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We present a model of compact stars with a dark matter core. The
hadronic equation of state is based on the parity doublet model and does
not present a phase transition to quark matter. Instead, a strong first-
order phase transition to dark matter described by a constant speed-of-
sound model leads to the scenario of compact star mass twins. Compact
star structural properties which obey the state-of-the-art measurements
and constraints are presented.
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1. Introduction

The long-standing problem of the clarification of dark matter (DM) has
persisted since its discovery. Astronomical observations, such as anomalies
in the rotation curves of galaxies or gravitational lensing, as well as cos-
mological features, support the idea that DM is present in the universe,
however hitherto, unexplainable. Several attempts to describe DM include
exotic particles such as supersymmetric ones or axions, as well as modifica-
tions to Einstein’s gravity or extra forces beyond the Standard Model. Dark
matter is thought to interact only gravitationally and perhaps changing its
strength over different scales, as, for instance, suggested in the Chameleon
models [1]. Consequently, DM might have some sizeable effect on compact
stars in whose interiors and surroundings gravity is very strong. Within this
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work, we focus on neutron stars motivated by the aforementioned facts. The
idea that DM can be found in neutron star (NS) interiors, exteriors, or in
both cases [2, 3] has been explored already in [4], where it is meant to be a
separated fluid weakly interacting gravitationally with normal matter. Fur-
thermore, examples of microscopic approaches to DM in compact stars that
might serve as evidence include axions and their emission resulting in cool-
ing of compacts [5] or sexaquarks [6] which might lead to stellar collapse [7]
into a hybrid star with a quark matter (QM) core.

We consider a particular scenario, where we assume that DM lies in the
core of compact stars without inquiring into its nature. We allow the con-
densed DM to interact with normal matter through nuclear interactions.
The resulting dark matter equation of state undergoes a strong first-order
phase transition to hadronic matter in the interior of compact stars, pro-
ducing the so-called compact star mass twins configurations, stars of about
the same gravitational mass but different radius. This phenomenon has
been studied in many works [8–14] where compact stars feature a decon-
fined quark matter core. The astrophysical aspects of the twins have been
studied in [15]. Moreover, in order to discriminate from the standard mass
twins scenario, we choose a hadronic equation of state that does not feature
quark deconfinement but nevertheless includes chiral symmetry restoration.
Thus, the resulting hybrid compact stars bear a DM core.

2. The equation of state

The most basic elements of compact star twins require a stiff enough
hadronic equation of star capable of describing stable high mass stars of more
than the observed 2M⊙ pulsars [16] and a strong first-order phase transition
to high densities. Following the softening at the phase transition, the EoS at
the high-density phase should be as well stiff enough to produce stable stars.
For compact star twins to appear, the Seidov condition ∆ε > ∆εcrit [17]
should be fulfilled. The expression

∆εcrit
εtrans

=
1

2
+

3

2

ptrans
εtrans

(1)

relates critical energy density difference at the transition ∆εcrit with the
energy density and pressure at the onset of DM, ptrans, and εtrans. As for the
lower neutron star densities, the NS crust is well described by the approach
developed in [18].

2.1. Hadronic equation of state

Central densities of neutron stars lie up to a few times normal nuclear
density, so it is to be expected that baryons change their properties due
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to the restoration of chiral symmetry. The recent lattice QCD (LQCD)
results [19] exhibit a clear manifestation of the parity doubling structure
for the low-lying baryons around the chiral crossover at finite temperature.
Such properties of the baryonic chiral partners can be described in the parity
doublet model [20]. It has been applied to hot and dense hadronic matter,
neutron stars, as well as the vacuum phenomenology of QCD (see, e.g.,
[21–25]). In the parity doublet model, the masses of the chiral partners,
N±, are given by

m± =
1

2

(√
(g1 + g2)

2 σ2 + 4m2
0 ∓ (g1 − g2)σ

)
, (2)

where gi’s are baryon-to-meson coupling constants and m0 is the chirally-
invariant mass parameter. From Eq. (2), it is clear that the chiral symmetry
breaking generates only the splitting between the two masses. When the
symmetry is restored, the masses become degenerate, m±(σ = 0) = m0. The
positive-parity state corresponds to the nucleon N(938). Its negative parity
partner is identified with N(1535). In this work, we adopt the parametriza-
tion for purely nucleonic EoSs in the mean-field approximation [25].

2.2. Dark matter equation of etate

For simplicity, in order to parametrize the microscopically unknown dark
matter equation of state, we consider the constant speed-of-sound (CSS)
approach, as introduced in [26]

ε(p) =

{
εNM(p) , p < ptrans ,
εNM(ptrans) + ∆ε+ c−2

DM(p− ptrans) , p > ptrans ,
(3)

where εNM is the energy density of nuclear matter, and cDM is the speed of
sound of dark matter.

3. Results

The resulting sequences of compact stars with dark matter cores are
displayed in the mass–radius diagram of Fig. 1. They are obtained by inte-
grating the Tolman–Oppenheimer–Volkoff equations [27, 28]

dP (r)

dr
= −

(ε(r) + P (r))
(
m(r) + 4πr3P (r)

)
r (r − 2m(r))

, (4)

dm(r)

dr
= 4πr2ε(r) (5)

for each compact star defined by its central density εc up to the maximum
mass where ∂M/∂εc > 0. For the solution of these equations, the EoS



3-A28.4 D. Alvarez-Castillo, M. Marczenko

relation P (ε) must be used as an input. For our models, it can be seen
that the three lower m0 EoS parameters can lead to stable configurations
at low compact star masses avoiding the excluded region by [29]. The re-
maining EoS with m0 = 700 MeV is soft enough to avoid this constraint
and support the 2M⊙ compact star, however, if dark matter sets in its core,
it would collapse due to the softness of its nuclear matter possibly leading
to a detectable radiation emission event. In addition, we have computed
other stellar properties such as the moment of inertia and tidal deformation,
which have been already observed through electromagnetic or gravitational
radiation of compact stars and their mergers, respectively. The moment of
inertia is computed as follows [30]

I ≃ J

1 + 2GJ/R3c2
, J =

8π

3

R∫
0

r4
(
ρ(r) +

P (r)

c2

)
Λ(r)dr (6)

with Λ(r) = [1 − 2Gm(r)/rc2]−1. The tidal deformability is computed fol-
lowing [31]. The expression Λ = 2κ2R

5/3M5 relates the Love number κ2 and
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Fig. 1. Mass–radius diagram for compact stars which includes measurement regions
as well as exclusion regions. Each curve corresponds to a sequence of compact stars
for the same parameters within our model which is characterized by the hadronic
m0 parameter. Description of the several regions in this diagram as well as their
usage within Bayesian studies can be found in [34].
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the mass M , and radius R of the star. This quantity has been estimated from
the neutron star merger event GW170817 [32, 33]. Figure 2 shows the cor-
responding diagrams for these quantities and astrophysical measurements,
whereas Table 1 shows the parameters found for our EoS models.
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Fig. 2. Stellar moment of inertia I (left panel) and dimensionless tidal deformability
Λ (right panel) related to the compact star mass M with corresponding measure-
ments in electromagnetic and gravitational signals, respectively. A recent Bayesian
estimation of the moment of inertia reports I∗ = 1.15+0.38

−0.24 × 1045g cm2 [35].

Table 1. EoS parameters found in this work.

Hadronic EoS Monset ∆ε cDM ptrans εtrans ntrans

m0 [MeV] [M⊙] [εtrans] [c] [MeV/fm3] [MeV/fm3] [fm−3]

550 1.325 0.75 0.80 30.95 281.32 0.286

600 1.325 0.75 0.90 30.95 281.32 0.286

650 1.325 0.70 0.98 30.95 281.32 0.286

700 2.000 0.75 1.00 417.63 1312.42 1.049

4. Outlook

The search for DM in NS has become feasible due to the birth of multi-
messenger astronomy and progress in the determination of the cold, dense
matter EoS. The macroscopical properties of compact stars may be affected
by quantities such as the cosmological constant [36] or the presence of DM,
the latter considered here. Observations of the effects of a strong phase
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transition on supernova explosions, compact stars, and their mergers [37] or
of NS cooling as well as detection of associated cosmic rays [38], eccentric
binary orbits [39], emissions from evolutionary stages [40], or the growth of
black holes as DM in the interior of rotating NS [41], may allow for testing our
NS twins hypothesis. In our work, we have introduced a realistic equation
of state for the nuclear matter which features chiral symmetry restoration
without phase transition to deconfined QM in order to produce NS twins
with a DM core described by the CSS EoS. Under these specific assumptions,
best upon corroboration of the hadronic EoS implemented, detection of the
mass twins would allow for the study of the bulk properties of DM. The
inclusion of more refined DM models in NS is work in progress.
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