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We review those aspects of chiral gauge theories which are related
to the violation of the decoupling property. The case of the top quark
is worked out in detail. The mechanism of anomaly cancellation in the
low-energy effective theory is illustrated in a simple model.
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1. Introduction

These lectures review some low-energy features of gauge theories with
massive chiral fermions. The standard model (SM), present theory of elec-
troweak interactions, describes three generations of fermions transforming
in chiral representations of the gauge group SU(2);,®U(1)y. Compared to
the electroweak scale defined by the Fermi constant Gy, all ferinions are es-
sentially massless, with the exception of the top quark, whose mass is even
larger than the vector boson masses. This remarkable hierarchy, totally
mysterious at the present time, is accounted for in the theory by a corre-
sponding hierarchy of coupling constants, which singles out the top Yukawa
coupling as the largest.

Aim of these lectures is to describe the consequences of this basic fact.
To start with, we review the decoupling theorem of Appelquist and Caraz-
zone [1]. We show how the decoupling property is violated in the SM with
an heavy top quark just because of the assumed relation between masses
and couplings.

* Presented at the XVII International School of Theoretical Physics “Standard
Model & Beyond ’93”, Sczezyrk, Poland, September 19-27, 1993.
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Such a violation is not academic. Indeed it controls the pattern of the
potentially largest electroweak radiative corrections and it shows up in the
real world with specific signals. Apart from the existence of lower bounds
on the top mass and the probably imminent (maybe recent, for the reader)
discovery of the top at the Tevatron collider, it is astonishing how strong
and real is the indirect evidence for the top quark in BB oscillations. The
often underestimated agreement of the large set of electroweak precision
measurements at LEP and SLC with the SM expectations is perhaps less
striking but it represents a highly non-trivial fact.

Instead of discussing the full one-loop radiative corrections, necessary to
perform a complete analysis of the LEP/SLC data [2], we illustrate the pat-
tern of the leading corrections in the framework of an effective Lagrangian.
More than a device used to simplify the discussion of the quantum theory,
the effective Lagrangian approach reproduces automatically the infinite set
of Ward identities of SU(2)L,®U(1)y [3], some of which has revealed so
useful in dealing with leading higher-order computations.

A final lecture is devoted to the mechanism of anomaly cancellation
in the low-energy theory. The gauge invariance of the effective action, an
indispensable requirement, is apparently broken by the anomalous fermion
content of the low-energy spectrum. This breaking is however repaired by
a Wess—Zumino term whose gauge variation exactly compensates the gauge
variation coming from the classical action. The independence of the physical
amplitudes from the gauge parameter is thus guaranteed.

2. The decoupling theorem

In this section we briefly review the decoupling theorem [1]. Consider
a field theory with particles of mass M. If the energy at which we per-
form measurements is much smaller than M, these particles will affect the
predictions of the theory only through their virtual effects.

The decoupling theorem states that, in the limit M — oo, the above
mentioned effects are unobservable. More precisely, the effects from heavy
particles are either suppressed by inverse powers of M, or they renormalize
parameters of the low-energy theory, that is they can be absorbed into
renormalizations of couplings, masses, wave functions of the theory obtained
by removing the heavy particles.

Examples of theories enjoying the decoupling property are theories with
an exact gauge symmetry, like, for instance, QED or QCD. The U(1) gauge
invariant Lagrangian of QED is:

L= ~}Fu F* + i7" Dyt - My, (21)
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where F,, = 0,A, — 0, A, is the field strength of the photon field A, and
the covariant derivative D, is given by:

Dy = (8, —ieA, ). (2.2)

Suppose that we are interested in the behaviour of the electromagnetic
field A, for energies much smaller than the electron mass M. The first
effects potentially affected by M will show up at one-loop order. Consider,
as the simplest case, the one-loop contribution —:II,,(p) to the photon
self-energy. Using dimensional regularization, one obtains:

4-d d
—ill,(p) = —€*(4*) T %’ﬁ (‘mﬁ_;_ M‘ruﬁ_lM) . (23)

By introducing the Feynman parametrization, by evaluating the trace and
performing the usual shift in the integration variable, one has:

il = -120'5 [ 5 / “apl(a) o

+ (ngﬂ-l’ - 2pupu)t(1 —t) + Mzguu] ) (2.4)

where
N =0(t) = M? - p’t(1 - ¢). (2.5)

After the Wick rotation, the integration over the loop variable gives:

. 4—d
—illuy(p) = — ( )4/2(#) * (P — p“pu)/dtt 1—t)0‘r1‘( 5 )
_it e )A+6/dtt( o 28|
3(47r)2 p g#l/ pﬂ-pl’ “2 veey
0
(2.6)
where
A= —-—2— + —~Indrn
7g =~ 0.577 (2.7)

and dots in Eq. (2.6) stand for terms which vanish in the limit d — 4. Since
we are considering external momenta much smaller than the electron mass
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M, we can expand the function £2(¢) in powers of p?/M? and we perform
the (convergent) integration over the Feynman parameter ¢ term by term.
The result is:
) 4 €2 2 M? 1 p?
_111‘“,(1)) = 25(4—;)—5(]) g}“, - p#p,,) [A + ln—;é— - gm + .. .] . (28)
The previous equation provides a simple example of how the decou-
pling property for QED works at one-loop order. The one-loop self-energy
correction (2.8) can be represented by a set of local terms in an effective
low-energy QED Lagrangian:

1
Lo = —3(1+82)Fu F* + e FuOF* + ..., (2.9)

where dots stand for higher dimensional terms. The coefficients §Z and c¢;
are fixed to reproduce the result given in Eq. (2.8):

4 € M?
7 = Star [ |

4 €2 1
e1 = 5(—;? [—W] : (2.10)

We see that the potentially dangerous logarithmic dependence on M
occurs in the term proportional to (p?g,, — pup,) and, it is thus absorbed
by the wave- function renormalization of the photon field - §Z - leading to
no observable effect. The next term of the expansion (2.8) cannot be ab-
sorbed in a renormalization of parameters and is related to an independent
operator in the low-energy effective theory. However, since the coefficient
¢; is inversely proportional to M?, it vanishes in the limit M — oo, giving
again, in this limit, no observable effect. This is obviously true also for the
remaining terms in the expansion (2.8).

One can proceed in a completely analogous way with other Green func-
tions, for instance the four-point photon Green function. In this way it is
easy to check, at one-loop order, the validity of the decoupling property
for QED or QCD. Appelquist and Carazzone [1], extended the proof to all
orders in perturbation theory.

Different from theories possessing an exact gauge symmetry, theories
with spontaneously broken gauge symmetries can be shown not to neces-
sarily satisfy the decoupling property. The point is that, whereas in the
case of an exact gauge symmetry mass terms are gauge invariant, in the
spontaneously broken case masses are generated from interaction terms in
the process of symmetry breaking. The typical mass is of the kind:

M=y, (2.11)
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where () is the vacuum expectation value (VEV) of a scalar field ¢ and A
is a dimensionless coupling. It is clear that, in such a case, the large mass
limit can be achieved in two different ways:

(A) X fixed , {p) large;
(B) Alarge, (p) fixed.

The first alternative is commonly considered in discussing grand unified
theories (GUTs). In GUTs this choice is suggested by the physical hierarchy
between the two widely separated VEVs associated to the GUT scale and
to the electroweak one. Other physical situations can however be described
more efficiently by adopting the point of view (B). Consider for instance the
effective Lagrangian for low-energy charged current electroweak processes:

Lec =2V2GpI T, (2.12)

where
J; =yl —vs)d+.... (2.13)

is the total charged current. In the standard model (SM) of electroweak
interactions, the Fermi constant, Gy, is given by:
g _ 1

Gp=—t=——,
F 8M§V V202

(2.14)

where g is the SU(2);, coupling constant, v = 246 GeV is the VEV of the
neutral component of the Higgs doublet. The last expression of the previous
equality represents G g as a function of g and v. From Eqgs (2.12) and (2.14),
by considering the large My limit according to (A), one obtains

Lcec—0 (2.15)

in agreement with the decoupling theorem. However this is not really the
case we are interested in. Following (A) we are considering all SM particles
infinitely heavy at the same time. On the contrary, we have in mind a
situation where the external momenta, of the order of the fermion masses,
are much smaller than the W mass:

p? =~ m?f < M, (2.16)

where m is a generic fermion mass. By denoting with y the corresponding
Yukawa coupling, the previous relation implies:

yr <L g. (2.17)
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In this case, the large mass limit only reflects the fact that the (light) fermion
Yukawa coupling is much smaller than the SU(2);, gauge coupling constant,
and therefore it is better represented by the option (B). As we can see from
Eq. (2.14), “sending g to infinity” and keeping v fixed leaves L ¢ invariant
and non-vanishing. The decoupling property is violated.

Notice that, when we speak of large g, in the case (B), we are not saying
that ¢ must be much larger than one. Indeed, the ideal case occurs when g,
while satisfying the relation (2.17), still remains smaller than one and the
usual perturbative analysis applies. This is what happens in the previous
example.

A further freedom we have in theories with a spontaneously broken
symmetry is that we can allow a single member in a particle multiplet to
become heavy with respect to the rest of the spectrum (which is forbidden
in the exact case). For instance, in the SM, we can consider the case of an
heavy top quark whose left-handed component transforms, together with
that of the bottom quark, in an SU(2);, doublet.

In this case it may seem that the large mass limit is not compatible with
the gauge symmetry one starts with, since one is removing a member of a
representation. Indeed, to maintain the gauge symmetry in the light sector,
one must embed the light degrees of freedom into nonlinear multiplets, and
the symmetry becomes non-linearly realized [4]. The theory containing the
light particles is now non-renormalizable from the beginning and this, as
we shall see in a moment, can be regarded as a failure of the decoupling
property.

To illustrate this point, we consider the Higgs sector of the SM, de-
scribed by the SU(2),®U(1)y invariant Lagrangian:

Ly =1T(D,H'D*H) - V(Tx(H'H)). (2.18)

The 2 by 2 matrix H contains the usual SU(2);, doublet of complex scalar
fields:
H—\/i(“"o “’°+> (2.19)
- o= (%)) '
The covariant derivative D, H is defined by:

D,H =08,H-gW,H +¢'HB, (2.20)

with the SU(2)L®U(1)y gauge fields, Wﬂ and B, embedded in matrices:

W# = %W# 7
B,=%B,7*. (2.21)
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The scalar potential V' is given by:

M? (Ty(HIH) )\’
V——S?(——?—-’U) 1y (222)

and it depends on v, the VEV of v/2¢%, and M, the mass of the Higgs. By
shifting the neutral component according to:

o _ h+v+iyx

2.23
7 (2.23)
one can give the scalar potential the form:
M?
V== R+ x%+ 201" + 2hv)?. (2.24)

802

Suppose now that the Higgs is much heavier than the particles we can
excite in a set of physical measurements [5]. We would like to know if the
virtual effects on measurable quantities due to the heavy Higgs decouple or
not, in the sense specified above. For the moment, we restrict the analysis
to the tree-level approximation. If we imagine a process with a certain
number of external light particles, it is not so evident, even in the tree-
level approximation, whether the Higgs exchange will produce negligible
effects or not. Indeed, as we can see from Eq. (2.24), there are interaction
terms among the Higgs and the other unphysical scalars which grow as
M?2, allowing in principle an overcompensation of the negative powers of M
contained in the Higgs propagator.

To fix the ideas, we consider the scattering ¢t~ — ¢t~ among
unphysical scalars. (As guaranteed by the so-called equivalence theorem [6],
this scattering amplitude is the high-energy approximation to the scattering
amplitude among longitudinally polarized charged vector bosons, and, to be
consistent, we will work in the energy interval My < F <« M.) At tree
level, the amplitude is the sum of a contact term, plus s and ¢ channel Higgs
exchanges. One obtains:

v2

- _ M2 M 1 1

where we have separately listed the three contributions. While in the large
M limit (at fixed scattering angle) the leading term, of order M 2. cancels,
the amplitude, given by:

- - ,u 1
A(pTe™ — eTe™) = —ig +0 (W) ) (2.26)
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is still different from zero.
The general case can be analyzed similarly. We recall that, summing
over all tree-level amplitudes with internal Higgs lines amounts to:

1. Solve the classical equation of motion for the Higgs field;
2. Substitute back the solution in the original action.

The first step is usually hard to accomplish, because of the non-linearity
of the field equations. However we are not interested in the full solution of
the equations of motion, but rather in their limit when M is much larger
than the energy and/or other mass parameters. To this end we parametrize
the scalar multiplet H as follows:

s

H=0U =ocexp (zf—vt) . (2.27)
The Lagrangian for the scalar sector reads:
M? a?
L=18,00% - m-(az -0 4 TTr(D“U*D“U). (2.28)

The Higgs degree of freedom is now described by the field ¢. In the large
M limit, the solution of the equation of motion for o is simply:

o=, (2.29)

since for large M the action is dominated by the scalar potential. Plugging
back this solution in the Lagrangian of Eq. (2.28), one finds {7]:

L(M = ) = B;-T&(D#UfD“U). (2.30)

This is the Lagrangian for a (gauged) nonlinear o-model [8). It contains
an infinite set of operators depending on the would-be Goldstone fields é',
which makes it a non-renormalizable theory. No field redefinition can turn
it into a renormalizable Lagrangian. It represents the sum of all one-particle
irreducible tree diagrams with infinitely heavy Higgs internal lines. It is easy
to check that the amplitude for ¢~ — £+¢~ derived from it coincides with
that evaluated before in Eq. (2.26).

The Higgs particle was originally a member of an SU(2)y, doublet (see
Eq. (2.19)). To separate it from the rest of the doublet consistently with the
gauge invariance, we have performed the field transformation in Eq. (2.27).
This leads to a low-energy theory for the would-be Goldstone modes E with
the electroweak symmetry realized non-linearly {7, 9-11].The occurrence



The Physics of the Chiral Fermions 1287

of infinitely many higher-dimensional operators with coefficients not sup-
pressed by inverse power of M signals the failure of the decoupling property.

This failure persists at the quantum level. However, owing to a remark-
able property of the SM, at one-loop order the dependence of the generic
physical observable upon the Higgs mass is only logarithmic (screening the-
orem) [5]. Power-like effects are possible, but only at higher orders. In
physical terms this means that detection of the Higgs through its virtual ef-
fects will not be easy. This screening effect is strictly related to the minimal
structure of the SM and power-like dependencies can be generated in mod-
est extensions of the SM as, for instance, in models containing two scalar
doublets [12].

Chiral fermions, that is fermions whose left and right-handed compo-
nents transform according to inequivalent representations of the gauge group
(contrary to vector-like fermions), provide other examples of violation of the
decoupling property [13]. Chiral fermions do not admit gauge invariant mass
terms and their masses are generated via the spontaneous breaking of the
gauge symmetry, from Yukawa interactions. When a chiral fermion is made
heavier than the other matter fields by a relatively large Yukawa coupling,
its effects at low energies do not decouple. The mass suppression associated
to the propagator can be compensated by the mass enhancement provided
by vertices with an overall non-vanishing effect. This mechanism is well
exemplified in the SM by the top quark. The top is by far the heaviest of
the known fermions. The top Yukawa coupling - y; - is of order one (about
0.6 for m¢ = 150 GeV), much larger than the other Yukawa couplings and
comparable with the SU(2);, gauge coupling g (g ~ 0.65). In the ideal case
where we could neglect ¢ and g', the top quark would provide extremely
clean signals of breakdown of the decoupling property, ordered only by pow-
ers of y; and, as we shall see, easy to compute. In the real world y; and the
gauge couplings g and g’ are of the same order and, depending on the phys-
ical observable considered, we expect significant corrections to the previous,
ideal case.

For the time being we consider this ideal, gaugeless limit of the SM, and
first we look for the low-energy effective action for an heavy top quark, in
the tree-level approximation. As we have seen previously, we have to solve
the classical equation of motion for the top quark, in the limit E <« m;y.
The Lagrangian for the quarks reads:

. _.m
Lq =iq7*DygL +iqrY*Dpugr — [qLH—;iqR + h.c.] . (2.31)

We have put both the up and the down type quarks in a single multiplet ¢
and indices in the generation space are understood. The covariant deriva-
tives acting on the left and right-handed quarks are defined below:

; A(L
Duq = (aﬂ ~ gW, - ¢'B{ )) L, (2.32)
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~(R
Dygr = (6,, - ¢'B; )) IR - (2:33)

The combinations BLL’R) are given by:

BLL) = 5By, (2.34)
B = L(+*+1)B,. (2.35)

In the large m, limit, the only relevant term of the action is the Yukawa
coupling of Eq. (2.31), which, more explicitly, reads:

0
Ly =-Z(@&B)U ("5“ 0 ) (;?1:) +he., (2.36)

mq

where m, and m, are the 3 by 3 quark mass matrices in the up and down
sectors, respectively. Diagonal mass matrices mE, mg and mass eigenstates
UL, R, dL R are introduced via a bi-unitary transformation:

mD = VEm, Vel

mD = vim vd', (2.37)

uLRr = VERUL R >
dur=ViRd R- (2.38)

The Yukawa Lagrangian, in terms of mass eigenvalues and eigenstates,
reads:

O W mD 0 uR
Ly = -2 (uLdL )U( 0 chMmdDchm> (dﬁy) +he., (2.39)

where Vorear = VIV is the Cabibbo-Kobayashi-Maskawa (CKM) mixing
matrix and dlv.‘,, r = VokmdL r. If we assume that all fermion masses but
the top one are zero, we can isolate from the previous equation the top

sector:
_ 9 (W my 0 tR
Ly = v(LbL)U(O 0)(b1‘{y)+h.c.. (2.40)
Notice that the top couples to the “weak” bottom combination:
bW = Vigd + Vigs + Vb, (2.41)

mainly made of the physical bottom quark.
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The equations of motion for the top quark, in the large my limit, de-
couple into two separate equations for the left and for the right-handed

components:
10 t

((1) g)UT(bw)zo, (2.43)

tr =0, (2.44)

(#)-()

Inserting back these solutions in the Lagrangian £4 of Eq. (2.31), one ob-
tains [14]:

whose solutions are:

. :

Lq = by o,b + %—B#Tn“b - %E{V 4o TH(TV,) + ..., (2.46)
where

T =UrU", (2.47)

V,=D,U.U', (2.48)

and dots stand for the remaining light quarks. The gauge invariant combi-
nation:

z - 9, ¢3
-3 by, 7"bL Tr(TV, )—bI‘fV'y“bEV 2;502,‘-{— ’:}E +] ,  (2.49)
contains infinitely many terms representing interactions of the V — A bot-
tom current with gauge and would-be Goldstone bosons. This is precisely
the term which represents the non-vanishing sum of all tree diagrams with
internal, heavy top lines. (The apparent flavour changmg neutral current
contained in the first term of the expansion Z bL 7“bL is cancelled by the
contributions from the light fermions.)

As we shall see in the next Sections, at one-loop measurable quantities
start depending upon the square of the top mass, leading to new physical
effects and making non-trivial the agreement between the SM predictions
and the available data from precision experiments.
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3. Non-decoupling in the real world

In this section we summarize the phenomenological relevance of the
large one-loop top quark electroweak corrections.

An important development took place in 1987, with the discovery of
B® — BY oscillations. It became then clear that the top quark was much
heavier than previously expected.

The first evidence of B — BY oscillations was found by the UA1 col-
laboration [15]. The theoretical interpretation of their data was however
difficult, since Bg and B? were produced in an essentially unknown mix-
ture. Later on the signal was confirmed by the ARGUS [16] and CLEO [17]
collaborations, who found evidence for equal sign dileptons in the decay of
T(4s). The T(4s) resonance, through its decay into a B — BY pair, gives
rise to a final state containing two charged leptons: T, coming from BY
and I~, coming from BY. If a BY - BY mixing is allowed, then, sometimes
the Bg decay produces /™, the Bg gives rise to [T and, in a fraction of the
events, one will find equal sign dileptons. The relevant parameter is the
ratio of equal sign to opposite sign leptons:

Nt ¢ Nt
4= N(It17) T(40)

(3.1)

which experimentally is given by:
rq = 0.17 1+ 0.10. (3.2)

More recently also the LEP collaborations have found an excess of like sign
lepton pairs in ete™ — ITI¥ 4+ X, coming both from Bg and BY. Moreover
they were able to detect the predicted time dependence of the Bg oscillations
[18].

The Bg - 5’3 system is described by the two- dimensional effective

Hamiltonian:
(M M\ (T I
= (o, ) -2 ) ©3)

written in the base (B3BY). In the B system I'j; is approximately zero
and the two eigenstates of the hamiltonian have essentially the same width
I', which can be extracted directly from the measured lifetime 7g. On the
other hand, the mass difference AM between the two eigenvalues is given
by:

AM = 2|Mis). (3.4)
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Introducing the two parameters:

AM AT
2="T > Y=3p (3.5)
one obtains:
2?2 442 22

Tg = (36)

2422 -y2 " 2422
The z parameter can be estimated from the AB = 2 non-leptonic effective
hamiltonian, which in the SM arises as a result of a second order weak
interaction:

2
(8B =2) = B (VaViaPmtf (o ) mbr(1 = )dbra(1 - 3)d,

W
(3.7
where 7 is a factor of order one which accounts for the QCD corrections and
f(z) is a slowly varying function of z:

9 3 3 +§m21nz
4(1-z) 2(1-2)2 2(z-1)3

fle)=7+ (3.8)

with f(1) = 3/4 and f(oo) = /4. From H(AB = 2) and Eq. (3.4) one can
derive AM: _
AM = 2|(BY|H(AB = 2)|BY)|. (3.9)

This requires the computation of the hadronic matrix element:

(B3IBy*(1 — 5)dbyu(1 — v5)d|By) = $Bs fms, (3.10)

where mp is the B meson mass, fp its decay constant and Bp parametrizes
a possible departure from the so-called vacuum saturation approximation
in which Bg = 1. From equations (3.5), (3.7), (3.9) and (3.10) one obtains:

GZ
z = t.f(

Notice the leading quadratic dependence of z on the top mass, coming from
the box diagram which, in the SM, gives rise to H(AB = 2). We shall come
back to this point in section 4. Apart from the top mass, z also depends on
the hadronic parameter Bg fg and the CKM combination |V;3V;4|. On the
former quantity, we have estimates from the QCD sum rules approach and
from the lattice, from which we expect Bp fp in the range 100 — 300 MeV
[19]. The CKM angles involving the top quark are presently unknown, but

m?
)BBmeBTBlVthdI 7. (3.11)
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restrictions on them can be derived from the unitarity of the CKM matrix
V assuming that only three generations are present. One finds [20]:

0.003 < |V;5Via| < 0.019. (3.12)

Finally n = 0.78 — 0.85 [21]. Putting everything together [22], one realizes
that, even pushing all the unknown quantities to the extreme upper limit
compatible with the present bounds or our theoretical understanding, a
large value for m; (m: > 50 GeV) is required to have consistence with the
experimental value of rg.

Other observables affected by potentially large m; corrections are those
related to the electroweak precision measurements done at LEP/SLC. With
the exception of the partial width of the Z into bb, which we will discussed
at the end of this section, the leading top quark effects, at one-loop level,
are dominated by the gauge bosons self-energy corrections. To count the
number of independent parameters occurring in this sector [23], we start
from the usual definition:

—iIIi“j"(p) = -1 [Hij(pz)g’“' + (p*p” terms)| , (3.13)

where —i1IT fj" (p) denote the set of self-energies for the gauge boson fields.
The indices i,j can take the values 0 (for the field B) and 1,2,3 (for the
fields W), or, alternatively, the values v, Z, W. From now on we will
discard the irrelevant terms proportional to p#p”. Furthermore, we make
a Taylor expansion of the top contribution to the scalar function IT;;(p?),

around the point p? = 0:
I;(p?) = Aij +P*Fij + ... . (3.14)

This expansion, meaningful for p> < m? contains real coefficients A4;;,
F;;, etc. Moreover, since IT;;(p?) has dimension two in units of mass, it is
reasonable to neglect the dots in Eq. (3.14), representing terms suppressed
by positive powers of (p%/m?).

As a consequence of the exact electromagnetic gauge invariance, we
have A, = A,z = 0. (More precisely, the fermionic contribution to A,z
vanishes, and the bosonic one is zero in the unitary gauge.) Then we are
left with the six independent coefficients Azz, Aww, Fyy, Fyz, Fzz,
Fww, carrying the main dependence on m;. Three combinations of them
are however unobservable, being related to the fundamental constants of
the electroweak theory: the electromagnetic fine structure constant a, the
Fermi constant Gg and the mass of the Z gauge vector boson Mz. Indeed,
the quantum corrections induced by the gauge vector boson self-energies
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provide the following shifts in the fundamental constants 1

ba
= = —Fyy, (3.15)
5GF AWW
OGF _ , 3.16
Gp M%V ( )
6M% AZZ )

= F . .
M2 (M2 trzz (3.17)

We conclude that, in our approximation, the parameters carrying in the
SM the leading top quark dependence are three combinations among the six
coefficients Azz, Aww, Fyy, Fyz, Fzz, Fww. These combinations can
be identified by looking at the radiative corrections for three independent
physical observables, which we choose as the ratio of the gauge boson masses
Mw /M7, the forward-backward asymmetry A;B inete™ — utpu~ at the
Z peak and the partial width of the Z into charged leptons, I7.

[ ] MW
Mz
We trade Mw /Mz for the observable Aryy defined as follows:
R
My 2 4 M%(l - Arw) ’
where )
M
u2 = T0ME) (38454 Gev)? (3.19)
V2Gp
One finds:
cos?f (Azz AWW) cos 20 cos@
A = - F F 2 F
w sin? 9 (M2 M%V sin? 0( ww — Fas) + ng %
(3.20)
[ ] A;B, Fl

By forward-backward asymmetry at the peak we mean the quantity
quoted by the LEP experiments, which is corrected for all QED effects,

! In a general analysis of the one-loop corrections one should also include in 6Gp
contributions coming from boxes, vertices and fermion self-energies. Similarly,
the right-hand side of Eq. (3.17) would read —ITzz(M2)/M32 (24, 25]. How-
ever, since here we are only interested in the dependence upon the top quark
mass, the additional contributions can be neglected.
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including initial and final state radiation and also for the effect of the imag-
inary part of the photon vacuum polarization diagram. The partial width
of Z into charged leptons is inclusive of photon emissions: It = I'(Z~ >
Il 4 photons).

Also in this case we proceed through a series of definitions inspired to
the lowest order relations:

2
A" (p2:M2)23(————gng ) : 3.21
FB Z g%,+g3‘ ( )
I = 1+22), 3.22
! 67!'\/5 (gV+gA) + 4r ( )
A

ga=1 (1 + —2—p) : (3.23)
IV _ _1+4sin?4, (3.24)

ga
sin?d = (1 + Ak)sin? 4, (3.25)

sin?f=1_,/1_ ﬁ%— = 0.23118 (for Mz = 91.187 GeV). (3.26)
With these definitions, the knowledge of A%, which depends only
on the ratio gy /g4 is equivalent to that of the parameter Ak, given in

Eq. (3.25). On the other hand the parameter Ap, entering the definition of
the Z coupling to charged leptons as an overall factor, is fixed by I;. One

finds:
cos? @ (AZZ AWW) 1 cosf

" cos 26 B cos 28 sin 8

Ak =
Mz My

Fio,  (3.27)

Azz Aww
A= T,
V4 174
Indeed the whole set of self-energy corrections can be accounted for by
an effective neutral current Hamiltonian given by:

(3.28)

1/2 A -
Hyc = (4\/§GFM§) (1 + ~2—p) [J;‘L ~ (1 + Ak)sin? oJ:m} Z,.

(3.29)

So far we have selected three physical quantities in order to isolate their

leading dependence upon the top quark mass. By looking at the expressions
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obtained for the quantities Aryy, Ak and Ap, we recognize that they are
functions of the following three combinations of self-energy corrections [23,

26, 27):

Azz Aww

€1 = M% - M;%V ]
€2 = Fww — Fs3,
cos d
F. .
€= sing 20" (3.30)

We can summarize the results as follows:

Ar coszae + cos20€ +9
= — €3 ,
W= TinZe T sin2e 2
cos® 6 1
Ak = T + c0s 203"
Ap=¢. (3.31)

We remind that the relationship exhibited by Eqs (3.30)—(3.31) reflects the
fact that in the SM most of the top quark contribution to the considered
observables is contained in the vacuum polarization functions of the vec-
tor gauge bosons, suitably expanded as in Eq. (3.14). The more general
dependence of Aryy, Ak and Ap on the SM radiative corrections can be
easily derived along lines similar to those followed here, and it would include
vertex, box and fermion self-energy corrections as well. The latter do not
contain any further significant dependence on m;.

Within the SM, the combinations in Eq. (3.30) have the following
asymptotic dependence on m,:

3Gpmf

= 3.32

‘1 872./2 ( )
GFM?/V (mt )

= - In cery 3.33

€2 272/2 Mz * ( )
GFM%V ( my )

= — In +.... 3.34

€ 6722 Mz ( )

Notice that the potentially largest top quark correction, namely the one
quadratic in my, appears only in ¢;, while in ¢; and ¢; the dependence on
my is only logarithmic.

Eq. (3.31) is the starting point of the so-called non-standard analysis of
the electroweak data [27, 28]. Indeed, forgetting about the way Eq. (3.31)
was derived, one can take it as the definition of the ¢ parameters, which
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become true physical observables, with the advantage that the strongest
dependence on m; has been confined in €;. The inclusion of a larger set
of experimental data, to provide further information on the ¢ parameters,
demands some further assumptions, which can be ordered according to an
increasing amount of model dependence. This offers a common ground to
compare various theoretical frameworks (SM [27, 28], minimal supersym-
metric standard model [29], extended gauge models [30], ...). From the
experimental values My /Mz = 0.8798 + 0.0028, AL 5 = 0.0170 £ 0.0016
and Iy = 83.975 £ 0.20 MeV, one finds [31]:

€1 = (0.4240.24) 1072,
€2 = (—0.25+ 0.56) - 1072,
€3 = (0.35+0.31)- 1072, (3.35)

If vacuum polarization corrections were always dominating, at least for
the part concerning the top dependence, then, from the effective hamiltonian
Hpc in Eq. (3.29), one would conclude that, for all flavours f, the partial
width I'y of the Z boson into f f is given byZ:

GpM?3
r. =N/ Z [(g5)2 + (45)?] , 3.36
r=Ne 7 [(o])? + (917 (3.36)
with g{, and g;f4 given by:

A o

gl = (1 + 7”) (T, - 204 sin?§) (3.37)
Ap

g"z = — (]_ + '2—) TéfL . (3‘38)

Then the effective fermionic couplings of the Z boson would be character-
ized by universal, flavour-independent, corrections: Ap and Ak. However,
because of the occurrence of vertex corrections, this conclusion is not true,
not even for the top contribution, and the largest violation of Eqs (3.37)-
(3.38) takes place for f = b. For Z decaying into bb, besides the vacuum
polarization effects one should also take into account the vertex corrections
and the fermion self-energy corrections, where the exchange of charged un-
physical scalars gives rise to additional terms quadratic in m; [32]. In this
case one has still the expression of Eq. (3.36) for the partial width I, but
gi and g’{, are replaced by:

A
=t (1+ %) a+a, (3.39)
g_%_,z—l—}-%sinzé-eb (340)
gi 1+ ¢

2 Apart from QED and QCD corrections
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The new corrections are isolated in the parameter ¢;, whose asymptotic
dependence on the top quark mass reads:

e = Gpmf
b= 47r2\/§

(3.41)

The additional corrections can be derived from an effective Hamiltonian of
the form:

/2 _
Hy = —%eb (4\/§GFM§) ZFbyy,uby - (3.42)

The presence of the ¢, term in I, quadratic in my, singles out this partial
width as particularly interesting quantity, whose peculiar dependence on
m, is potentially able to provide additional and independent information
on the top quark.

From the present value I', = 385.3 £ 3.9 MeV and by removing from I}
the QCD correction, one obtains [31]:

€5 = (0.46 £ 0.45) - 1072, (3.43)

4. An effective Lagrangian for the heavy top quark

As examples of violation of the decoupling property, we have seen that
the heaviness of the top quark shows up in three independent effects: the
B° — BY oscillations; the vacuum polarization corrections (in particular the
Ap parameter) affecting all LEP/SLC observables and the My /Mz mass
ratio; the non-universal correction of the Zbb vertex detectable through
the measure of the I', partial width. These effects can be described by
the effective hamiltonians given in Eqs (3.7) (3.29) and (3.42). In this
section we will discuss the general structure of the effective Lagrangian
which reproduces, at one-loop order, the above mentioned effects [14, 33].

To start with we observe that, one-loop results are not correctly repro-
duced by the effective Lagrangian we have derived in the large m; limit in
Section 2, namely £, given by the sum of L, of Eq. (2.46), L of Eq. (2.18)
and the terms for the other light fermions and the gauge vector bosons. This
has to do with the fact that £, was obtained via a classical limit, corre-
sponding to the sum of all tree-level diagrams containing heavy top quark
lines. To deal correctly with the one-loop computation, we must first per-
form the (regularized) loop integration and subsequently take the large m,
limit. In general this leads to a result which is a divergent function of the
ultraviolet cutoff. For this reason the opposite way, namely first taking the
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large m; limit — which amounts to use £} — and then performing the loop
integration, generally leads to a different result. In formulae:

Jdm [akFa(kp) = [k lim Fa(ip)+AG), D)
where p stands for a collection of external momenta, k is the loop variable,
A an ultraviolet cutoff. The function A(p) represents the O(h) correction
which we should add to the result obtained working with £ ], to correctly
reproduce the one-loop result in the large m limit.

The interesting fact is that A(p) can be represented as an effective
Lagrangian. For external momenta lighter than m, the integrals on both
sides of the Eq. (4.1) have equal imaginary parts in all possible channels,
and therefore the function A(p) is an analytic function of the variables p.
If we consider its expansion in p?, for dimensional reasons, there will be
only a finite number of terms not vanishing in the large m, limit. Moreover,
for amplitudes with a sufficiently large number of external legs the loop
integral is convergent, the m; — oo limit and the loop integral commute
and A(p) = 0. We conclude that at one-loop order the correct results of the
large m; limit are reproduced by adding to £, a finite number of local terms,
which we collectively denote by AL. The low-energy theory, in the m; — oo
limit and to one-loop accuracy, is described by the effective Lagrangian:

Log =Lo+AL. (4.2)

The term AL is further restricted by the symmetry of the low-energy theory.
For the moment we require AL to be SU(2),®U(1)y invariant (see however
the next Section). In Section 2 we have already made use of nonlinear
realizations of the SU(2),®U(1)y symmetry to describe L [7, 9-11]. The
nonlinear realization naturally provides a low-energy expansion, ordered
by the number of derivatives acting on the light fields. In our case such
an expansion should contain at least the terms of order p*. Indeed gauge
invariance relates terms of order p* to terms of order p? containing two gauge
vector bosons [34]. The latter is just what we have called Fj; in the analysis
of vacuum polarization (see Eq. (3.14)). In addition to SU(2)L®@U(1)y
gauge invariance we will also ask for CP invariance. We list below the
invariant operators which are relevant to our discussion, containing up to
four derivatives and built out the gauge vector bosons W, Z, A and the
would be Goldstone bosons £3:

£o = LTV,

3 For a complete list, see, for instance, Ref.[35].
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!
Ly = i%g——B,“, T(TW*Y),
g’ :
Ls = T['l‘r(:rW,w)]'~’. (4.3)
These operators contribute to AL in Eq. (4.3) through the term:

(AL)p = aoLlo + a1Ly + asLls .- (4.4)

In the fermionic sector, we consider the following invariant terms:

£ = (—1) WY 8 THTV,),
L3 = == v.b0)?, 4.5
\/—( L F» ) ( )
whose contribution to AL is given by:

(AL), = P1LY + B2 L3 (4.6)

The coefficients aq,aj, as, 81,032 are easily found by comparing (AL)pg,
(AL), with the effective hamiltonians H(AB = 2) of Eq. (3.7), Hnc of
Eq. (3.29) and H} of Eq. (3.42)%. To do this one should expand the var-
ious combinations appearing in the expressions of the invariants £;. For

instance:
g

Tr(TV,) —i 0Z + (9,;5 +. (4.7)
One has:
aple = —%aovz(ng - g'B,“)2 + o,
a1y = %algg'B,w(a"W?’u oWty 4 ...,
asls = —3asg? (8, W3, -0, W3,)* +.... (4.8)

The dots stand for trilinear and quadrilinear terms in the gauge vector
bosons and for terms containing the would-be Goldstone bosons, needed to

4 The contribution of £ to the right-hand side of the Eq. (4.1) vanishes when
we extract the leading top effects. Indeed L) gives a divergent contribution to
the relevant Green functions, which we choose to subtract at vanishing external
momenta, as an additional prescription to deal with the new infinities of the
effective non-renormalizable theory.
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ensure the gauge invariance of each structure. By evaluating the contribu-
tion of the above terms to the vacuum polarization functions one can relate
the a; coefficients to the ¢ parameters as follows®:

€1 = 2ao,
& = —g’ag,
€3 = —gzal . (49)

From the behaviour of the €’s in the large m, limit, given in Eqgs (3.32)-
(3.34), we find:

ag = %(Ap)top .oy

m
o= o (572) |+
m
01:# [%ln(—tz):l + .o, (4.10)

where we have defined:

(B0)op = 7L (a11)
Similarly, in the fermionic sector one finds:
m2
2 = ~3(8ken |15 (575 ) ]
Br = —3(Ap)top- (4.12)

The term in square brackets in the left-hand side of Eq. (1.12) is equal to
one in the large m; limit and for QCD interactions turned off.

So far we have just recast the content of the Section 3 into a more elegant
form, which however does not seem to provide any additional information
with respect to what already seen in the separate discussion of the various
physical effects. To appreciate the usefulness of the point of view adopted
here we will mention two facts.

As stressed in the second section, the violation of the decoupling prop-
erty is related to a hierarchy of coupling constants which may arise by
considering the low energy limit of a given fundamental theory. In the case

5 €3 and €3 receive also an additional contribution from the operator L3 (see

Ref. [36]), which however can be eliminated by using the equations of motion.
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of an heavy top quark, such hierarchy, in the ideal case, is represented by
the inequality:
Y1, 95 9 € Y, (4.13)

where y; and y; are the Yukawa couplings for the light quarks and top
quark, respectively. If we consider the extreme case when all the coupling
constants but the top one are put to zero, we are lead to conclude that
for the top quark the violation of the decoupling property is modeled by
a pure Yukawa interaction. This point is particularly transparent in the
effective Lagrangian we have obtained. In L.g the coefficients ap, 31 and
B2 represent the leading effects in the large m, limit. If we turn the gauge
interactions off, such effects do not collapse. Indeed the operators Ly, E‘l’
and £3 do not vanish, indicating the Yukawa origin in the SM of the largest
corrections due to the top quark®.

Second, on the practical side, the effective Lagrangian can be seen as
the book-keeping of an infinite set of Ward identities which may be useful in
actual computations. Rather than analyzing the general structure to these
identities we will discuss their physical content on one example. Suppose
we are interested in the evaluation of the coefficient 81 of L.g, which is
related to the Zbb vertex correction. We should compute the contribution
of the top quark to the operator L','l’. By expanding the exponential of the
would-be Goldstone fields in the combination Tr(T'V,) (see Eq. (4.7)), one
obtains: ) o;

i i
Ly = -5 yubt [iébzf‘ + 20,6+ ] . (4.14)
This equation show that SU(2),®U(1)y gauge invariance relates the Zbb
function to the £3bb function in a well precise way and that, to compute
B1, we can in fact consider the latter, by retaining the term linear in the £3
momenturmn.

It is clear that one does not need the effective Lagrangian L.g to de-
rive the Ward Identities of SU(2),®U(1)y, which are implied just by the
symmetry and the particle content. It is however true that many of these
identities can be in practice read immediately from L.g, with no further ef-
fort. In this sense, the situation closely resembles to what one had with the
current algebra (whose analogue here is SU(2)L®U(1)y) and the PCAC
hypothesis (the spontaneous breaking of the symmetry) in the old times.
Indeed they can be either analyzed in abstract or, as happened with the
nonlinear o-model, in the context of a specific field theoretical realization.

6 More generally, in the gaugeless limit we may regard the gauge vector bosons
appearing in the various operators as classical external fields coupled to light
fermions, Higgs and Goldstone bosons, which are the quantum degrees of free-
dom in the surviving Yukawa theory.
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Each of the two possibilities has its own advantages and can be preferred
depending on the specific problem at hand.

In the last part of this Section we will show how to compute the co-
efficients ag, B; and O exploiting the relevant Ward identities and the
underlying Yukawa nature of the effects. We start from the definition of the
gaugeless limit of the SM in the top-bottom sector, assuming a vanishing
mass for the bottom:

2
Ly = ibyd,b + ity 0,t + 3’4— (9, U 841)

= IW my 0 5:
—(tLbL)U( ; 0) (bfv{")J“ hec.+.... (4.15)
The dots stand for additional terms as, for instance, those depending on the
Higgs field. The Feynman rules read:
EYih & ——-—2-m¢a_. ,
v

- V2
£ bt o %mta+,

Est_t — %(a.}_ — a_),
Y0 - 0, (4.16)
where

1£79s
5

at = (4.16)
¢ B — B oscillations

To compute 82 we consider the top quark contribution to the four-
fermion operator Eg. In the Yukawa theory defined above by Ly such
contribution is represented by two independent box diagrams, with top and
charged Goldstone bosons circulating in the loop, which we will evaluate
taking vanishing external momenta. The total amplitude Ay, ultraviolet
convergent, is given by:

4 i i
o= | i) () 5 () 0
_ 2 i V2 g
- 5(0) (%——-mta.f.) ¥ (-o-—;—mta_) 'u(O)k—2 + crossed

-%EAP_?,)@ [a(0)y*a_u(0) - 5(0)7*a_v(0)

+ 5(0)y*a—u(0) - 2(0)y*a—v(0)] . (4.18)
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From comparison with Eqs (4.5)-(4.6), one has:

ﬂ2 = _%(Ap)top (4.19)
which is the correct large m; limit of 3, in Eq. (4.12).

e Zbb vertex corrections [32]
From Egs (4.6) and (4.7) one has:

ﬂll:l B [""‘—é‘zy-i- uf3 . T)E’*yublvlv. (4.20)

We choose to compute the correction to the £3bb Green function. From the
second term in the previous equation, we derive the amplitude:

Agsiy = Bra(p)oa_o(0), (421)

where p, is the four-momentum of the incoming ¢3. We should compare
this result with the (finite) contribution due to the top-£ loop, which reads:

4 i
Agsgy = (: ];4—( )(\/— ) Har—a)

15+? my v
. E —imt (_ivi-mta_) ‘U(O)‘,‘c%
mf d*k m?
-6 [ sy (ke v(0) +
= 2(8p)eop - #(p)2a_v(0), (4.22)

where dots in the second equality stand for higher-order terms in p. From
Eqs (4.21) and (4.22) one finds:

2

ﬂl = —E(Ap)top (423)

in agreement with the result given in Eq. (4.12).

¢ Ap parameter [37]
To evaluate the ag coefficient, we look at the expansion of the operator
a()[,():

v? 1
agLo = ao—Z[Tr(TV“)]z [ 1 go — 6,z#z o+ 9%€%0,6% +

(4.24)
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From this expression we notice that ag represents also a wave function
renormalization of the ¢3 field. Thus we are lead to consider the two-
point function —iIT eafa(pz) for the field £2. To match the results in the
fundamental theory and in the effective one, we have to impose:

Hsafa( ) + H£3£3(P2) = Hgaes(Pz) ’ (4.25)

II i,C, 0(1)2) are, respectively, the contribution of the top quark loop,

where
the contrlbutlon of the counter term and the contribution of agLg. The

counter term needed to cancel the divergences of Hfafa(Pz) is given by:

sv2 §v?

— (0, Utorv) = ———aﬂgl 8,6 + (4.26)
From this term we derive:
§v?
5353(10 )= " —p. (4.27)

On the other hand from Eq. (4.24), one has:
s s (p”) = 2a0p” . (4.28)
Before computing the top quark loop, we observe that we can get rid of the

counter term contribution by writing the analogous matching condition for
the f+E+ two-point function, H€+€+ (pZ):

H235+(P2)+Hﬁg+(1’2) = H§+5+(p2)- (4.29)
From Eqs (4.24) and (4.26), we obtain:

§v?
H5+f+( ) = v_2p2, (4.30)

and
I}, 4 (p%) = 0. (4.31)

By combining the conditions (4.25) and (4.29) and making use of Eqs (4.27)
- (4.28) and (4.30) — (4.31), we find:

2a9p® = H;.ﬁ,{s( ) - H5+5+( p*), (4.32)
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where it is understood that in the right-hand side we have to consider only
the contribution proportional to p2. By a direct evaluation of the Feynman
amplitudes one obtains:

~ill 4, (p") =
my ¢ = D)k - 2mi(1 — 3)k? + m]
12(%) 7 (Zvrl)c‘* =2 (ki—frif)f)k tmil L e
and
dk  (1-3)

mq\ 2
—iITE 4 (p%) = 12 (—v—‘) p o, (4.34)

(@r)* B (k2 — m?)

where dots stand for higher terms in the p? expansion. The equation (4.32)
now reads:

i 2 (M\? 2 dk m}
2taop” = 6( v) P /(27r)4 k%(k? — m?)3 (4.35)

from which we obtain:
2a0(: 61) = (Ap)top (436)

in agreement with Eqs (4.10).

These examples show how the violation of the decoupling theory in the
SM with an heavy top quark is related to the underlying Yukawa theory.
From the practical point of view, one may have the impression of an unnec-
essary complication in dealing with a simple 1-loop computation. Moreover,
to reach the accuracy required to compare the experimental prediction to
the theoretical expectation, one should also include the corrections to the
Yukawa limit taken in the fundamental theory.

Nevertheless the strategy followed above has been already useful in
attacking more challenging computations as, for example, those concerning
the leading two-loop effects in the pure electroweak theory [38] — O(G%m})
— or the mixed strong and electroweak corrections of O(a,GFmt) (39].

We conclude this section with a comment concerning the size of the
corrections to the results obtained in the gaugeless limit of the SM. These
corrections are of order (Myy/m)? and, in principle, they can be large com-
pared to the leading order results. At one-loop order one has two extreme
cases. One-loop two-point functions are essentially untouched by the gauge-
less limit, the only approximation coming from the subsequent expansion
in p?/m?, which however works remarkably well already for m? ~ 2p?. On
the other hand, vertex and box corrections may be largely modified in the
full gauge theory. Consider for instance the function f(m?/M%,) appearing
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in the evaluation of the box diagram for B® — BY oscillation (see Eq. (3.7)).
The asymptotic value f(oo) = 1/4 is not so close to the more realistic case
f(4) ~ 0.57. Moreover, also the first term in the expansion of f(1/y) around
y = 0 fails to provide the right correction (it does not even give the correct

sign!): .
1 1 3

By truncating the expression above at first order in y, one obtains f(4) =
0.25 — 0.043 = 0.207 rather far away from the physical value.

5. Heavy fermions and chiral anomalies

In the previous Section we have imposed the SU(2)L®U(1l)y gauge
invariance on the low-energy Lagrangian L.g. The physical basis of this
requirement is the fact that the heaviness of the top quark is due to the
magnitude of its Yukawa coupling, (much) bigger than the other coupling
constants in the theory. This accidental hierarchy will always respect the
gauge invariance of the theory which has to persist also in the low-energy
theory. There is however a subtlety in the mechanism which maintains
gauge invariance, due to the features of the classical term £ in L.g. The
light matter fields entering £} do not form an anomaly-free set of chiral
fermions. This means that at one-loop order the gauge currents are not
conserved and the O(h) contribution of £ to the effective action is not
gauge invariant. On the other hand, since the total effective action must
be gauge invariant, the gauge variation of the terms induced by £ has to
be exactly compensated by the gauge variation of AL. So far we have only
included gauge invariant operators in AL. In this section we will identify
the additional, non-invariant contributions in AL and we will detail the
mechanism of anomaly cancellation.

We recall that anomalies may occur as violations of symmetry prop-
erties of a classical theory, in the regularization procedure which underlies
the construction of the corresponding quantum theory [40]. The classical
example is given by the axial current in QED (see Eq. (2.1)):

it = Pytysy. (5.1)

At the classical level, the divergence of j{ is proportional to the pseudoscalar
density: _
B8 = 2iMyysy (5.2)

so that, for M = 0, ;£ is conserved. Indeed, for M = 0 the QED Lagrangian
of Eq. (2.1) possesses the chiral symmetry U(1),®U(1)r, which leads to the
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separate conservation of the vector current and of the axial-vector one. It
is well known that this is no more true at one-loop order and the Ward
identity (5.2) is replaced by:

2

. cxr T € =
8“_7;‘ = 21M¢‘75’¢' + -l—ﬁ—r—z'F“VF“V ’ (53)

where F#Y = 1/2¢#YP° F,5. On the other hand, the vector current, associ-
ated to the U(1) local invariance, is still conserved.

In a chiral gauge theory, with left and right-handed fermions transform-
ing according to inequivalent representations of the gauge group, there will
be both vector and axial-vector gauge currents. In this case the problem of
a possible (and unacceptable) breaking of the gauge symmetry via quantum
effects immediately arises. It turns out that in this case it is the fermion
content of the theory that decides if the gauge currents are anomalous or
not, and a simple criterion can be formulated. It is convenient to define
all the fermion fields to be left-handed. This is always possible: whenever
a right-handed field yg occurs, it may be always replaced by its charge-
conjugate left-handed counterpart (9°)y, with ¢¥° = C¥7T. In this way all
the gauge currents are of the kind:

J,f = @I'Y;LTAQL ) (5'4)

where ¥y, stands for the collection of fermion fields and T4 is the set of gauge
generators for the representation ¥,. An anomaly-free theory is character-
ized by the condition:

DABC — (TA{TB,T°}) = 0, (5.5)

corresponding to the vanishing of all possible quantum contributions to
the anomalies via triangle diagrams. For instance, in the SM, the above
condition is equivalent to the requirement:

Tr(Qem) = Oa (5.6)

the trace being performed over all SU(2) doublets. A full fermion generation
satisfies Eq. (5.6), since the quark contribution, 3 x (3 —1/3) = +1 exactly
compensates the leptonic one, —1. An immediate consequence is that the
removal of the top quark from the low-energy spectrum of £, makes the
theory anomalous.

Instead of investigating the problem in the SM, we consider here a
simplified model, based on an abelian gauge symmetry U(1). The matter
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content of the theory comnsists of a “lepton” I and a “quark” ¢ whose left-
handed component transforms according opposite U(1) charges. The right-
handed components are taken invariant:

IL - eia(z)lL :

df, = e 2)gy,
Ig=0,
gr = 0. (5.7)

To trigger the spontaneous breaking of the gauge symmetry we introduce
also a complex scalar field ¢ transforming as follows:

¢ = eia(a:)(p . (5.8)

Finally, we provide the equivalent of a lepton number L and a baryon num-
ber B, by requiring invariance under a global U(1);,®U(1) g symmetry, with
natural assignment:

L(g)=L{p)=0, L{l)=1,
B(l)=B(p)=0, B(g)=1. (5.9)

The Lagrangian for this model reads:
L=-1F, F*
+ ili‘y“(ap - igAu)lL + ilﬁ'y"B,‘lR
+ igLy*(0p + 19 AL )qL + iqrRY*Ouqr
+ Do Do — V(ply)
— yi(lLplr +h.c.) — yo(dLegr +h.c.). (5.10)

The potential V(plp) gives rise to the spontaneously broken phase, if we
make the usual choice:

V(p'le) = wPele + Aelp)?, (5.11)

with u%2 < 0 and A > 0. The minimum is at:

(5.12)

with )
2 _ _H
vt = (5.13)
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We shift the scalar field as follows:

— (0 + v)eif/v
= . (5.14)

Notice that the would-be Goldstone boson £ undergoes the following gauge
transformation:

g =€+ a(z)v. (5.15)

The gauge symmetry is spontaneously broken and all the particles become
massive via the Higgs mechanism. The mass spectrum is the following:

M = %,
M2 = 2)0?,
my = Y2
V2’
Yqv
mg = —=. 5.16
155 (5.16)
We are interested in the gauge current j#, given by:
it = liﬁ'“lL - 917MQL + ’l'((PtD”(p - (D“(pt)()a)
=IpyHl, - quytqL —voRE+ ... (5.17)

In the second equality we have used the parametrization for the scalar field
given in Eq. (5.14), writing down explicitly only the term linear in the field
£. Dots denote terms with o or more than one £, which, for the sake of
simplicity, we will neglect from now on. The divergence of j, reads:

O*j, = —imylysl + imgGysq —vOE+ ... . (5.18)

By taking into account the equations of motion for the field £:

i - i
0¢ = —;mll'ysl + ;mqtj'ysq +.... (5.19)

we find that the gauge current is conserved also in the spontaneously broken
phase, at least at the classical level. To see what happens with the quantum
corrections, we write the generator T of the gauge transformations (5.7) in

the base I1,,q1,(1)1,(¢°)L:

1 0 00
{0 -1 0 o0

T=10 o o o (5.20)
0 0 0 0
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The condition (5.5) for the absence of anomalies in the gauge currents now
reads Tr(T3) = 0, which is clearly satisfied by 7. In terms of triangle
diagrams, the quark contribution is exactly cancelled by the lepton contri-
bution, as in the SM. The model is anomaly-free.

To mimic the case of the SM, we now assume that the quark is much
heavier than the other particles. As one can see from Eq. (5.16), this means
that we are postulating the following hierarchy:

Yq > yhg7’\‘ (5.21)

Such a choice does not interfere with the gauge invariance of the model,
which we have checked above. As in the previous section, we introduce a
low-energy effective action given by:

Seq = S + AS. (5.22)

Here S is obtained from the original Lagrangian £ of Eq. (5.10) simply by
dropping the terms containing the heavy field ¢. The theory described by
S is still formally gauge invariant. The gauge current j é‘l is given by:

i = Lt + i(p'D*e — (D*pt)p)
=l y*l, — vO* €+ ..., (5.23)

with vanishing classical divergence. However, due to the anomalous fermion
content of the theory, quantum corrections modify the classical Ward iden-
tity, and, as in the case of the axial vector current in QED, one obtains

: 1 g¢* .
Ouily = EIEW_?FWFW = G(z). (5.24)

This result immediately implies the breaking of gauge invariance. We con-
sider the gauge variation of S.). We obtain:

§[Sal = ——/d:ca(:c)@,‘jc’i,

= ——/dza(:z:)G(:c),
#0, (5.25)

where we have denoted by [S,;] the full one-loop effective action induced by
Sea-

There is not much freedom to repair this situation. The only possibility
is that AS in Eq. (5.22), which is a genuine O(h) term, has a gauge variation
which exactly compensates the one given in Eq. (5.25), namely:

5(AS) = / dza(2)G(z). (5.26)
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Indeed, we may try to find the general — CP invariant — solution to the
equation (5.26). To this end it is useful to split AS into a parity violating
part ASpy and a parity conserving term ASpc. Indeed it is not restrictive
to require that ASpc is gauge invariant so that it does not contribute to
the previous equation. The term ASpc, analogous to the term (AL)p of
Eq. (4.4), can be determined via suitable matching conditions, as explained
in Section 4, but is irrelevant to the present discussion. The general solution
to Eq. (5.26) has now the form:

ASpy = ASpy + ASpy, (5.27)

where ASgV is the general solution of the homogeneous equation § (AS{;’,V) =
0, i.e. the set of all possible gauge and C P invariant, P violating operators.
Such operators do not exist.”. So we remain with A.S'llpv, a particular solu-
tion of Eq. (5.26). Long ago Wess and Zumino found the solution [41]:

ASLy = %/dm £(2)G(=),

which indeed satisfies Eq. (5.26), as can be seen by using the transformation
properties of £ in Eq. (5.15) and the invariance of G.
The final gauge invariant effective action is given by:

1 ..
Seﬂ' = Scl + ASPC + 6_'1) / dz EF/.LUF#U . (5.29)

Notice that S.g is non-renormalizable, as in fact it should be, since other-
wise, we would have “integrated away” the anomaly. The non-renormaliza-
bility is related to the restricted domain of applicability of the effective
theory. Such domain is bounded in energy by some critical value E., be-
yond which the breakdown of perturbative unitarity signals the inadequacy
of S.g to approximate the full theory.

A similar mechanism of anomaly cancellation is active in the low energy
effective Lagrangian L.g of the previous section, obtained from the SM in
the heavy m, limit [14]. In this case we have to deal with the additional
constraint given by the lightness of the bottom quark, which belongs to the
low-energy part of the spectrum. At first sight this new element seems to
lead to a contradictory situation. On one hand the consistency conditions
which the SU(2)L®U(1)y anomalies must satisfy require for the bottom
contribution to the anomaly to be fully included in the Wess-Zumino term
AS. On the other hand, being the bottom a light field, nothing prevents the

7 We are using the possible assignment: P = +1 and C = —1, for the field ¢.
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separate evaluation of the bottom contribution to the modified Ward identi-
ties in S.). It is a property of the nonlinear realization of the SU(2),®U(1)y
symmetry that makes the latter vanish, solving the paradox.

Similar mechanisms take also place in supersymmetric extensions of the
SM analyzed in the large m, limit [42].

To conclude this section we illustrate the physical relevance of the Wess—
Zumino term by discussing the cancellation of the gauge dependence in
the scattering amplitude for Il — AA. This amplitude, beyond the tree-
level contributions, receives from the lepton loop three independent one-loop
corrections: the exchange Ay of the vector boson A in the s-channel, the
exchange A, of a would-be Goldstone boson { and finally the contribution
Aw z of the Wess—Zumino term through the exchange of £. In a generic R
gauge (A denoting the gauge parameter) we have:

—i 1-2a1
Av = #ligy*a_u s ——— . - ig7" 5.30
v = 9(igy*a_)u 2o M,24 Juv 2 2 PuPy (ig7"),  ( )

where (igj,) denotes the insertion of the leptonic current between two vector
bosons via the lepton loop. From the anomalous Ward identity one obtains:

ip* (ju) = —imy (Iysl) + (G) , (5.31)
so that one finds:
Ay =AY + 4%, (5.32)
with
1 _ = -1 ..
Ay = o(igyFa_)u 2 (i97u) » (5.33)
and

1 -1
M2
A p? —-—f‘

A% =g m;(v'ysu) = [(G) — imy (Iys1)] . (5.34)

Notice that A}, does not depend on A. The other contributions are given
by:
(1—751) , (5.35)

M?

m
v
pP- 5t

m
Ag = —(Tvsu)

and

(G)

Q| e,

™ ;
Awz = (”75")"—"—"”M2
p? - —4

X
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Finally the sum of the contributions A%,, A¢ and Aw z is given by:

1 _ 1 . T
A%/ + Af + Awz = —ﬁml(v'ysu) 2——1‘7{ [(G) - 1Ny (l‘)’sl)] (537)
p* =My

displaying the desired independence on A. It is only the sum of the three
contributions that does not depend on A. In particular, neglecting the
contribution from the Wess—Zumino term we would obtain an unacceptable
gauge-dependent amplitude.

I am indebted to L. Maiani and A. Masiero for the very pleasant collab-
oration on which most of these lectures are based. I would like to thank G.
Degrassi, S. Rigolin, R. Strocchi and A. Vicini and D. Zeppenfeld for stim-
ulating discussions on the subject of these lectures. A special thank goes
to the organizers of the School R. Marka, J. Polak and M. Zralek as well
to all the participants for the very nice hospitality enjoyed in Szczyrk, for
having provided an exceptionally good weather and for the enjoyable walks
in the Beskidy mountains. Finally I would like to thank E. Masso and the
Institute de Fisica de Altas Energias of Autonoma University, D. Espriu and
the Department of Physics of Central University for their kind hospitality
in Barcellona where these lectures were further reviewed and completed.
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