5

Fasc.

Vol. XXVIII (1965)

ACTA PHYSICA POLONICA

Vol. XXVIII (1965) ACTA PHYSICA POLONICA Fasc. 5 (11)
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It is shown that the normalization volume (¥;) which is arbitrary when using the standard
versions of the statistical model can be determined from experiment, when quantum statistics
are applied to the particles. Vy—> 00 corresponds to the classical slimit of quantum statistics.
Then in the thermodynamic limit Boltzmann’s formula should be used. The use of Planck’s
formula is unjustified. If 7 is finite and such that Planck’s formula applies for average multi-
plicities, Finstein’s condensation should be observed for high multiplicities. The absence of
a significant surplus of very low energy pions in high multiplicity events yields a lower bound
for V,. The isospin factor can be separated from the phase spac efactor only in the classical limit

I. The phase space integral

According to the statistical model of multiple production the probability of reaching
an n-particle final state is proportional to the so-called phase space integral

P ) = s f dp ot (P— Zp.-). M

Here P is the total four-momentum in the initial state and p; is the four-momentum of the
i-th final state particle. It is understood that the integral should be evaluated in the centre-of-
-mass system where P = (E, 0, 0, 0).

The proportionality factor, which is not written in (1), is zero if the transition to the
final state is forbidden by some conservation laws. For allowed final states it contains a
factor which depends on the total isospin and on the number and isospins of the final
state particles, but not on energy, and a normalizing factor which does not depend on .
The normalizing factor has no effect on the discussion presented in this paper. The isospin
factor is discussed in Section VII.

An important point for our further analysis is the interpretation of the coefficient V™",
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IT. Interpretation of the parameter V

In Fermi’s original paper (Fermi 1950) ¥ was introduced as a product of two factors.
A normalization volume V), supposed large, came from the conversion of the summation
over final states into an integral over momentum space

Zp I (2—:;;2;; yfd""‘p @)

LERIUD 2%

This formula is exact in the limit V,— oo. For V), finite it may be used as an approximation
which, however, becomes very bad when ¥, is so small that either the energy differences
between neighbouring energy levels become comparable to the average energy of a particle,
or the Einstein condensation occurs. Besides, a statistical weight

V,= V]V, 3

was introduced for each one-particle state.

So as to get a crude estimate of ¥ the following argument was used. In order to take
part in the production process each particle must be in an interaction volume surrounding
the point where the collision takes place. The radius of the interaction volume should be of
the order of the range of the meson forces i.e. of the Compton wave length of the 7 meson.
Since one-particle states are plane waves normalized in the volume V,, the probability that
a particle takes part in the process is ¥, with 7 understood as the interaction volume.
Accordingly a plausible estimate is

V=2 amy® “)

3
where m,, denotes the rest mass of the ;x meson and, as before, the units A =1, ¢ =1 are
used. Note that in this argument the final state particles are described as a gas of non-
interacting particles (perfect gas). Fermi suggested also that for very high energies the
Lorentz contraction of the meson clouds of the colliding particles should be taken into
account. Thus for a collision of two particles of mass M each, (4) should be replaced by

4 s f2M

Formulae (4) and (4a) give results in reasonably good agreement with experiment (cf. e.g.
Kretzschmar 1961).

Let us note that the notion of an interaction volume is not essential for this interpreta-
tion of formula (1). It is possible to interpret (V]V,)" as an average of the squared modulus
of the transition matrix element with no reference to the interaction volume. ¥ must have
the dimension of volume, in order to make Vd®p dimensionless (e. g. Kretzschmar 1961).

Once the notion of interaction volume was introduced, it became possible to give
a different interpretation of formula (1). According to this interpretation the interaction
volume should be visualised as a kind of box, in which the particles are produced and stay



5

Fasc.

Vol. XXVIII (1965)

ACTA PHYSICA POLONICA

577

for some time. In our previous notation this corresponds to ¥, = ¥V and ¥; = 1. Such an
approach is open to some objections. From the purely mathematical point of view transition
(2) is unjustified for V, as small as (4) or (4a). This difficulty was discussed by Auluck and
Kothari (1953), (1954), Kothari (1954) and Nanda (1954). The corrections which should be
added to the phase space integral may be large, especially if assumption (4a) is made, and
are very sensitive to the boundary conditions on the boundary of volume ¥ (Nanda 1954).
Since it is known from quantum field theory that a sharp boundary of the meson field would
cause infinite energy fluctuations, the problem of finding suitable boundary conditions is
nontrivial. A more fundamental difficulty was pointed out by Pomeranchuk (1951). In the
box version of the model it is not clear why the production process should stop. When two
strongly interacting particles get within a distance of order my ! from each other, they start
creating new particles. These particles should interact strongly both with each other and
with the initial particles, presumably creating more particles. Instead, in the model: the
final state particles are described as a perfect gas. In order to avoid this difficulty the hydro-
dynamical model was developed (e.g. Belenkij and Landau 1955), but its predictions differ
appreciably from those of the statistical model.

In spite of the objections above, formula (1) does not depend on the interpretation of
the parameter ¥, and from the practical point of view the two interpretations are equivalent.
We show in the next section that this is no more the case when quantum statistics are
applied to the final state particles.

I, Qualitative discussion of the effects of quantum statistics

In the classical phase space integral (1) only the product V=V;¥, occurs. Therefore
doubling 7] has the same effect as doubling V,. Let us check that this does not hold true
for quantum statistics.

It is seen from formula (2) that the phase space integral is a sum over possible final
states. Let us consider a final state with two particles but only one one-particle state. In this
state both particles are in state 4. We denote this state by 44. For fermions the state 44
is forbidden by the Pauli principle, therefore there is no two-particle state. For two particles
the statistical weight of a state is V3. Consequently the sums over states for bosons, for
classical statistics and for fermions are V%, V2, and 0. Let us double V. According to (2)
this means doubling the number of one-particle states; thus A splits into two states, say,
a and b. Now for bosons there are three possible two-particle states: aa, ab, and bb. For
classical statistics there are four states because ba is no longer identical with ab, and for
fermions there is only one state, because aa, and bb are forbidden. Thus the sums over
states for the three statistics are: 32, 4V2,and V2. It is seen that only for classical statistics
can the result be reproduced by doubling /.

Similar results are obtained for systems composed of more particles and having more
one-particle states. If, however, the number of one-particle states is very large compared
with the number of particles, the probability of finding two or more particles in one one-
-particle state becomes negligible. Consequently, the Pauli principle becomes irrelevant. For
each kind of quantum statistics the error, when using formula (1), consists in counting
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separately all the permutations of particles among the one-particle states. Thus for n particles
each state is counted n! times. The corrected sum over states is

Py(n, E) = % P(n, E). 5

The notation P is used to keep in mind that this is the classical limit of quantum statistics.

In particular for ¥, tending to infinity the density of one-particle states goes to infinity
according to (2), and the classical limit (5) may be used. This implies that in the thermody-
namic limit Boltzmann’s formula

n, = const e 7 ©)

and not Planck’s formula

n, = const (P —1)-1, @

should be used for pions. In (6) and (7) n, denotes the number of particles in the one-particle
state characterized by four-momentum p, § is a four-vector which in the centre-of-mass
system has componeats (f,, 0,0, 0) with f, inversly proportional to the absolute termeature.
The line above n, denotes averaging. In order to confirm this result the sum of phase space
integrals necessary for the theory of large angle proton-proton scatiering was evaluated
{Zalewski 1965}, it is found that the defficiencies of the thermodynamic method found in
previous investigations disappear when Planck’s distribution is replaced by the Boltz-
mann’s.

For V, finite and small, Planck’s distribution might apply, but then a qualitatively new
effect: the Einstein condensation is likely to occur. This problem is analysed in Section VI.

For distinguishable particles a representation where the momentum of each particle is spe-
cified yields for the sum over states the convenient formula (1). For indistinguishable particles
the representation of occupation numbers n, is appropriate. This is well known from statist-
ical physics (e.g. Landau and Lifshits 1951). In the next section a formula for the sum
over states of indistinguishable particles is derived.

1V. The sum over states of indistinguishable particles

The state of a set of indistinguishable particles is specified when all the occupation
numbers n, are given. Indeed, the occupation numbers define the state up to exchanges of
particles, and for indistinguishable particles an exchange of particles does not change the
state. We shall denote the full set of occupation numbers by [n,]. Thus the sum over states
of r indistinguishable particles is

PQ("" E)= 2 ot (P"_E Pnp)a(n*z np) Hu’np(P) » 8)
[npl ? ? ?
where u(p) is the statistical weight of a one-particle state. In the ordinary statistical model
u(p) = V;, but our results can be easily generalized to the covariant version of the model
{Srivastava and Sudarshan 1958), where u(p) = V/e with & denoting the energy of a particle
with momentum p. The symbol 6 is used for both the Dirac and the Kronecker deltas.
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The summation over [n,] can be carried out. Let us rewrite (8) in the form

Py =3 64(P—§ pny,) 6(n—~§ n,) fP+en IpI (Vie~ oy, 9

[rp]

where a is a constant and f§ a four-vector. Because of the d-functions, the exponential factors
reduce to unity for any @ and . We assume that f is positive time-like and that for bosons

(BP)min +a> In V3, (10)

where {8p)yi, is the smallest possible value of fip. Using the identities

dn—Din,) = @0)* [ dp 57, (11)
» -7
and
o0
O(P— 3] pn,) = (2m)~4 [ dit & jme" 12)
» 00
we can cast Pp(n, E) in the following form:
Py(n, E) = (27z)'5fd<p fd‘t Saanil | | [Z] g"(pit, @) efE T, 13)
-2 —00 P lInp
where
8(pit, @) = ¥y e~(@tin-ion (14)

In formula (13) the summations over the n, are decoupled. For each p there is a simple geometr-
ical progression. For fermions a finite one with n,=0,1; for bosons an infinite one which,
however, converges because of assumptions (10). Carrying out the summations we obtain

Py(n, E) = (2n)‘5fd<p fd"t @ tion (B +inp+0(.9) (15)
where
P(t, ) = F 20 In [1Fg(ps ¢, 9)]- (16)
)

The upper sings apply to a boson gas, the lower signs apply 1o a fermion gas. The particular
case of formula (15) for ¢« = 0, V, = ¥V and V, == 1 was derived by Magalinskij and Terlet-
skij (1957).

For further reference we derive the analogue of formula (15) for the ordinary phase
space integral (1). Multiplying the integrand of (1) by 1=exp (P—; p)f and using
identity (12) we obtain

oo oo
f‘ -y

P ‘
P(n, E) = I2oEd (2nm)—1 f d*t [ j d3p e—B+ip

—00

n

efP . d7)
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V. Discussion of the sum over states Pg (n, E) for V, tending to infinity

For V, tending to infinity formula (2) may be used and (16) yields

@(t, tp) =T f d3_p n [1 F Vl e-(u+i¢)~(ﬁ+iz)p], (18)

Ve
@m)®
Since @ must remain finite, #; must tend to zero. Therefore the logarithm may be replaced
by the first non-vanishing term of its expansion in powers of 7. The result is

D, )= (?Z? e—(a+i¢)fd3p e—B+ip, (19)

where V' = ¥V, ¥, is substituted according to (3). Expanding exp @ in a power series in @,
substituting the result into (15), and performing the integration over @ term by term we
obtain a non-vanishing contribution only from the n-th term. The result is

1 [ 7 S
— (2m)4 4 3, o—B+i)p | P,
Po(n, E) = (2n) fd t— [(27t)3 fdp e t p] e (20)
Comparing with (17) we have finally
Py(n, E) = Py (n, E), 2D

with Py defined by (5).

We conclude that if the interpretation with a large normalization volume is chosen, the
classical limit of the theory may be used. The implications of the assumption that V, is
finite are discussed in the next section.

VI. Discussion of the sum over states Po(n, E) for V, finite

For V, finite intergral (15) can be evaluated by the steepest descents method. A detailed
and mathematically rigorous description of this calculation is given in Khinchin’s mono-
graph (Khinchin 1951). When applying this to systems containing a finite, not very large,
number of particles, one has to include some correction terms. This part of the calculation
is quite analogous to the calculations done for the classical case by Fialho (1957) and by
Lurcat and Mazur (1964). Here we give only a qualitative discussion of the results.

In order to apply the steepest descents method it is convenient to choose the para-
meters @ and B in such a way that the integrand of (15) has a maximum at ¢ =0, ¢ = 0.
Then the first derivatives of the exponent should vanish for ¢ =0, ¢t = 0. Therefore we
determine ¢ and § from the equations

P = p(V,e* 1)1, (22)
?

no= Y (Ve #x1)-1 (23)

P
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If we assume that the centre-of-mass system is the rest system of f§, the equations (22) for
the spatial components are identically satisfied. Therefore from the four equations (22) only
one is left:
E =Y eV, e P 1)1, o (22a)
?

where the symbol f is used to denote the time component of the four-vector § in its rest
system. Introducing the notation

Vite® = et (24)

where p is the chemical potential, we obtain the standard formulae of statistical physics.
In particular Planck’s distribution is obtained when two condition are fulfilled. One of them
is that g = 0. The other one is that ¥, is sufficiently large to justify transition (2). For
a detailed discussion of the transition to the thermodynamic limit the reader is referred
to Khinchins book (Khinchin 1951).

It is seen from the equation system (22a), (23) that Planck’s formula (implying p = 0)
cannot be applicable for all multiplicities at a given energy. In particular for high energies
nad low multiplicities e-#* must be large in order to make n small. In this case the exponen-
tial in the denominators is large, unity can be neglected, and the classical limit is recovered.

For bosons at high multiplicities Planck’s distribution might be a good approxi-
mation, but we would like to point out that if it is a good approximation for average
multiplicities, then Einstein’s condensation should be expected at high multiplicities.

When V, is large it is a good approximation to assume that Einstein’s condensation
occurs when the actual number of particles exceeds the maximal value of the integral ap-
proximation to (23). We keep this estimate, though for our small volume it is less good.
Using condition (10) and noticing that n increases when & decreases we obtain for the maximal
value of the integral approximation

ot = f dip(e~Cmin —1), (25)

where f should be determined from Eq. (22a) with V, e® = e~ * min. The surplus of particles
RN, concentrates in the lowest energy states. Consequently the energy spectrum of the
final state particles acquires an additional maximum in the vicinity of the minimal energy,
besides the usual maximum of Planck’s distribution.

In order to estimate the orders of magnitude involved, we solve equation system (22a),
(25) for the centre-of-mass energy E = 5 BeV. Using the integral approximation, and the
ultrarelativistic approximation, where (f¢)y;, = 0, we obtain

R f dsppletr—1) = 202 riaypes (26)

Prmex = % f dplef—1)~1 = ;? @) 3, @7)
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where {(x) is the Riemannian zeta-function. Thus substituting V, from (4)
(Bmy)t = 2.26, (28)
n>ng., =6. (29)

The ultrarelativistic approximation is justified when (fm)2<€ 1. Thus it should be a reason-
able approximation in our case.

If V, is identified with the contracted volume (4a), then at high energies the gas is
practically two-dimensional, as was pointed out by Nanda (1954). Also then the predic-
tions deviate considerably from those of the standard statistical model.

Estimate (29) is obtained on the assumption that only one kind of particles occurs in the
final state. E. g. it could be applied to the annihilation of proton-antiproton pairs, if all the
final state particles were z° mesons. Strictly speaking for zz mesons the isospin conservation
should be taken into account, however, its effect is to reduce the number of available final
states, thus it would decrease n,,, and the condition for n given in (29) and (30) would
remain sufficient. Since experimentally processes where all the final state particles are neu-
rtals are difficult to study, an estimate was found for the case when @+ and n~ mesons are
produced. If conservation of charge is neglected, the number of available one-particle states
is twice that for indistinguishable particles. Indeed for each momentum the particle may

have two different charge states. This correspond formally to a doubling of ¥V, and, using
formulae (26) and (27), we obtain

=7 (30)

It is a moderate multiplicity for F == 5 BeV. Therefore a study of very low energy mesons
produced in high multiplicity annihilation processes should be a critical test for the statistical
model with a finite normalization volume.

VII. Effect of isospin conservation

The preceding discussion applies to n identical particles with zero isospin. It is easy,
however, to extend it for particles belonging to an arbitrary isomultiplet. This is achieved
by introducing the following two changes into formula (8). Firstly, the one-particle states
must be labelled by two indices: p and m, where m is the third component of isospin.
Secondly, a factor

8(I— 3 mny, ) —6I+1— 3 mn, ) (31)
Psm

b,m

must be introduced. The summations over m go from —j to +j where j is the isospin of
a single particle. The term with the first § yields the number of states with Xm = I, which
is equal to the number of isomultiplets with isospin not smaller than 1. The second term
yields the number of states with isospin not smaller than I-+-1. Thus the difference is equal to
the number of states with isospin I. This is a standard argument (¢f. e.g. Magalinskij 1959).
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Introducing these modifications we obtain

Py(n, E)y = 2} 864 (P— pz pn, W8n— D n, ) [6(1— Y mn, )—
o pom

[npsm} om

—o(+1— 3 mn,, )| TT > (p, m). (32)
pm oym
This formula is transformed using the identities (11), (12) and
s(I— X mn, ,)—6(I+1— D mn, ) =

psm psm
= (27)1 f dy [P — eI+ 1¥] . e—izmmnp,mw' @)
-7

After introducing convergence factors with @ and f, and performing the summation over
Ty, s exactly as in the previous case, the result is

n n o0
Py(n, E, I) = (27)" f dy f do f dit elatiolnt BHNP O 0,9) [oilv_ il +Dv] (34)

where
D¢, @, p) = :EZ mn(d+V; e“("*‘"”)‘(ﬂ“‘)"*"“’). (35)
pam

Our first conclusion is that in the general case Pg(n, E, I) does not split into a product
of an isospin part and a phase space part. Let us consider the classical limit which, according
to the previous discussion, is probably the realistic one. In this limit

o=r> [e=(BHit)p) o= (atig) —imy, (36)
Pom
Expanding exp @ and performing the integrations over ¢ and u term by term, we obtain
Py(n, E, I) = fiI)Py(n, E), (37)
where
S) = @)t [ dy(er—e ) (3] ey (38)

is identical with the classical expression for the isospin weight (¢f. Magalinskij 1959). This
formula may also be rewritten in a form familiar from group theory

S) = @n)* [ dyp(l—cos ) (x(¥))"%:(¥), (39)
where )
. e my MM
1i(9) = ; o= (40)

is the character of the j-th representation of the rotation group.

A generalization to systems containing particles belonging to more than one isomultiplet
introduces only minor changes. The qualitative results remain unchanged.

The author thanks Mr Kotanski for useful discussions.
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