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Statistical Interpretation of the Klein-Gordon Equation *)

Jan Rzewusk:

Physical Institute, Nicholas Copernicus University, Torun
September 11, 1950

It is possible to find a statistical interpretation of the equations containing
time derivatives of second and higher orders by a method similar to that used for
the Schriodinger equation. This enables us to calculate cross sections for scattering-
processes involving waves obeying various types- of fields equations without help:
of the quantum theory of fields. We shall explain the procedure on the special case
of the Klein-Gordon equation with a given perturbation

(L—m?) p =g ey, (1)

where () is a complec field, ¢(x) a given external potential, ¢ a small coupling
constant and # (x,) a point of the space-time. To distinguish points we shall often

* Part of lectures held at the.Theoretical Physics Conference in Zakopane-
KuZnice, August 7—26, 1950.
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write 1,2,... instead of a’,2”’,... It is most convenient to use the Green-function
treatment of field €quations introduced by Feynman?! (cf. also Rzewuski?). We
first express the solution of (1) by means of the boundary values on a hypersurface
consisting of two hyperplanes t=1%] and t{=1 and an arbitrary timelike hyper-
surface connecting those planes at infinity. The contribution from the latter vanishes.
and we get

w(2) = f w(1) Xg(1') G(1°2) d3af — f (1) X4(17) G(172) @ay. (2)

Here 1] >ty > t], d*x=dudydz,

-> <§ oo
G(12)= Y @"(12),
X,(x) = Qt 5 (3), ( )’é{"_ (12) (4)
QM (12) = ng<°>(13) @ (3) G (32) dta, (5)
and
1 e ikxﬂ
G(O)(l2)=(—2—”—)4f _ A4k, krgo = kpu(@1u—ou)- (6)

The integrand in (6) has two poles at k= -_,J;"l_c'z-{—mz. To give (6) an. unambiguous
meaning we fix the path of integration so as to make it pass the negative pole on
an infinitesimal circle in the lower half of the complex k,-plane and the positive'
pole in the upper half of this plane. The consequence of this prescription is that.

the operator X4(1)G®(12) propagates plane wavés

POx)=y(p) e~ %,  pP=m? (7y

with positive energy (p,>0) forwards in time and the complex conjugate of (7)
backwards in time:

0(2) for t,>t
0 De®2) Ba— | ¥ 2> h (
ftp (1) X4(1) GO(12) dB { o R (8)
0 ty >t
0% © 3, »o loh :
[0 ) Xa() 60(12) d¥y { o . et (9)

With help of (2), (4), (5), (8) and (9) we may express the solution of (1) by means
of 6O, ¢ and the incoming plane wave (%)

p1(2) = 93(2) +9 [ 6(23)9(3) 9)(3) Ay, (10)

and similarly the solution of the complex conjugate equation to (1) if ng denotes
the outgoing plane wave

w(2)=91"(2) +g [dry 93 (3) 9(3) 6(32), a1y
the only assumption being t]—>—o0, t{ —> +oco.
1 Feynman R. P., Phys. Rev., 78, 749 (1949).

2 Rzewuski J., Stud. Soc. Sc. Torunensis (in press); ‘Acta Phys. Polonica,.
preceding letter.
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Now we ask for the proba.bility amplitude for scattering in- the external
field @ of the plane wave g at #] =—oo into the state ¥ at 1{ = +oo. In the case
of the Schrodinger equation we a,rgue as follows: At #]{=-—o0 we have an incoming

plane wave 1p‘1’ which is the solution of the unperturbed Klein-Gordon equation.

‘The perturbation ¢ changes ng into say ; which is the solution of the full equation.
On a hypersurface say ¢t=1{ this ¢, may be considered as a superposition of plane
waves like (7). The probability amplitude that at a measurement we find the state
qu is simply the corresponding expansion coefficient

[l (1) By (12)

if the ¢° are normalized to unity. This coefficient is independent of the time ¢, in
the limit tl -+ o0.
We generalize this procedure for the Klein-Gordon equation and take

Aly? —>1p2)—/ W0 (1) Y (1) 9, (1) dBay (13)

as the transition amplitude 4 —» ¢3. Here o, (1”) depends linearly on the initial

state o] 9(1’) according to (10) and ¥(1”’) is an unknown operator. The linear de-
pendenee on the initial and final state is necessary in view of the linearity of quantum
theory. The operator Y(x) is easily determined by a symmetry argument. Indeed,
by means of (11), we can express yp¥(1l) by the outgoing wave ¢‘2’*(1”) at 4 oo.
‘Thus the same transition amplitude may be written

A~ o) = [pr(1) Y1) (1) da, (14)

where Y’ is another unknown operator. It is understood that in (13) the limes
> and in (14) §{ »—oo is taken. From the identity of (13) and (14) for all possible

9} and g} it follows that
Y(z)=1'(r)=X(2)= = —=- (15)
Normalizing the plane waves in such a way that the unperturbed transition
9? -+ ¢? has an amplitude of modulus one, we get
1
0
P (1’) = ’
1 Vep v

where V is the considered volume of space. Now we can finally write (13) or (14)
in either of the forms

(16)

Ay > =0 f d*a 3" (2) p(@) vy (@) =
(17)
=—i6¢?wg~—g fd“x ¥ (@) p() P ().

1if
Here ¢ 0={ S =D
P12 0if py £ p,
of the p’s. In the case of continous spectrum the §-function should be used). We

. (We consider a finite V and therefore a discrete spectrum
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may note that the final result (17) has not the covariant form of (10) or (11). This
is caused by the non-invariance of the definition of the transition amplitude and
the resulting nen-invariance of the normalization procedure. However, the physically
important second terms of both forms of (17) become relativistically invariant after
multiplication with J(p,).(p2)s €. g-

—g Vo), [ @ v @) p(@) v, @) VB, (18)

An analogous procedure may be applied to relativistic equations of higher order.
A full account of this work will be published shortly in this journal.




