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In this paper, we have solved a simple specific model of the five-body
problem in the framework of the Yakubovsky equations, restricted to the
configurations of the alpha–nucleon types only, to investigate the effective
interaction between an inert alpha-particle and a neutron. In the general
case, the Yakubovsky scheme for the solution of the five-body system leads
to a set of four coupled equations related to four independent configura-
tions, which can be restricted to two coupled ones, to describe the effective
alpha–nucleon structure model, namely an inert four-body alpha–core and
a nucleon. Hence, in such a model, the other configurations will not be
taken into account. To calculate the binding energies of the five-body sys-
tem in the model of alpha–nucleon structure, the two coupled equations
are represented in the momentum space on the basis of the Jacobi mo-
menta. After an explicit evaluation of the two coupled integral equations
in a partial-wave analysis, the obtained equations are the starting point
for a numerical calculation as an eigenvalue equation form, using typical
iteration method. In the first step to the calculations, i.e. applying some
spin-independent potential models, some obtained binding energy differ-
ences between the four-body as an alpha-particle and the five-body as an
alpha–nucleon systems suggest that a simple effective interaction between
an inert alpha-particle and a nucleon is attractive and of about 13 MeV.
In addition, the represented binding energy results with respect to the re-
garded spin-independent potentials are in a fair agreement with the results
obtained from other methods.
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1. Introduction

The subject of effective alpha–nucleon (αN) interaction plays an im-
portant role in nuclear structure of few-body problems, and an entire un-
derstanding of this interaction is interesting and necessary. Moreover, the
investigation of light nuclei and the study of the identity of the governing
effective interactions, in addition to the specific properties of the bound and
scattering states, are very interesting and relevant topics in nuclear few-
body systems, as well as the atomic community. The main interest in the
few-body problems is finding an accurate solution for the systems, as well
as looking for unknown interactions governing these systems. To this re-
gard, the investigation of few-nucleon bound systems interacting via simple
and realistic interactions has been always in the center of interest. The de-
scription of light nuclei, and the effective αN interactions especially require
well-established methods to solve the non-relativistic Schrödinger equation,
in addition to the description of the relevant models of such interactions.

In the past few decades, considerable efforts have been made to inves-
tigate the effective αN interaction and applied to the exploration of the
structure of light and heavy nuclei with this interaction, such as multichan-
nel αN and αα interactions [1], bound-state properties of the 6He and 6Li in
a 3-body model, with an investigation of the αN interactions [2], interactions
of αN in an elastic scattering [3], a survey of the αN interaction [4], periph-
eral αN scattering with NN potential [5]. Significant attempts have been
made to obtain accurate ground-state properties of the few-nucleon systems
even for A > 4 with simple and realistic potentials, namely the Stochas-
tic Variational Monte Carlo (SVM) method [6] which still used simplified
forces without realistic nuclear interactions, and the Nonsymmetrized Hy-
perspherical Harmonics (HH) approach [7] appears to be quite promising to
deal with permutational-symmetry breaking terms in the Hamiltonian. The
HH calculational scheme is usually based on the partial-wave (PW) repre-
sentation. The SVM, however, is performed directly using position vectors
in the configuration space. All these methods have proved to be of great
accuracy and they have been tested using different benchmarks. The suc-
cessful outcomes in [6, 7] suggest that a direct study of the five-body systems
and beyond is now accessible on today’s computers with high computational
speed. Now, a direct treatment of the five-body problem for the model of ef-
fective alpha–nucleon (α–N) structure is required to investigate the effective
interaction between an inert alpha-particle and an attractive nucleon (αN).
Therefore, we feel that in order to solve the five-body systems, an accurate
and old reliable method, the solution within the Yakubovsky scheme, would
be interesting.
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Now, after the experiences with 4- and 6-body bound systems within the
Yakubovsky scheme in a typical PW analysis [8], and a three-dimensional
formalism [9] whose technical expertise has been developed and the very
strong increase of computational power recently achieved allow to study the
five-body problems in the framework of the Yakubovsky equations for the
model of effective α–N structure to investigate the effective αN interac-
tion. It is worthwhile to mention that a realistic five-nucleon problem is
not allowed for a bound state. However, in order to investigate the effec-
tive interactions between the two particles, namely alpha-particle and an
attractive nucleon, we consider the five-body problem for the model of ef-
fective α–N structure as a bound system. Also, an objection to the use of
simple phenomenological potentials for αN scattering arises from the fact
that these potentials allow a bound state for the 5-body system which is
forbidden by the exclusion principle. Therefore, in order to calculate the ef-
fective αN interaction in the special specific α–N structure of the five-body
model system, we study the Yakubovsky scheme, extending the applica-
tions to systems with A = 5 and in order to calculate the binding energy
results, we evaluate the coupled equations in momentum space based on a
PW representation. Next, we have developed a particular representation of
the high-dimension eigenvalue matrix, which is systematic with respect to
the number of components and well-suited for a numerical implementation.
In pursuit of this goal, we investigate the convergence of the eigenvalue of
the Yakubovsky kernel with respect to the number of grid points and calcu-
late the expectation value of the Hamiltonian operator, which is systematic
with respect to the number of components and well-suited for a numerical
implementation.

This paper is organized as follows. In Sect. 2, the Yakubovsky formal-
ism to the five-body problem using the standard notation [10] is explicitly
derived. In addition, the identity of the particles is added which leads to a
set of four coupled equations related to 4 different sequential subclusters of
5 particles. In Sect. 3, corresponding Jacobi coordinates of each Yakubovsky
component is defined and the relevant configurations are selected to approx-
imate the effective α–N structure. By these selections, a set of four coupled
equations leads to two coupled ones and the irrelevant components will not
be taken into account. In Sect. 4, the integral representation of each wave-
function (WF) component is represented by introducing the PW basis states
based on Jacobi momenta. We describe also details for numerical techniques
which are considered useful for a numerical performance. In Sect. 5, in or-
der to compare and discuss our obtained results for binding energies of the
four-body in the model of alpha-particle and the five-body system in the
model of effective α–N structure, and to describe the effective αN interac-
tion, the binding energy results are presented in tables where they are listed
together with those obtained from other methods. In addition, in order to
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test our calculations, we investigate the convergence of the eigenvalue of the
Yakubovsky kernel with respect to the number of grid points and calculate
the expectation value of the Hamiltonian operator. Finally, the conclusions
are provided in Sect. 6.

2. The five-body Yakubovsky formalism

In the five-body system, there are ten different two-body forces, or ten
different cluster decompositions having 4-body fragments. They are labeled
with (a4), e.g. a4 = 12 ≡ 12 + 3 + 4 + 5. To solve a typical five-body bound
system in the Yakubovsky scheme using the subcluster notation [10], the idea
is to first sum up the pair forces in each 4-body fragment (a4), in a second
step, among all 3-body fragments (a3), and then in a third step, among
all 2-body fragments (a2). We work out this formalism ending with two-
body subclusters in the spirit of the usually used approximate effective α–N
structure model. To this end, we start with the non-relativistic Schrödinger
equation for the five-body system, as follows:(

H0 +
∑
a4

Va4

)
Φ = E Φ , (2.1)

where H0 stands for the free Hamiltonian operator of the five-body system,
and

∑
a4
Va4 ≡ V12+· · ·+V45 is the summation of the all 2-body interactions

having ten terms. According to the Faddeev scheme, Eq. (2.1) is rewritten
as an integral equation

Φ = G0

∑
a4

Va4 Φ , (2.2)

where G0 is the five-body free Green’s function operator and in the case of
scattering states, we have G0 = [E−H0± iε]−1. In investigating the bound
states, there is no iε needed since E < 0. The first step is the summation
of each pair force to infinite order, so we can define Φ =

∑
a4
ϕa4 ≡ ϕ12 +

· · · + ϕ45 for total WF, where we have ϕa4 ≡ G0Va4Φ. By inserting that
decomposition for Φ into the right-hand side, we have

ϕa4 ≡ G0Va4 ϕa4 +G0Va4
∑
b4

δ̄a4b4 ϕb4 . (2.3)

The first term is related to a renewed interaction Va4 , whereas in the second
term, the next interaction Vb4 6= Va4 and we use the anti-delta function as
δ̄a4b4 = 1 − δa4b4 . Equation (2.3) can be packed by using the Faddeev-like
equation

ϕa4 ≡ G0ta4
∑
b4

δ̄a4b4 ϕb4 , (2.4)
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where ta4 is a two-body t-matrix operator that obeys the Lippmann–
Schwinger equation as ta4 = Va4 + Va4G0ta4 . Next, we can describe main
subclusters with definition of new components, as follows:

ϕa4a3 = G0ta4
∑
b4⊂a3

δ̄a4b4 ϕb4 , (2.5)

where (a3) refers to any 3-body fragment containing the pair (a4) and the
sum runs over pairs b4 ⊂ a3. Next, we have ϕa4 =

∑
a4⊂a3 ϕa4a3 and this

relation is used to obtain a closed set of equations for ϕa4a3

ϕa4a3 = G0ta4
∑
b4⊂a3

δ̄a4b4
∑
b4⊂b3

ϕb4b3 . (2.6)

Now, we separate the components ϕa4a3 for a given (a3) from the rest

ϕa4a3 −G0ta4
∑
b4⊂a3

δ̄a4b4ϕb4a3 = G0ta4
∑
b4⊂a3

δ̄a4b4
∑
b4⊂b3

δ̄a3b3 ϕb4b3 , (2.7)

defining for a fixed (a3) the column vectors ϕa3 and ϕ(a3) with the com-
ponents (ϕa3)a4 = ϕa4,a3 and (ϕ(a3))a4 =

∑
b4⊂a3 δ̄a3b4 ϕb4b3 , respectively.

Introducing the matrix Ma3 with the elements Ma3 ≡ ta4 δ̄a4b4 , Eq. (2.7)
leads to

ϕa3 = (1−G0M
a3)−1G0M

a3ϕ(a3) ≡ G0T a3ϕ(a3) . (2.8)

It is well-known that we achieve a Lippmann–Schwinger-like equation in the
above Faddeev-like equation as T a3 = Ma3 + Ma3G0T a3 . In the primal
explicit notation, Eq. (2.8) leads to

ϕa4a3 = G0

∑
b4⊂a3

T a3a4b4 (ϕa3)a4 = G0

∑
b4⊂a3

T a3a4b4
∑
b4⊂b3

δ̄a3b3 ϕb4b3 , (2.9)

where
T a3a4b4 = ta4 δ̄a4b4 +G0

∑
c4⊂a3

ta4 δ̄a4c4T
a3
c4b4

. (2.10)

We note that there are two types of T -matrix. For (a3) of the type 123+4+5,
T a3a4b4 is a 3× 3 matrix and for (a3) of the type 12 + 34 + 5, T a3a4b4 is a 2× 2

matrix. Next, subsequent decompositions of the right-hand side of Eq. (2.9)
according to 2-body fragments are given as

ϕa2a4,a3 = G0

∑
b4⊂a3

T a3a4b4
∑
b4⊂b3
b3⊂a2

δ̄a3b3 ϕb4b3 . (2.11)
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We remind that for 2-body fragments of a2 = 1234+5 type, there are 18 pairs
of (a4), (a3) and for 2-body fragments of a2 = 123+45 type, there are 6 pairs
of (a4), (a3). This defines the dimensions of the different T -matrix. In the
following, the single particles in subclusters 4-, 3- and 2-body fragments, i.e.
(a4), (a3) and (a2), respectively, will no longer be displayed.

Next, we implement the identity of the particles that leads to a set of four
coupled equations related to four different structures of 5 particles. After
implementing the identity of the particles, in Appendix A, we end up with
four independent components: ϕ 1234

12;123, ϕ1234
12;12+34, ϕ

123+45
12,123 and (ϕ125+34

12,12+34 +

ϕ12+345
12,12+34) coupled in equations, (A.35), (A.37) and (A.39). The linear and

final form of the Yakubovsky coupled equations for a general model of the
five-body system yields

ϕ 1234
12;123 = G0T 123

(
(P34P45 − P34)ϕ

1234
12;123 − P34ϕ

123+45
12,123

+
(
ϕ125+34
12,12+34 + ϕ12+345

12,12+34

)
+ ϕ1234

12;12+34

)
, (2.12)

ϕ1234
12;12+34 = G0T 12+34

(
(1− P34)

(
(1− P45)ϕ

1234
12;123

)
+ (1− P34)ϕ

123+45
12,123

)
,

(2.13)

ϕ123+45
12,123 = G0T 123 (−P35)

((
ϕ125+34
12,12+34 + ϕ12+345

12,12+34

)
+ ϕ1234

12;12+34

)
, (2.14)

ϕ125+34
12,12+34 + ϕ12+345

12,12+34 = G0T 12+34
(

(−P35 − P45)
(
ϕ125+34
12,12+34 + ϕ12+345

12,12+34

)
−P45 (1− P34) ϕ1234

12;12+34 − P35

(
(1− P34)ϕ

1234
12;123 + ϕ123+45

12,123

))
. (2.15)

In the next step, we describe the configuration of each independent compo-
nent and select the specific configurations that describe the five-body system
in the model of effective α–N structure.

3. Coupled equations of the effective alpha–nucleon structure

Regarding the subcluster underlying the four components, only two of
them, that is ϕ 1234

12;123 and ϕ1234
12;12+34, are related to the very approximate ef-

fective two-body configuration of α–N model, where the alpha-particle and
attractive nucleon approximation is valid, according to the first two con-
figurations in Fig. 1. The component ϕ123+45

12,123 refers to an inert 3-body
together with a 2-body subclustering. The linear combinations (ϕ125+34

12,12+34 +

ϕ12+345
12,12+34) refer again to an inert 3-body together with a 2-body subcluster-

ing, where the underlying fragmentation related to 2-body fragments differs
from ϕ123+45

12,123 (see Fig. 1).
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(a) (b) (c) (d)

Fig. 1. Diagramatic configuration of the four independent components of 5-body
system in Jacobi coordinates. (a), (b), (c) and (d) are respectively the configura-
tions of the components ϕ 1234

12;123, ϕ1234
12;12+34, ϕ

123+45
12,123 and (ϕ125+34

12,12+34 +ϕ12+345
12,12+34). In

the bag, the alpha–core acts as a 4-body subsystem.

Now, we explain why we chose some specific components, and which
components are related to the effective α–N structure. It is worthwhile to
mention that for full solution of the 5-body system, in a general model, we
need modern super-computers organized with grid parallel and we must con-
sider all the configurations. However, in this project, we are interested to
study the 5-body system for the specific model of effective α–N structure.
Therefore, according to the above discussions, we choose the first two rele-
vant configurations, and further, the other configurations will not be taken
into account in the specific α–N structure. Moreover, according to Fig. 1,
the effective interaction of alpha-particle is governor and concealed in the
remained components (see first two configurations in Fig. 1 and compare
them with Figs. 1 and 2 in Ref. [11]). Therefore, for approximating the
effective α–N structure, we selected ϕ 1234

12;123 ≡ K and ϕ1234
12;12+34 ≡ H. As a

result, the corresponding first two coupled equations, namely Eq. (2.12) and
Eq. (2.13) lead to

K = G0 T 123 ((P34 P45 − P34)K +H) , (3.1)
H = G0 T 12+34 (1− P45 − P34 + P34 P45)K . (3.2)

It is well-known that such a nuclear system should be treated in the fermionic
approaches, i.e. the five-body total WF follows Φ = −PijΦ, and the Pauli
principle is taken into account, even for spinless particles. Here however,
as a simplification, we switch off spin and isospin degrees of freedom and
study the effective five-body system in L = 1 states as spinless particles,
(see Appendix B). According to the above-mentioned first two specific con-
figurations, Fig. 1, after removing the interaction of the fifth nucleon in the
above-mentioned coupled equations, namely P45 ≡ 0, the five-body system
leads to a typical four-body problem [11] as follows:

K = −G0 T 123 P34 K +G0 T 123 H , (3.3)
H = G0 T 12+34 (1− P34)K . (3.4)
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Such a reduction confirms that extending the Yakubovsky formulations for
the specific model of the five-body system is a reasonable approximation to
describe the effective α–N structure as a five-body system. Therefore, in
the calculation step, for binding energies of specific five-body system, we
can typically calculate the four-body binding energies for a comparison.

4. Numerical implementation

In this step, in order to implement the numerical techniques, the two cou-
pled equations, Eq. (3.1) and Eq. (3.2), are represented in momentum space.
We also introduce the standard Jacobi momentum vectors on the basis of
distinct configuration according to Fig. 1, represented in Appendix B. Let
us now represent the coupled equations, Eq. (3.1) and Eq. (3.2), to the basis
states introduced in Appendix B. By inserting the completeness relations,
Eq. (B.9), between the permutation operators, we receive

〈a|K〉 =

∫
a′2da′

∫
a′′2da′′〈a|G0T 123|a′〉〈a′| (P34P45 − P34) |a′′〉〈a′′|K〉

+

∫
a′2da′

∫
b′2db′〈a|G0T 123|a′〉〈a′|b′〉〈b′|H〉 , (4.1)

〈b|H〉 =

∫
b′2db′

∫
a′2da′〈b|G0T 12+34|b′〉〈b′| (1− P45 − P34 + P34P45) |a′〉

×〈a′|K〉 . (4.2)

The various terms appearing in the right hand-side of Eqs. (4.1) and (4.2)
are explicitly evaluated in Appendix C. After evaluation of each term in the
above-mentioned coupled integral equations in the standard PW analysis,
the obtained equations are the starting point for numerical calculations as
an eigenvalue equation form. In order to reduce the high dimension of the
problem, we first choose an appropriate coordinate system. In this selection,
the third vector A3 has been chosen parallel to z-axis, the second vector A2

in the x–z plane, and the first vector A1 and fourth vector A4 are arbitrary
in the space. Therefore, we need nine variables to uniquely specify the
geometry of the four vectors Ai (i = 1, . . . , 4) with three spherical angles
and two azimuthal angles variables between them. By these considerations,
the dimension of the eigenvalue problem is

N = N4
Jac ×N3

sph ×N2
azi × 2 . (4.3)

The dependence on the continuous momentum and angle variables should
be replaced in the numerical treatment by a dependence on certain discrete
values. The large matrix eigenvalue equation requires an iterative solution
method. We use a Lanczos-like scheme that is proved to be very efficient for
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nuclear few-body problems [12, 13]. This technique reduces the dimension of
the eigenvalue problem to the number of iteration minus one. The evaluated
coupled set of Eqs. (4.1) and (4.2) in a matrix notation has the following
schematic structure as an eigenvalue equation:

η (E) ϕ (K,H) = k (E) ϕ (K,H) , (4.4)

where E is the energy eigenvalue at which the auxiliary Yakubovsky ker-
nel eigenvalue η (E) is equal to one. The Yakubovsky kernel of the linear
equations k (E) is energy-dependent, and η (E) is its eigenvalue with ϕ as
the corresponding eigenvector. In order to solve the eigenvalue equation,
Eq. (3.4), we use the Gaussian quadrature grid points. The coupled equa-
tions represent a set of homogeneous integral equations, which, after dis-
cretization, turn into a large matrix eigenvalue equation. Starting from an
arbitrary initial ϕ ≡ ϕ0, by consecutive applications of k (E), one generates
a sequence of amplitudes ϕn, which, after orthogonalization, form a basis
into which ϕ is expanded. It turns out that a reasonably small number of
k-applications (of the order of 10–20) is sufficient, which leads to an alge-
braic eigenvalue problem of rather low dimension. Then the energy is varied
such that one reaches η (E) = 1. More similar discussions can be found in
Refs. [8, 14].

5. Results

5.1. Binding energy

In this section, in order to investigate the effective αN interaction, we
present numerical results for binding energies of the five-body system in the
model of effective α–N structure, and compare them with the four-body
binding energies in the alpha-particle model, because the binding energy
differences between four- and five-body systems, in such a model, reflects
the value of effective αN interaction. Bound-state results of the four- and
five-body systems are shown in Table II and III, respectively. We also draw
comparisons with results obtained by results of other methods. In order to
compare our calculations with results obtained by other techniques, we use
the spin-independent simple potential models, as follows:

I. Gauss-type Volkov potential [15]

V (r) = VR exp
[
−µRr2

]
− VA exp

[
−µA r2

]
[MeV] . (5.1)

II. Yukawa-type Malfliet–Tjon V potential [16]

V (r) = VR
exp [−µR r]

r
− VA

exp [−µA r]

r
[MeV] . (5.2)
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In the above-mentioned potentials, label VR and VA stand for repulsive- and
attractive-part coefficients, respectively, and µ is the exchanged pion mass.
The parameters of each potential are given in Table I. It is well-known that
such simple potentials mentioned above applied in the calculations allow a
bound state for the five-body system and they are naturally expected. In
the calculations, we have used the operator form of the above potentials.

TABLE I

List of the parameters of the simple potential models applied in the calculations.
The potential strengths (VR, VA) are in MeV for Volkov and MeV×fm for Malfliet–
Tjon V , and the range parameters, exchanged pion masses (µR, µA), are in fm−2

for Volkov and fm−1 for Malfliet–Tjon V .

Potential Type VR µR VA µA

Volkov [15] Gauss 144.86 1.487 83.34 0.3906
Malfliet–Tjon V [16] Yukawa 1458.05 3.11 578.09 1.55

For the Volkov potential, our calculations for four- and five-body binding
energies yield the values −30.39 and −44.02 MeV, respectively, which as
shown in Table II, are also in a good compatibility with those obtained from
other calculations.

TABLE II

Four- and five-body binding energies for the Volkov potential in MeV.

Method E4 E5

HH [17, 18] −30.420 −43.032
HH [19] −30.406 −42.383
SVM [16] −30.424 −43.00

Present work −30.39 −44.02

Our calculations for Malfliet–Tjon V yield the value−31.36 MeV for four-
body binding energy, which is in a good agreement with HH [17], SVM [6]
and VMC [20] results. Our results for five-body binding energy with value
−44.30 MeV are also in a fair compatibility with those obtained from other
methods.

Comparison of our numerical results for binding energies with respect to
the regarded spin-independent potentials are in a good agreement with re-
sults of other methods in the first step calculations. Also some obtained bind-
ing energy differences between the four-body as an alpha-particle and five-
body as an effective alpha–nucleon model systems suggest that an effective
αN interaction in such a model is attractive and its value is about 13 MeV.
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5.2. Expectation value energy

In this section, we have implemented the numerical stability of our al-
gorithm and our representation of the five-body Yakubovsky components in
PW analysis. We have specially investigated the convergence of the eigen-
value of the Yakubovsky kernel with respect to the number of grid points for
Jacobi momenta, azimuthal and spherical angle variables. We have also in-
vestigated the quality of our representation of the Yakubovsky components
and, consequently, WF by calculation of the expectation value of the five-
body Hamiltonian operator. We have applied the Malfliet–Tjon V potential
in our investigations. In Table IV, we present the obtained eigenvalue re-
sults for the five-body binding energy given in Table III for suitable different
grids. We label the number of grid points for K and H WFs Jacobi mo-
menta respectively as Na

Jac and N b
Jac, for spherical angles as Nsph and for

azimuthal angles as Nazi. As demonstrated in Table IV, the calculations
of the eigenvalue η converge to the value one for Na

Jac = N b
Jac = 20 and

Nsph = Nazi = 14.

TABLE III

Four- and five-body binding energies for the Malfliet–Tjon V potential in MeV.

Method E4 E5

SVM [6] −31.360 −43.48
VMC [20] −31.3 −42.98
HH [17] −31.347

Present work −31.36 −44.30

TABLE IV

Convergence of the eigenvalue η of the Yakubovsky kernel with respect to the
number of grid points in Jacobi momenta Na

Jac and N b
Jac, spherical angles Nsph

and azimuthal angles Nazi, where E5 = −44.30 MeV.

Na
Jac N b

Jac Nsph = Nazi η

10 10 14 0.926
14 10 14 0.963
16 14 14 0.987
20 16 14 0.998
20 20 14 1.000
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The solution of the coupled integral equations in momentum space allows
estimating numerical errors reliably. In order to demonstrate reliability of
our calculations, we evaluated the expectation value of the five-body Hamil-
tonian operator and compared this value to the calculated binding energy
of the eigenvalue equation, Eq. (4.4) — results are given in Table III. The
expectation values of the five-body kinetic energy 〈H0〉, the all 2-body in-
teraction 〈V 〉 and the five-body Hamiltonian operator 〈H〉 for the five-body
system are given in Table V for Malfliet–Tjon V interactions calculated in
PW analysis. The little differences between the expectation value of the
five-body Hamiltonian 〈H〉 and the eigenvalue energy E5 show that the re-
sults are in a fair agreement. However, a better agreement could be reached
if we considered a larger number of grid points in our calculations.

TABLE V

Expectation values of the five-body kinetic energy 〈H0〉 and all 2-body interac-
tions 〈V 〉. Additionally, the expectation values of the five-body Hamiltonian oper-
ator 〈H〉 are compared to the binding energy results from the eigenvalue equation.
All values are given in MeV.

Method 〈H0〉 〈V 〉 〈H〉 E

Malfliet–Tjon V 72.43 −118.71 −46.28 −44.30

6. Conclusions

The subject of alpha–nucleon interaction plays such an important role in
nuclear structure problems that an entire understanding of this interaction is
necessary. Therefore, in order to investigate the effective αN interaction, we
have solved the coupled Yakubovsky equations for the five-body system in
the model of approximating effective alpha–nucleon structure in a PW anal-
ysis that is implemented in the basis of momentum variables. To this end,
we formulated the coupled equations for the spinless particles as the func-
tion of Jacobi momenta, namely the magnitudes of the momenta and angles
between them. The coupled integral equations for a bound-state calculation
can be handled in PW representation and solved by a numerically reliable
standard method. Our numerical results of binding energies with respect to
the regarded spin-independent simple potentials are in a fair agreement with
the results of other methods in the first step calculations, and also some ob-
tained binding energy differences between the four-body as an alpha-particle
and the five-body as an alpha–nucleon model systems suggest that an effec-
tive interaction of αN is attractive and occurs at about 13 MeV. In addition,
the stability of our algorithm has been achieved with the calculation of the
eigenvalue of Yakubovsky kernel, where a different number of grid points for
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Jacobi momenta and angle variables have been used. We have also calcu-
lated the expectation value of the five-body Hamiltonian operator. This test
of calculation has been done with Malfliet–Tjon V potential and we have
achieved a good compatibility between the obtained eigenvalue energy and
the expectation value of the Hamiltonian operator.

It is worthwhile to mention that by including the spin effects in the
implementation of the four-body system in the model of alpha-particle and
five-body system in the specific model of effective α–N structure, both bind-
ing energy results will be almost equally improved, so correspondingly, the
results of the effective αN interaction will remain almost unchanged when
the spin-dependent interactions are used. In addition to the solution of
the five-body system in the model of effective α–N structure, according
to Fig. 1, only the first two relevant configurations, in terms of two first
Yakubovsky components, are considered. Obviously, the irrelevant configu-
rations/components will not be taken into account, even for spin-dependent
potentials though for a full solution of the general model of five-body bound
systems, such as constituent quark models (pentaquark) or atomic five-boson
bound systems (pentamer), the incorporation of the all components is re-
quired. This is very promising and nourishes our hope for performing cal-
culations with spin-dependent nucleon–nucleon potential models in a PW
analysis and also 3-dimentional formalism based on the Yakubovsky method.

Appendix A

Implementation of the identity of the particles

We start from Eq. (2.9) and choosing the case of 4-body fragments a4 =
12 with 3-body fragments a3 = 123, one obtains

ϕ12,123 = G0T 123
12,12

(
ϕ(123)

)
12

+G0T 123
12,23

(
ϕ(123)

)
23

+G0T 123
12,31

(
ϕ(123)

)
31

(A.1)
according to the second term of Eq. (2.9)

ϕ12,123 = G0T 123
12,12 (ϕ12,124 + ϕ12,125 + ϕ12,12+34 + ϕ12,12+35 + ϕ12,12+45)

+G0T 123
12,23 (ϕ23,234 + ϕ23,235 + ϕ23,23+14 + ϕ23,23+15 + ϕ23,23+45)

+G0T 123
12,31 (ϕ31,314 + ϕ31,315 + ϕ31,31+24 + ϕ31,31+25 + ϕ31,31+45) .

(A.2)

It is easily seen, going back to the definitions in Eq. (2.3) and Eq. (2.6) to-
gether with the anti-symmetry requirement for the total state wave function,
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that

ϕ23,234 + ϕ23,235 + ϕ23,23+14 + ϕ23,23+15 + ϕ23,23+45

= P12P23 (ϕ12,124 + ϕ12,125 + ϕ12,12+34 + ϕ12,12+35 + ϕ12,12+45) , (A.3)
ϕ31,314 + ϕ31,315 + ϕ31,31+24 + ϕ31,31+25 + ϕ31,31+45

= P13P23 (ϕ12,124 + ϕ12,125 + ϕ12,12+34 + ϕ12,12+35 + ϕ12,12+45) . (A.4)

Therefore, Eq. (A.2) turns into

ϕ12,123 = G0

(
T 123
12,12 + T 123

12,23P12P23 + T 123
12,31P13P23

)
× (ϕ12,124 + ϕ12,125 + ϕ12,12+34 + ϕ12,12+35 + ϕ12,12+45) . (A.5)

The coupled sets of Eq. (2.10) for using a3 = 123 with relations like
P12P23t13P23P12 = P13P23t23P23P13 = t12, reveals that

T 123 = T 123
12,12 + T 123

12,23P12P23 + T 123
12,31P13P23 , (A.6)

where T 123 obeys T 123 = t12P + t12PG0T 123 and where P = P12P23 +
P13P23. Then, Eq. (A.5) simplifies to

ϕ12,123 = G0T 123 (ϕ12,124 + ϕ12,125 + ϕ12,12+34 + ϕ12,12+35 + ϕ12,12+45) .
(A.7)

Starting again from Eq. (2.9) but now for the case of 4-body fragments
a4 = 12 with 3-body fragments a3 = 12 + 34, one obtains

ϕ12,12+34 = G0T 12+34
12,12

(
ϕ(12+34t)

)
12

+G0T 12+34
12,34

(
ϕ(12+34)

)
34

(A.8)

according to the second term of Eq. (2.9)

ϕ12,12+34 = G0T 12+34
12,12 (ϕ12,123 + ϕ12,124 + ϕ12,125 + ϕ12,12+35 + ϕ12,12+45)

+G0T 12+34
12,34 (ϕ34,134 + ϕ34,234 + ϕ34,345 + ϕ34,34+15 + ϕ34,34+25) .

(A.9)

Then, we use permutation operator properties as follows:

ϕ12,12+34 = 7G0

(
T 12+34
12,12 + T 12+34

12,34 P13P24

)
× (ϕ12,123 + ϕ12,124 + ϕ12,125 + ϕ12,12+35 + ϕ12,12+45) (A.10)

defining
T 12+34 = T 12+34

12,12 + T 12+34
12,34 P13P24 , (A.11)
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where T 12+34 obeys the equation T 12+34 = t12P + t12PG0T 12+34 and where
P = P13P24. Therefore, Eq. (A.9) simplifies to

ϕ12,12+34 = G0T 12+34 (ϕ12,123 + ϕ12,124 + ϕ12,125 + ϕ12,12+35 + ϕ12,12+45) .
(A.12)

The next step is to decompose ϕ12,123 according to Eq. (2.11). For 4-body
fragments a4 = 12, with 3-body fragments a3 = 123, the possible 2-body
fragments (a2) are 1234, 1235, 123 + 45. Let us begin with

ϕ1234
12,123 = G0T 123

12,12 (ϕ12,124 + ϕ12,12+34) +G0T 123
12,23 (ϕ23,234 + ϕ23,23+14)

+G0T 123
12,31 (ϕ31,134 + ϕ31,31+24) . (A.13)

Since

ϕ23,234 + ϕ23,23+14 = P12P23 (ϕ12,124 + ϕ12,12+34) , (A.14)
ϕ31,134 + ϕ31,31+24 = P13P23 (ϕ12,124 + ϕ12,12+34) , (A.15)

Eq. (A.13) simplifies according to Eq. (A.6) what leads to

ϕ1234
12,123 = G0T 123 (ϕ12,124 + ϕ12,12+34) . (A.16)

Similarly,
ϕ1235
12,123 = G0T 123 (ϕ12,125 + ϕ12,12+35) . (A.17)

Again, using symmetry properties, one gets

ϕ123+45
12,123 = G0T 123ϕ12,12+45 , (A.18)

all summed up to

ϕ12,123 = ϕ1234
12,123 + ϕ1235

12,123 + ϕ123+45
12,123 , (A.19)

which when written out agrees with Eq. (A.7). Similarly, next, we decompose
ϕ12,12+34 according to Eq. (2.11). For the 4-body fragments a4 = 12, with
3-body fragments a3 = 12 + 34, the possible 2-body fragments (a2) are
1234, 125 + 34, 12 + 345, which are now, in turn, regarded as

ϕ1234
12,12+34 = G0T 12+34

12,12 (ϕ12,123 + ϕ12,124) +G0T 12+34
12,34 (ϕ34,234 + ϕ34,134)

(A.20)
since we use ϕ34,234 + ϕ34,134 = P13P24(ϕ12,123 + ϕ12,124). One can use
Eq. (A.11) and gets

ϕ1234
12,12+34 = G0T 12+34 (ϕ12,123 + ϕ12,124) . (A.21)
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Next,

ϕ125+34
12,12+34 = G0T 12+34

12,12 ϕ12,125 +G0T 12+34
12,34 (ϕ34,15+34 + ϕ34,25+34) , (A.22)

ϕ12+345
12,12+34 = G0T 12+34

12,12 (ϕ12,12+35 + ϕ12,12+45) +G0T 12+34
12,34 ϕ34,345 . (A.23)

The two above amplitudes cannot be related by permutations, but their sum
can be used

ϕ125+34
12,12+34 + ϕ12+345

12,12+34 = G0T 12+34
12,12 (ϕ12,125 + ϕ12,12+35 + ϕ12,12+45)

+G0T 12+34
12,34 (ϕ34,15+34 + ϕ34,25+34 + ϕ34,345) ,

(A.24)

in the case of

ϕ34,15+34 + ϕ34,25+34 + ϕ34,345 = P13P24 (ϕ12,125 + ϕ12,12+35 + ϕ12,12+45) ,
(A.25)

this leads to

ϕ125+34
12,12+34 +ϕ12+345

12,12+34 = G0T 12+34 (ϕ12,125 + ϕ12,12+35 + ϕ12,12+45) . (A.26)

Thus, Eq. (A.20) and Eq. (A.26) summarize to

ϕ12,12+34 = ϕ1234
12,12+34 + ϕ125+34

12,12+34 + ϕ12+345
12,12+34 , (A.27)

which when written out agrees with Eq. (A.12). The two amplitudes ϕ1234
12,123

and ϕ1234
12,12+34 expressed in Eq. (A.16) and Eq. (A.21) are connected to each

other as has been shown. Equation (A.19) can easily be converted to ϕ12,124

and using in addition Eq. (A.27), with Eq. (A.16), one finds

ϕ1234
12,123 = G0T 123

((
ϕ1234
12,124 + ϕ1245

12,124 + ϕ124+35
12,124

)
+
(
ϕ1234
12,12+34 + ϕ125+34

12,12+34 + ϕ12+345
12,12+34

))
. (A.28)

One separates the components ϕ1234
12,124 and ϕ1234

12,12+34 from the rest

ϕ1234
12,123 −G0T 123

(
ϕ1234
12,124 + ϕ1234

12,12+34

)
= G0T 123

(
ϕ1245
12,124 + ϕ124+35

12,124 + ϕ125+34
12,12+34 + ϕ12+345

12,12+34

)
, (A.29)

correspondingly, Eq. (A.21) yields

ϕ1234
12,12+34 = G0T 12+34

((
ϕ1234
12,123 + ϕ1235

12,123 + ϕ123+45
12,123

)
+
(
ϕ1234
12,124 + ϕ1245

12,124 + ϕ124+35
12,124

))
. (A.30)
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Again, one separates the components ϕ1234
12,123 and ϕ1234

12,124 from the rest

ϕ1234
12,12+34 −G0T 12+34

(
ϕ1234
12,123 + ϕ1234

12,124

)
= G0T 12+34

(
ϕ1235
12,123 + ϕ123+45

12,123 + ϕ1245
12,124 + ϕ124+35

12,124

)
. (A.31)

With ϕ1234
12,124 = −P34ϕ

1234
12,123, we can put Eq. (A.29) and Eq. (A.31) into a

matrix form(
ϕ1234
12;123

ϕ1234
12;12+34

)
−G0

(
T 123(−P34) T 123

T 12+34(1− P34) 0

)(
ϕ1234
12;123

ϕ1234
12;12+34

)

= G0

 T 123
(
ϕ1245
12,124 + ϕ124+35

12,124 + ϕ125+34
12,12+34 + ϕ12+345

12,12+34

)
T 12+34

(
ϕ1235
12,123 + ϕ123+45

12,123 + ϕ1245
12,124 + ϕ124+35

12,124

)  . (A.32)

Since
ϕ1245
12,124 = −P34ϕ

1235
12,123, ϕ

124+35
12,124 = −P34ϕ

123+45
12,123 , (A.33)

the right-hand side of Eq. (A.32) can be factored and achieves the form of(
ϕ1234
12;123

ϕ1234
12;12+34

)
−G0

(
T 123(−P34) T 123

T 12+34(1− P34) 0

)(
ϕ1234
12;123

ϕ1234
12;12+34

)

= G0

(
T 123(−P34) T 123

T 12+34(1− P34) 0

)

×

(
ϕ1245
12,124 + ϕ124+35

12,124 + ϕ125+34
12,12+34 + ϕ12+345

12,12+34

ϕ1235
12,123 + ϕ123+45

12,123 + ϕ1245
12,124 + ϕ124+35

12,124

)
,

(A.34)

the right-hand side can be reduced applying permutations and obtains the
final form of(

ϕ1234
12;123

ϕ1234
12;12+34

)
= G0

(
T 123(−P34) T 123

T 12+34(1− P34) 0

)

×

[(
−P45ϕ

1234
12;123 + ϕ123+45

12,123

ϕ125+34
12;12+34 + ϕ12+345

12;12+34

)
+

(
ϕ1234
12;123

ϕ1234
12;12+34

)]
.

(A.35)

After an adequate permutation of Eq. (A.27), one obtains a form of
Eq. (A.18) as

ϕ123+45
12,123 = G0T 123

(
ϕ1245
12,12+45 + ϕ123+45

12,12+45 + ϕ12+345
12,12+45

)
, (A.36)
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or

ϕ123+45
12,123 = G0T 123 (−P35)

((
ϕ125+34
12;12+34 + ϕ12+345

12;12+34

)
+
(
ϕ1234
12,12+34

))
.

(A.37)
Further, Eq. (A.26) yields inserting the decomposition of the right-hand side
related to

ϕ125+34
12,12+34 + ϕ12+345

12,12+34 = G0T 12+34
(
ϕ1235
12,125 + ϕ1245

12,125 + ϕ125+34
12,125 + ϕ1235

12,12+35

+ϕ124+35
12,12+35 + ϕ12+345

12,12+35 + ϕ1245
12,12+45 + ϕ123+45

12,12+45 + ϕ12+345
12,12+45

)
. (A.38)

Here, quite a few amplitudes can be related to previous ones by permutations
leading to(
ϕ125+34
12,12+34+ϕ12+345

12,12+34

)
= G0T 12+34 (−P35 − P45)

×
((
ϕ125+34
12,12+34+ϕ12+345

12,12+34

)
− P45(1−P34)ϕ

1234
12,12+34

−P35

(
(1−P34)ϕ

1234
12;123+ϕ123+45

12,123

))
. (A.39)

Appendix B

Definition of the Jacobi momenta and partial-wave basis states

Here, we display some Jacobi momenta related to the 5-body system
in the case of two specific components. For ϕ1234

12;123 in terms of the first
configuration in Fig. 1, we choose

a1 = 1/2 (p1 − p2) ,

a2 = 1/3 (2p3 − (p1 + p2)) ,

a3 = 1/4 (3p4 − (p1 + p2 + p3)) ,

a4 = 1/5 (4p5 − (p1 + p2 + p3 + p4)) . (B.1)

In the non-relativistic case, we may express the kinetic energy operator
by two equivalent forms. So, the kinetic energy in terms of a-set Jacobi
momenta, is given as

Ha
0 =

5∑
i=1

p2i
2m
≡ a21
m

+
3

4

a22
m

+
2

3

a23
m

+
5

8

a24
m
, (B.2)

where pi is an individual particle momentum in the center-of-mass form
(under the condition

∑
i pi = 0) that is described by relative Jacobi mo-

menta ai; (i = 1, 2, 3, 4). In the conventional Yakubovsky treatment, the
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total Hamiltonian, according to Eq. (2.1), is first split into the free Hamil-
tonian H0 and the interaction Hamiltonian (summation of all pair interac-
tions).

Similarly, to ϕ1234
12;12+34 in terms of the second configuration in Fig. 1

belongs

b1 = 1/2 (p1 − p2) ,

b2 = 1/2 (p3 − p4) ,

b3 = 1/2 ((p1 + p2)− (p3 + p4)) ,

b4 = 1/5 (4p5 − (p1 + p2 + p3 + p4)) . (B.3)

Correspondingly, the kinetic energy in terms of b-set Jacobi momenta, is
given as

Hb
0 =

5∑
i=1

p2i
2m
≡ b21
m

+
b22
m

+
1

2

b23
m

+
5

8

b24
m
. (B.4)

Now, we introduce the basis states corresponding to the two specific inde-
pendent components. The partial-wave basis states suitable for ϕ1234

12;123 are
given as

|a〉 ≡ |a1a2a3a4; γa〉 , (B.5)

and we represent the basis states for ϕ1234
12;12+34 Jacobi momenta as

|b〉 ≡ |b1b2b3b4; γb〉 . (B.6)

We apply the usage of these basis states without angular momentum, spin
and isospin effects, i.e. γa = γb = 0, and here, we study the spinless particles.
Though, in the numerical techniques, we describe dependent on angular grid
points by choosing the relevant coordinate systems, because total angular
momentums of the 5-body system are restricted in L = 1 state, and the
Pauli principle will be taken into account (see Sect. 4).

Clearly, all basis states are complete in the five-body Hilbert space∫
A2DA |A1A2A3A4〉〈A1A2A3A4| ≡ 1 , (B.7)

where Ai indicates each one of ai and bi magnitude of vectors, and

A2DA ≡ A2
1dA1 A

2
2dA2 A

2
3dA3 A

2
4dA4 . (B.8)

They are normalized according to〈
A1A2A3A4|A′1A′2A′3A′4

〉
=
δ (A1−A′1)

A2
1

δ (A2−A′2)
A2

2

δ (A3−A′3)
A2

3

δ (A4−A′4)
A2

4

.

(B.9)
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Appendix C

Explicit partial-wave evaluation of the coupled equations

To evaluate the coupled equations, Eq. (4.1) and (4.2), the following
matrix elements need to be evaluated in a PW analysis

〈a|G0T 123
∣∣a′〉 , (C.1)〈

a′
∣∣ (P34P45 − P34)

∣∣a′′〉 , (C.2)〈
a′
∣∣b′〉 , (C.3)

〈b|G0T 12+34
∣∣b′〉 , (C.4)〈

b′
∣∣ (1− P45 − P34 + P34P45)

∣∣a′〉 . (C.5)

To evaluate the first term, Eq. (C.1), we need to solve the first subcluster
Faddeev-like equation to obtain T 123 by using the Padé approximation [11]
as follows:

G0T 123 = G0t12P +G0t12PG0t12P +G0t12P G0t12PG0t12P + . . . (C.6)

To evaluate the first term of Eq. (C.6), once more a completeness relation has
to be inserted between the two-body t-matrix and the permutation operators

〈a|G0t12P |a′〉 = G0

∫
a
′′2Da′′

〈
a |t12| a′′

〉 〈
a′′ |P | a′

〉
, (C.7)

where 〈
a |t12| a′′

〉
=
〈
a1 |t12| a′′1

〉 〈
a2|a′′2

〉 〈
a3|a′′3

〉 〈
a4|a′′4

〉
, (C.8)

and 〈
a′ |P | a′′

〉
=
〈
a′ |P12P23| a′′

〉
+
〈
a′ |P13P23| a′′

〉
. (C.9)

Furthermore,〈
a |t12| a′′

〉
=
〈
a1
∣∣t(ε)∣∣ a′′1〉 δ (a2 − a′′2)

(a′′2)2
δ (a3 − a′′3)

(a′′3)2
δ (a4 − a′′4)

(a′′4)2
;

ε = E − 3

4

a22
m
− 2

3

a23
m
− 5

8

a24
m
, (C.10)

where ε is the energy of two-body subsystem in a-set configuration, and〈
a′′
∣∣P ∣∣a′〉 =

δ (a′′3 − a′3)
(a′3)

2

δ (a′′4 − a′4)
(a′4)

2

×
1∫
−1

dx2′′2′
δ
[
a′1 −

∣∣−1
2a
′′
2 − a′2

∣∣]
[a′1]

2

δ
[
a′′1 −

∣∣1
2a
′
2 + a′′2

∣∣]
[a′′1]2

.

(C.11)
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To evaluate the term of Eq. (C.2), there is a relation between Jacobi mo-
menta in different chains, (123 + 4 + 5; 12) and (124 + 5 + 3; 12), which
leads to〈
a′ |P34P45| a′′

〉
=

1

23
δ (a′1 − a′′1)

(a′′1)2

×
1∫
−1

da23

1∫
−1

da24

1∫
−1

da34
δ
[
a′2 −

∣∣1
3a
′′
2 + 2

9a
′′
3 + 5

12a
′′
4

∣∣]
(a′′2)2

×
δ
[
a′′3 −

∣∣a′′2 + 1
12a
′′
3 − 5

16a
′′
4

∣∣]
(a′′3)2

δ
[
a′′4 −

∣∣a′′3 − 1
5a
′′
4

∣∣]
(a′′4)2

,

(C.12)

and (123 + 4 + 5; 12) and (124 + 3 + 5; 12),〈
a′ |P34| a′′

〉
=

1

2

δ (a′1 − a′′1)

(a′′1)2
δ (a′4 − a′′4)

(a′′4)2

×
1∫
−1

da23
δ
[
a′′2 −

∣∣1
3a
′′
2 + 8

9a
′′
3

∣∣]
(a′′2)2

δ
[
a′′3 −

∣∣a′′2 − 1
3a
′′
3

∣∣]
(a′′3)2

. (C.13)

To evaluate the term of Eq. (C.3), there is a relation between Jacobi mo-
menta in different chains, (123 + 4 + 5; 12) and (12 + 34 + 5; 12), which
leads to〈

a′|b′
〉

=
1

2

δ (a′1 − b′1)
(b′1)

2

δ (a′4 − b′4)
(b′4)

2

×
1∫
−1

da23
δ
[
b′2 −

∣∣1
2a
′′
2 − 2

3a
′′
3

∣∣]
(b′2)

2

δ
[
b′3 −

∣∣a′′2 − 2
3a
′′
3

∣∣]
(b′3)

2 . (C.14)

Correspondingly, to evaluate Eq. (C.4), we need to solve the subcluster
Faddeev-like equation to obtain T 12+34 by using the Padé approximation [11]
as follows:

G0T 12+34 = G0t12P̃+G0t12P̃ G0t12P̃+G0t12P̃ G0t12P G0t12P̃+. . . (C.15)

To evaluate the first term of Eq. (C.15), once more a completeness rela-
tion has to be inserted between the two-body t-matrix and the permutation
operators〈

b
∣∣∣G0t12P̃

∣∣∣ b′〉 = G0

∫
b′′2Db′′

〈
b |t12| b′′

〉 〈
b′′
∣∣∣P̃ ∣∣∣ b′〉 , (C.16)
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where 〈
b |t12| b′′

〉
=
〈
b1 |t12| b′′1

〉 〈
b2|b′′2

〉 〈
b3|b′′3

〉 〈
b4|b′′4

〉
(C.17)

and 〈
b′′
∣∣∣P̃ ∣∣∣ b′〉 =

〈
b′′ |P13P24| b′

〉
. (C.18)

The matrix elements of two-body t-matrix and the permutation operator P̃
are evaluated as〈

b |t12| b′′
〉

=
〈
b1
∣∣t(ε∗)∣∣ b′′1〉 δ (b′′2 − b2)

(b′′2)2
δ (b′′3 − b3)

(b′′3)2
δ (b′′4 − b4)

(b′′4)2
;

ε∗ = E − b22
m
− 1

2

b23
m
− 5

8

b24
m
, (C.19)

where ε∗ is the energy of two-body subsystem in b-set configuration. To
evaluate the matrix elements of the permutation operator P̃ , there is a
relation between Jacobi momenta in different chains, (12 + 34 + 5; 12) and
(34 + 12 + 5; 12),〈

b′′
∣∣∣P̃ ∣∣∣ b′〉 =

δ (b′′1 − b′2)
(b′2)

2

δ (b′′2 − b′1)
(b′1)

2

δ (b′′3 − b′3)
(b′3)

2

δ (b′′4 − b′4)
(b′4)

2 . (C.20)

To evaluate the first term of Eq. (C.5), there is a relation between Jacobi
momenta in different chains, (12 + 34 + 5; 12) and (123 + 4 + 5; 12),

〈
b′|a′

〉
=

1

2

δ (b′1 − a′1)
(a′1)

2

δ (b′4 − a′4)
(a′4)

2

×
1∫
−1

db32′
δ
[
b′2 −

∣∣2
3b
′
2 − 2

3b
′
3

∣∣]
(b′2)

2

δ
[
b′3 −

∣∣−b′2 − 1
2b
′
3

∣∣]
(b′3)

2 . (C.21)

To evaluate the second term of Eq. (C.5), there is a relation between Jacobi
momenta in different chains, (12 + 34 + 5; 12) and (123 + 5 + 4; 12),

〈
b′ |P45| a′

〉
=

1

23
δ (a′1 − b′1)

(a′1)
2

×
1∫
−1

db32′

1∫
−1

db42′

1∫
−1

db34
δ
[
a′2 −

∣∣2
3b
′
2 − 2

3b
′
3

∣∣]
(a′2)

2

×
δ
[
a′3−

∣∣−1
4b
′
2− 1

8b
′
3+ 3

4b
′
4

∣∣]
(a′3)

2

δ
[
a′4−

∣∣−1
2b
′
2 − 1

4b
′
3+ 1

2b
′
4

∣∣]
(a′4)

2 .

(C.22)
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To evaluate the third term of Eq. (C.5), there is a relation between Jacobi
momenta in different chains, (12 + 34 + 5; 12) and (124 + 3 + 5; 12),〈
b′ |P34| a′

〉
=

1

2

δ (a′1 − b′1)
(a′1)

2

δ (a′4 − b′4)
(a′4)

2

×
1∫
−1

db32′
δ
[
a′2 −

∣∣−2
3b
′
2− 2

3b
′
3

∣∣]
(a′2)

2

δ
[
a′3 −

∣∣b′2 − 1
2b
′
3

∣∣]
(a′3)

2 . (C.23)

To evaluate the fourth term of Eq. (C.5), there is a relation between Jacobi
momenta in different chains, (12 + 34 + 5; 12) and (124 + 5 + 3; 12),〈
b′ |P34P45| a′

〉
=

1

23
δ (a′1 − b′1)

(a′1)
2

×
1∫
−1

db32′

1∫
−1

db42′

1∫
−1

db34
δ
[
a′2 −

∣∣−2
3b
′
2 − 2

3b
′
3

∣∣]
(a′2)

2

×
δ
[
a′3−

∣∣1
4b
′
2− 1

8b
′
3+ 3

4b
′
4

∣∣]
(a′3)

2

δ
[
a′4−

∣∣1
2b
′
2 − 1

4b
′
3 + 1

2b
′
4

∣∣]
(a′4)

2 .

(C.24)

In Appendix C, the quantities aij (bij) indicate the angle variable between
ai and aj (bi and bj), namely aij ≡ cos(ai, aj) and bij ≡ cos(bi, bj),
respectively.
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