
Vol. 39 (2008) ACTA PHYSICA POLONICA B No 5
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Recent investigations call attention to the dynamics of anomalous dif-
fusion and its connection with basic principles of statistical mechanics. We
present here a short review of those ideas and their implications.
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1. Introduction

Diffusion is a fundamental problem in statistical physics [1–4] and much
more simple to describe than reaction rates [5–7], for example. From the
studies of diffusion, it is possible to obtain a direct description of impor-
tant concepts in physics, such as the ergodic hypothesis (EH) [8–11] and the
fluctuation-dissipation theorem (FDT) [4,12,13]. Some of the first concepts
of statistical mechanics, for instance the Gaussian distribution of particles,
were obtained in the study of diffusion, which also led promptly to other
concepts as the Boltzmann equilibrium distribution. In our study of dif-
fusion, we use the Mori formalism [14] which has a well defined memory
function for non-Markovian systems. In this context, the Kubo response
function [15] is of special importance, since it was formulated in terms of
correlation functions which can be obtained by the use of linear response
theory and are directly connected with experiments, such as light or neu-
tron scattering [16]. In this article we display some recent results in this
area, and we point the reader to selected literature directly related to this
topic.
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2. Anomalous diffusion

Anomalies in the traditional Einstein diffusion have been the focus of
extensive research in many disciplines [13, 17–23]. In order to address this
problem let us consider the generalized Langevin equation (GLE) in the
form [12,14, 15]

dP (t)

dt
= −

t
∫

0

Π(t − t′)P (t′)dt′ + F (t) , (1)

where P is the particle momentum, Π(t) is a kernel, or memory function,
and F (t) is a random force, which fulfills 〈F (t)〉 = 0 and the fluctuation-
dissipation theorem (FDT):

〈F (t)F (t′)〉 = 〈P 2〉eqΠ(t − t′) . (2)

The usual manner to study the diffusive dynamics is to investigate the mean
square displacement of the particles, given by

lim
t→∞

〈x2(t)〉 ∝ tα . (3)

The exponent α classifies the type of diffusion: for α = 1, we have normal
diffusion; for 0 < α < 1, subdiffusion; and α > 1, superdiffusion. To obtain
average values, it is important to define the correlation function for the
dynamical operator P as

CP (t) = 〈P (t)P (0)〉 , (4)

where the brackets 〈〉 denote an ensemble average. One can also define the
normalized correlation function

R(t) = CP (t)/CP (0) , (5)

which obeys the equation

dR(t)

dt
= −

t
∫

0

Π(t − t′)R(t′)dt′ . (6)

Its Laplace transform yields

R̃(z) =
1

z + Π̃(z)
. (7)
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Recently, an important achievement in the dynamics of diffusion has been
obtained by Morgado et al. [18]. They have shown that if

lim
z→0

Π̃(z) ≈ czν , (8)

where c is a positive nondimensional constant, then

α = 1 + ν . (9)

Consequently, the behavior of the memory Π̃(z) for small z determines the
long range behavior of the diffusion, Eq. (3). This result has found many
applications: the study of molecular motors [20, 23], anomalous diffusion
[13, 22, 24, 25], and the dynamics of dipolar chains [26] are a few examples.

In a subsequent work, Costa et al. [13] have shown that the average value
of the momentum is

〈P 2(t)〉 = 〈P 2〉eq + R2(t)[〈P 2(0)〉 − 〈P 2〉eq] . (10)

In this equation the average value will be the equilibrium value if

lim
t→∞

R(t) = 0 , (11)

i.e., irreversibility is a necessary and sufficient condition for ergodicity to
hold in diffusion. For systems which violate the condition given in Eq. (11),
there will be no ergodicity. Using the final value theorem and Eq. (7) we
obtain

lim
t→∞

R(t) = lim
z→0

zR̃(z) = lim
z→0

1

1 + czα−2
. (12)

This relation shows that for most of the diffusive regimes, 0 < α < 2,
the equilibrium condition, Eq. (11), holds. However, for ballistic diffusion,
α = 2, it is not fulfilled

lim
t→∞

R(t) = lim
z→0

1

1 + c
6= 0 . (13)

This means that ballistic diffusion violates ergodicity and the fluctuation
dissipation theorem [13]. In other words, if the ballistic system is not ini-
tially equilibrated, then it will never reach equilibrium and the final result of
any measurement will depend on the initial conditions. In this situation the
EH will not be valid. For α > 2, no memory of the initial condition is lost
(R(t → ∞) = 1) and the process is not diffusive, being an activated process
for which the GLE does not work [13]. The results of this letter apply to all
kinds of diffusion, 0 ≤ α ≤ 2, described by a GLE independent of the mem-
ory range. This gives origin to new studies in ballistic diffusion [20, 23, 24].
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For any initial distribution of values P (0), with 〈F (t)P (0)〉 = 0, it is
possible to obtain the temporal evolution of the moments of P ,

〈P (t)〉 = 〈P (0)〉R(t) . (14)

Again, after an infinite time, we expect that 〈P (t → ∞)〉 = 0. However,
for ballistic diffusion, this is not the case, as can be seen from Eq. (13).
The astonishing result here is the existence of a residual current such as in
superfluids.

3. Nonexponential behavior

From the above results, it is quite clear that the correlation for ballistic
diffusion will not decay exponentially to equilibrium. Besides the ballistic
case, any anomalous regime will present nonexponential decay. Even for
normal diffusion, a large number of relaxations may be nonexponential [18].
There are a large number of phenomena where the systems do not relax
immediately to equilibrium. Those phenomena, usually associated with non-
aging, have nonexponential relaxation and are most commonly described by
power laws or stretched exponentials. The study of anomalous relaxation
has produced quite interesting results [27–34].

For a system described by a GLE of the form Eq. (1), the evolution relies
on the noise that drives the particles. For a harmonic noise [18]

F (t) =
1√

2kBT

∫

√

ρ(ω) cos(ωt + φ(ω))dω , (15)

where ρ is the noise spectral density, kB is the Boltzmann constant, and φ
is a set of random phases in the range 0 ≤ φ ≤ 2π. A systematic study
carried on by Vainstein et al. [25] has shown that the spectral density plays
a fundamental role in the description of stochastic processes as we shall see.
First, the memory function Π(t) can be easily obtained by the use of the
FDT, Eq. (2), as

Π(t) =

∫

ρ(ω) cos(ωt)dω , (16)

in such a way that the average cancels the random terms and obviously
the memory is a deterministic even function. The Laplace transform of the
memory Π̃(z) is an odd function in z; therefore, R̃(z) given in Eq. (7) is also
an odd function in z. This implies that by inverting the Laplace transform,
R(t) is an even function of t

R(−t) = R(t) . (17)
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Second, the condition given by Eq. (8) to determine the exponent α,
Eq. (9), for a spectral density of the form

lim
ω→0

ρ(ω) ≈ ωβ , (18)

becomes

ν =







β, β < 1 ;

1, β ≥ 1 .
(19)

This shows that a noise spectral density in the form of a power law can
produce only diffusive motion in the region 0 ≤ α ≤ 2. Diffusive motion
beyond ballistic is not allowed, what can be observed by using the Laplace
transform.

To study relaxation we need to know R(t), which can be calculated
analytically in restricted cases, being obtained numerically most of the times.
A recent study shows that exponential decay, power laws or even Mittag–
Leffler functions are particular cases of a more general function [25] which
approximates the decay. Indeed, considering time reversal symmetry [16]
and the discussion above (see Eq. (17)), the correlation function must be
even and cannot be any of those forms. We shall expose here the conditions
under which it is possible to obtain an approximately exponential decay,
what happens in certain circumstances for normal diffusion. In this case,

γ = lim
z→0

Π̃(z) =
π

2
ρ(0) . (20)

Consequently, the friction in the usual Langevin equation is nothing more
than the noise spectral density for the lower modes. For an arbitrary mem-
ory, the system has a rich behavior; even for normal diffusion it is possible
to show the existence of at least three time ranges [25]. A normal diffusion
can be obtained using a spectral density of the form [18]

ρ(ω) =







2γ
π

, ω < ωs ;

0, ω > ωs .
(21)

For a broad band noise spectral density, γ/ωs < 1, and long times t > γ−1

it is possible to decouple Eq. (6) to obtain an exponential decay of the
form R(t) = exp (−γt), which will bring the system to equilibrium, that is,
R(t → ∞) → 0.

Most of the experimental situations where anomalous relaxation is pre-
sent arise in complex, nonlinear or far from equilibrium structures in which
detailed balance does not hold. Good examples can be found in supercooled
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liquids [27] and in glasses [28, 29]. Those systems, however, apparently do
not have any easy analytical solution. On the another hand, diffusion can
present closed solution for the main expectation values, and arises as a simple
laboratory for the discussion of those properties.

4. Nonlinear dynamics I: Chain dynamics

As mentioned before [26], chain dynamics is a quite interesting subject
where the application of those ideas may lead to important results. There is
a particular problem that has attracted our attention: the breaking process
of a chain of N monomers of mass M subject to a strain S. The equation
of motion for monomer j, j = 1, 2, . . . N , is [35, 36]

M
d2Xj

dt2
= Gj − Gj+1 − Mγ

dXj

dt
+ F (t) , (22)

where the forces

Gj = −∂U(a + S + y)

∂y
|Xj−Xj−1

(23)

are derived from the interparticle potential U . In this situation, it is simpler
to treat the random force F (t) as delta correlated, i.e., Π(t) = 2γδ(t). We
then define an effective potential and consider the system as a one body
Kramers problem. However, simulations show that the breaking rate is
around a hundred times smaller than the usual Kramers rate [5]. Several
approaches were used in order to overcome the problem; one of them was
to consider that the collective motion of the chain generates a harmonic
noise, which is correlated and has an associated memory. Those were to be
added to Eq. (22) in order to consider a non-Markovian analysis [37]. This
improves the results, but does not solve the problem. This is an important
issue, because the simulation really describes a very important experiment.
Polymers used as an additive in a turbulent flow have breaking rates which
are up to 10−6 smaller than those computed using the simple Kramers the-
ory; the simulation [38], on the other hand, is in perfect agreement with the
experiments.

5. Nonlinear dynamics II: Synchronization

Nonlinear dynamics plus noise is an explosive mixture with a large num-
ber of unexpected results. The study of the evolution of maps subject to
a common noise shows different examples of synchronization [39, 40]. Be-
sides that, the study of Langevin trajectories shows very nice patterns both
for systems without memory [41] and with memory [42]. Synchronization of
many different phenomena arises continuously in the literature [43].
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6. Final remarks

Diffusion, one of the simplest phenomena in physics, is a starting point
for the study of simple and complex fluids. Many theorems in statistical
physics and even proper applications of its formalism, such as a “simple linear
response theory”, rely on the ergodic hypothesis and its validation. Again,
diffusion shows up as a simple way to address the problem. In this work we
have discussed various regimes of anomalous diffusion, which are ergodic in
the range of exponents 0 < α < 2, where α defines the asymptotic behavior
of the diffusion, Eq. (3). For α = 2, we have the special ballistic case, for
which ergodicity is not valid, as we have seen. In recent years, molecular
motors have been receiving a lot of attention [20, 23] because of their large
potential for pure and applied science. In this subject, a discussion such
as the one presented in this paper may be very useful. Moreover, there
are many situations that present violation of the EH, particularly in glassy
systems [28, 29], and others were the EH holds. For example, dynamical
simulations and equilibrium statistical mechanics were recently used to treat
glass transition calculations [34]. The agreement found between the two
approaches is a strong indication of the validity of the EH. This is a quite
surprising result for such a complex system. Disordered systems are still
a large universe in which to explore the basic assumptions of statistical
mechanics.
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