antilinear, hence, when moving this
operator close to d̂λ(p), one has to complex conjugate coefficients encoun-
tered on the way. In this case, we obtain

T̂ d̂1(p)T̂
−1 = ηT i d̂2(−p) , T̂ d̂2(p)T̂

−1 = −ηT i d̂1(−p) . (49)

These formulas are consistent with (48) and we may proceed with the defi-
nition of the operator T̂ as in the case of space inversion P̂ .

Now, equipped with the definition of the operator T̂ , we return to for-
mulas (49) which change their status: from a conjecture to an easy to prove
theorem. We can derive also the transformation law of the field operator ψ̂.
It resembles formula (46) for the classical field

T̂ ψ̂(x, t)T̂−1 = ηTγ
0γ5ψ̂(x,−t) . (50)

The field operator is given by formula (35). When computing the l.h.s.
in (50), one has to remember about the complex conjugation due to the an-
tiunitarity of T̂ . The matrix γ0γ5 is recovered with the help of the following
formulas:

v1 = iγ0γ5v
∗
2 , v2 = −iγ0γ5v∗1 , v∗1 = −iγ0γ5v2 , v∗2 = iγ0γ5v1 .

7. Summary and remarks

We have shown how to quantize the classical Majorana field starting
from its expansion into the eigenfunctions of the axial momentum. The
model has the particle interpretation with a single spin-1/2 fermion. There
is no antiparticle, as expected in the case of Majorana field. The constructed
quantum model essentially coincides with the results of other approaches to
quantization of the field, which is the desired outcome. Also, the discrete
symmetries: unitary P̂ and antiunitary T̂ , have been implemented in the
model (the charge conjugation is trivial, Ĉ = I). It is clear that the same
eigenfunction expansion can be used also in the quantum theory of the Dirac
field.

As for differences with other approaches to quantization of the Majorana
field: (a) Our approach is self-contained — we do not refer to the quantized
Dirac field. (b) The mode expansion (5) is novel. (c) On a more technical
level, we have made the specific choice of the basis bispinors eα(p), as de-
scribed in above formula (6). Due to it, the coefficient functions bα(p) in
formula (5) have clear relativistic transformation laws (6), (7). The concrete
form of basis bispinors vλ in formula (35) is a consequence of that choice.
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The presented quantization is not based on canonical formalism. In-
stead, we have used as the guiding principle the relativistic invariance. In
particular, the operator : P̂0 : has been introduced as a generator of time
translations, without reference to a correspondence with a classical Hamil-
tonian. Noteworthy is also the fact that there is no need to consider the
Dirac sea when searching for the vacuum state.

The fact that the expansion (5) has led to the expected quantum model
confirms that the axial momentum is a useful quantum mechanical observ-
able, in spite of its apparent peculiarities discussed in [9, 10].

On a more general ground, we think that probably the most interesting
aspect of our work is the appearance of the Majorana basis of operators,
b̂α(p), in the context of quantized relativistic fields. These operators were
replaced by the annihilation and creation operators âλ(p), â

†
λ(p) in Section 4

with the goal of obtaining the standard Fock space and the particle inter-
pretation. That construction provides a particular complex representation
of the Majorana basis of operators. A very interesting question arises about
the existence and features of other representations.

Appendix A

The Lorentz boosts and the Wigner rotations

Calculations in Sections 3 and 5 require detailed knowledge of the Lorentz
boosts and of the Wigner rotations. For convenience of the reader, we have
collected relevant formulas in this appendix. Most of them are well-known,
perhaps except formula (A.2) which is found in the monograph [14].

The proper orthochronous Lorentz matrices in a vicinity of the unit ma-
trix I4 can be written in the exponential form, L = exp(ω), where ω is
four by four real matrix. Its elements ωµ

ν obey the condition ωµν = −ωνµ,
where ωµν = ηµκω

κ
ν , ηµκ are components of the Minkowski metric. With

this parametrization, S(L) = exp(ωµν [γ
µ, γν ]/8). In the Majorana represen-

tation, the matrices γµ are purely imaginary, S(L) are real, and S(L)Tγ0 =
γ0S(L)−1. As the independent parameters on the Lorentz group, we take
ω23, ω31, ω12, and ω0i with i = 1, 2, 3.

Let us stress that we rise or lower indices using the Minkowski metric,
for example, ω0

i = −ω0i. Moreover, the δik denotes the Kronecker symbol
(not tensor), which always takes values 0 or +1. In this notation, the trivial
Lorentz transformation L = I4 has matrix elements denoted as (I4)

µ
ν , where

(I4)
0
0 = 1, (I4)

i
k = δik, (I4)

i
0 = 0, (I4)

0
k = 0. All this may sound trivial,

but the reality is that in the calculations reported below, it is very easy to
make a sign mistake related to the level of indices.
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The matrix elements Hµ
ν (p) of the boost H(p) have the following form:

H0
0(p) =

Ep

m
, H0

i(p) = H i
0(p) =

pi

m
, H i

j(p) = δij+
pipj

m(m+ Ep)
.

(A.1)
The matrix H(p) is symmetric. It turns out that (H(p))−1 = H(−p). In
the case of this boost,

S(H(p)) = nµ(p)γ
µγ0 , (A.2)

where

n0(p) =
m+ Ep√

2m(m+ Ep)
, ni(p) =

pi√
2m(m+ Ep)

, (A.3)

see Exercise 2.4.9 in [14]. Note that pi = −pi, p = (pi).
In Section 3, we use infinitesimal form of the Wigner rotations

R(L,p) = H−1(p) LH
(
l−1(p)

)
.

In the case of rotations, the Lorentz matrix has the block diagonal form

LR =


1 0 0 0
0
0 R
0

 .

It turns out that
R(LR,p) = LR .

In the linear approximation around I4, which is sufficient for our purposes,
LR

∼= I4 + ω, where ω = (ωµ
ν ) with ω0

i = ωi
0 = 0, and

S(LR) ∼= I4 +
∑
i<k

ωik
[
γi, γk

]
/4 , l−1(p)i ∼= pi + ωikpk .

These formulas are used on the r.h.s. of formula (12) in the derivation of
condition (13).

In the case of infinitesimal boosts, L ∼= I4 + δL, where

δL =


0 ω0

1 ω0
2 ω0

3

ω1
0

ω2
0 0

ω3
0

 .
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Furthermore, l−1(p)i ∼= pi − ωi
0Ep, and R(L,p) ∼= I4 + δR, where

δR0
µ = 0 , δRµ

0 = 0 , δRi
k
∼=

1

Ep +m

(
ωi0pk − ωk0pi

)
.

The first term on the r.h.s. of formula (15) comes from

S(R(L,p)) ∼= I4 +
1

8
δRik

[
γi, γk

]
,

and the second term from
√
EL−1p/Ep b

α(l−1(p)).

Appendix B

The commutator equations

Formulas (B.2)–(B.5) shown below facilitate calculations in Sections 3
and 4. We seek a Hermitian operator X̂ which obeys the condition[

X̂, b̂α(p)
]
= i

∫
d3q xαβ(p, q) b̂

β(q) , (B.1)

where the real-valued functions xαβ are antisymmetric in the following sense:

xαβ(p, q) = −xβα(q,p) .

Condition (B.1) is satisfied by the Hermitian operator

X̂ = − i

2

∫
d3pd3q b̂α(p)xαβ(p, q) b̂

β(q) + c0I , (B.2)

where c0 is an arbitrary real constant. This can be checked with the help of
anticommutators (8) and the formula [ÂB̂, Ĉ] = Â [B̂, Ĉ]+ − [Â, Ĉ]+ B̂.

Let
Ŷ = − i

2

∫
d3pd3q b̂α(p)yαβ(p, q) b̂

β(q) + d0I ,

where d0 is an arbitrary real constant, and the real-valued functions yαβ(p, q)
are antisymmetric in the above sense. The commutator of the Hermitian
operators X̂ and Ŷ is given by the formula[

X̂, Ŷ
]
= −1

2

∫
d3pd3q b̂α(p)wαβ(p, q) b̂

β(q) , (B.3)

where

wαβ(p, q) =

∫
d3s

(
xαη(p, s)yηβ(s, q)− yαη(p, s)xηβ(s, q)

)
. (B.4)
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Thus, the ‘matrix’ w for the commutator is given by the commutator of the
‘matrices’ x and y.

Commutators of the Poincaré generators discussed in Section 4 can be
checked with the help of formula (B.5) below. We consider operators Ŵ
and Ẑ

Ŵ =

∫
d3pd3q d̂ †

i (p)wik(p, q)d̂i(q) , Ẑ =

∫
d3pd3q d̂ †

i (p)zik(p, q)d̂i(q) ,

where i, k = 1, 2 and wik, zik are (generalized) functions of p, q. Their
commutator has the following form:[

Ŵ , Ẑ
]
=

∫
d3pd3q d̂ †

i (p)rik(p, q)d̂i(q) , (B.5)

where

rik(p, q) =

∫
d3s

(
wij(p, s)zjk(s, q)− zij(p, s)wjk(s, q)

)
.
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