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To analyze the role of correlations in networks, in particular, assorta-
tivity and dissortativity, we introduce two algorithms which respectively
produce assortative and dissortative mixing to a desired degree. In both
procedures this degree is governed by a single parameter p. Varying this pa-
rameter, one can change correlations in networks without modifying their
degree distribution to produce new versions ranging from fully random
(p = 0) to totally assortative or dissortative (p = 1), depending on the
algorithm used. We discuss the properties of networks emerging when ap-
plying our algorithms to a Barabási–Albert scale-free construction. In spite
of having exactly the same degree distribution, different correlated networks
exhibit different geometrical and transport properties. Thus, the average
path length and clustering coefficient, as well as the shell structure and
percolation properties change significantly when modifying correlations.

PACS numbers: 05.50.+q, 89.75.Hc

1. Introduction

Our interest to complex networks was strongly motivated by our studies
of models of infection spread, since it got clear that many effects can only
be described when taking into account that an infecting agent spreads not
in a homogeneous population of infectives, but over a complex network of
contacts [1–3]. In many cases the exact knowledge of the network structure
is necessary, in other situations one can rely on simple model assumptions,
which, however, mirror the properties of a real networked system.
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Examples of systems described as complex networks are abundant in
many disciplines of science and have received much attention in the last few
years. Thus, technological systems such as the World Wide Web, Internet,
and electrical power grids, as well as other natural and social systems like
chemical reactions in the living cell, different social collaboration networks,
etc., have been successfully described through scale-free networks, networks
with power-law degree distributions P (k) ∼ k−γ [4, 5]. The degree distri-
bution P (k) is one of the principal measures used to capture the structure
of a network and represents the probability that a node chosen at random
is connected with exactly k other vertices of the network. The network of
human sexual contacts also has a property of being scale-free [6].

It was recently pointed out that real networks exhibit a degree of correla-
tions among their nodes [7–20]. Thus, in social networks nodes having many
connections tend to be connected with other highly connected nodes [8,10].
This characteristic is usually referred to as assortativity, or assortative mix-
ing. On the other hand, technological and biological networks show the
property that nodes having high degrees are preferably connected with nodes
having low degrees, a property referred to as dissortativity [7, 11].

Correlations play an important role in the characterization of the topol-
ogy of networks, and therefore, they are essential to understand spreading of
information or infections, as well as their robustness against targeted or ran-
dom removal of their elements [21–26]; in the case of infection such removal
corresponds to immunization of a part of the population. In order to deter-
mine the exact influence of correlations several authors have proposed pro-
cedures to build correlated networks [7,28–30]. The most general procedures
are the ones proposed by Newman [7] and Boguñá and Pastor-Satorras [30],
who suggested two different ways to construct general correlated networks
with predeterminate correlations. Following the same goal, we, however,
adopt a different perspective. Instead of putting in correlations “by hand”
we propose to use link-restructuring (“rewiring”) processes [31] satisfying
conditions such as “nodes with similar degree connect preferably” (assorta-
tive mixing) or “nodes with low degree try to connect with highly connected
nodes” (dissortativity), leaving all other properties random.

Such processes, which do not change the degree distribution of networks
and do avoid the appearance of multiple and self-connections, can be viewed
as ergodic Markovian chains defined on the set of the network’s configura-
tions. Repeated application of a rewiring step leads to distributions of link
configurations which converge to a stationary distribution with desired cor-
relation properties, independently of the initial correlations of the network.
In this work we thus introduce two procedures to change correlations based
on the rewiring of links, which produce assortative and dissortative mixing,
respectively. Both algorithms are governed by a single parameter, p, and
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are capable to change the degree of assortativity (dissortativity) to a desired
amount allowing us to generate networks ranging from fully uncorrelated to
totally assortative (dissortative). In the present work we focus on undirected
networks. Some of the results were earlier reported on in Refs. [29, 33].

2. The assortative model

2.1. Algorithm

Starting from a given network, two links of the network connecting four
different nodes are randomly chosen at each step. We consider the four nodes
associated with these two links, and order them with respect to their degrees.
Then, with probability p, the links are rewired in such a way that one link
connects the two nodes with the smaller degrees and the other connects the
two nodes with the larger degrees; otherwise the links are randomly rewired
(Maslov–Sneppen algorithm [16]). In the case that one or both of these new
links already existed in the network, the step is discarded and a new pair of
edges is selected. This restriction prevents the appearance of multiple edges
connecting the same pair of nodes. A repeated application of the rewiring
step leads to an assortative version of the original network. Note that the
algorithm does not change the degree of the nodes involved and thus the
overall degree distribution in the network. Changing the parameter p, it is
possible to construct networks with different degrees of assortativity.

2.2. Correlations and assortativity

Let Eij be the probability that a randomly selected edge of the network
connects two nodes, one with degree i and another with degree j. The
probabilities Eij determine the correlations of the network. We say that
a network is uncorrelated when

Eij = Er
ij = (2 − δij)

iP (i)

〈i〉

jP (j)

〈j〉
, (1)

i.e., when the probability that a link is connected to a node with a certain
degree is independent from the degree of the attached node. Here 〈i〉 = 〈j〉
denotes the first moment of the degree distribution, assumed to be finite.

Assortativity means nodes with similar degrees tend to be connected
with a larger probability than in the uncorrelated case, i.e., Eii > Er

ii ∀i.
The degree of assortativity of a network can thus be characterized by the
quantity [7]

A =

∑

i Eii −
∑

i E
r
ii

1 −
∑

i E
r
ii

, (2)
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which takes the value 0 when the network is uncorrelated and the value 1
when the network is totally assortative. (Note that in a finite network the
constraint that no pair of vertices is connected by more than one edge bounds
A from above by the values lower than 1 [27].)

Now, starting from the algorithm generator, we can obtain a theoretical
expression for Eij as a function of p. Let Eij be the number of links in the
network connecting two nodes, one with degree i and another with degree j,
so that Eij = Eij/L, where L is the total number of links of the network.
(Since undirected networks satisfy Eij = Eji, the restriction i ≤ j can be
imposed without loss of generality.) We now define the variable

Fln =

n
∑

r=l

n
∑

s=r

Ers , r ≤ s , l ≤ n . (3)

Every time the rewiring procedure is applied, the values of Fln either in-
crease or decrease by unity, or do not change. We can then calculate the
probabilities of change, i.e., that Fln → Fln +1 or Fln → Fln − 1. The effect
of multiple edges can be disregarded since they are rare in the thermody-
namical limit. Taking all corresponding possibilities into account, we obtain
the following expressions for the probabilities of change:

(Xln − fln)2 + p (Xln − f1n + f1,l−1)
2 , for Fln → Fln + 1 ,

fln [(1−p)(1−2Xln) + p (X1,l−1−f1,l−1−f1n) + fln] , for Fln → Fln−1 .

Here fln = Fln/L, and Xln is given by

Xln =
1

〈k〉

n
∑

k=l

kP (k) , l ≤ n .

Using these expressions, we can calculate the expected value of fln. The pro-
cess of repeatedly applying our algorithm corresponds to an ergodic Markov
chain, and the stationary solution is given by the condition

(Xln − fln)2 + p (Xln − f1n + f1,l−1)
2

= fln

[

(1 − p)(1 − 2Xln) + p(X1,l−1 − f1,l−1 − f1n) + fln

]

, (4)

for all l > 1. For l = 1 this condition reduces to

(1 + p) (X1n − f1n)2 = (1 − p)f1n [1 − 2X1n + f1n] . (5)
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Using Eq. (4) and Eq. (5) we calculate fln. The solution reads

fln =
X2

ln + (Bn − Bn−1)
2

(1 − p)/2 + pXln + Bn + Bn−1

, l ≤ n ,

with

Bn =

√

[

pX1n +
1 − p

4

]2

− pX2
1n

(

1 + p

2

)

.

Applying the definition, Eq. (3), we obtain the correlations

Eij = fij − fi,j−1 − fi+1,j + fi+1,j−1 . (6)

We note that Eq. (6) reduces to the corresponding uncorrelated case Er
ij

when p = 0, and reduces to

Eij = δij

iP (i)

〈i〉
, (7)

for the case p = 1.

2.3. Properties of an assortative network

Let us start this section with drawing a small network to show how
our algorithm works. The initial network is a Barabási–Albert scale-free
construction [32] with only N = 200 nodes and L = 400 links, see Fig. 1(a).
To obtain other networks with exactly the same degree distribution but
different degree of assortativity we apply the algorithm discussed. Fig. 1
shows the changes in the network with varying parameter p. In the figure
we have placed the nodes in such a way that nodes of degree 2 are shown in
the left part of each panel, all nodes of degree 3 lie to the right of any node
of degree 2, all nodes of degree 4 lie to the right of any node of degree 3, etc.
The nodes of the same degree are randomly spread within the corresponding
area of the figure to better show the links.

The network corresponding to the maximal assortativity is shown in
Fig. 1(d). In this network almost all nodes with the same degree are linked
only between themselves. Panel (d) shows that all nodes with degree k = 2
form separated clusters (a more careful analysis unveils that there are three
“pearl necklace” clusters with N = 23, 30, and 48 nodes). All nodes with
k = 3 are linked between themselves except for one, which is linked to a node
of connectivity k = 4. Note that since there are N3 = 41 nodes with k = 3
in our network their links cannot be redistributed within the set. If this
would be possible, the overall number of links would be 41 × 3/2 = 61.5,
since each node bears 3 links and each of these links is counted twice in the
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(a)

A = 0

(b)

A = 0.26

(c)

A = 0.43

(d)

A = 0.62

Fig. 1. Scale-free networks for different degrees of assortativity (see text for details).

The nodes of the same degree are grouped together; the degree is nondecreasing

from left to right. The panels show: (a) A = 0 (uncorrelated network), (b) A =

0.26, (c) A = 0.43, (d) A = 0.62 (maximal assortativity).



Changing Correlations in Networks: Assortativity and . . . 1437

set. All nodes with degree k = 4 form a single cluster, with two outgoing
links, one to the cluster of nodes with k = 3, and one to a cluster of nodes
of connectivity k = 5. In fact, the network is not a set of isolated clusters
of nodes with the same connectivity only due to the restrictions imposed by
the given degree distribution. These restrictions are also responsible for the
fact that A < 1 (for our network the maximal assortativity is Amax = 0.62).

In the present work we apply the algorithm to the Barabási–Albert con-
struction with the number of links being twice the number of nodes L = 2N ,
just like in our example on Fig. 1. We measure Eij as functions of p, and use
them to calculate the corresponding values of A. All simulation results are
averaged over ten independent realizations of the algorithm as applied to
the same original network.

Fig. 2 shows the relation between the parameter p and the coefficient of
assortativity A. The lower curves correspond to the measured assortativity
for two networks of different size (N = 104 and N = 105); the upper curve
corresponds to our theoretical prediction (pertinent to an infinite network).
All curves coincide for small values of A. However, whereas the theoretical
curve reaches the value A = 1 when p → 1, the measured assortativity
increases until a maximal value smaller than one. Thus, the central curve
in the figure, corresponding to the Barabási–Albert network with 105 nodes,
shows a maximal value A = 0.917 when p → 1, and for the network with
N = 104 this value is even smaller, reaching only A = 0.864. This was
expected [27], and is due to the finite-sized effects mentioned above.

10−6 10−4 10−2 10

0.2

0.4

0.6

0.8

1

A

1 − p

Fig. 2. Assortativity A as function of the parameter p. The two lower curves

correspond to the measured assortativity A of our simulations for two different

Barabási–Albert networks, one with N = 104 nodes (the lowest curve) and another

with 105 nodes. The upper curve corresponds to the theory (thermodynamical

limit). We note that all curves coincide for small A, whereas for large values of A

finite-size corrections get important, leading to a value of A < 1 for p → 1.
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To assess the goodness of the Eq. (6), we compare the simulations with
the theoretical values of Ekk, given by Eq. (6), in the Fig. 3. Here the results
correspond to a Barabási–Albert network with 106 nodes. The points are the
outcomes of the simulations and the curves are the corresponding theoretical
results obtained based on the actual degree distribution of our particular
discussed network. We note that the agreement is really excellent.

10 10010−8

10−6

10−4

10−2

1

k

Ekk

Fig. 3. Ekk as a function of k for different values of A. From bottom to top: A = 0,

0.221, 0.443, 0.640, and 0.777. The points are the results of the simulations while

the curves are calculated using the theory.

Average path length — The average path length of a network is the
average distance between every pair of vertices of the network, being defined
as the number of edges along the shortest path connecting them. Uncorre-
lated scale-free networks show a very small path length, typically growing
logarithmically with the network’s size (a small-world behavior).

Our simulations show that the average path length l grows rapidly when
the assortativity of the network increases so that it becomes some hundreds
times larger than in an uncorrelated network when the coefficient of assor-
tativity tends to its maximal value. In Fig. 4 we plot l as function of A for
networks with N = 104 and N = 105 nodes. We observe that l increases
following the expression l ∝ (K − A)−γ , with K = 0.864 (N = 104) and
K = 0.917 (N = 105), corresponding to the maximal values of A attainable
in the networks, and with γ = 1.2. The inset of the figure show this behavior
of l for the network with N = 105 nodes.

Although assortative networks present large mean path lengths, they are
still small worlds, i.e., they are exhibiting the logarithmic dependence of l
on the network’s size N . Fig. 5 shows this behavior for three different
values of A. The error bars result from averaging over ten realizations of
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the algorithm. This small-world behavior is preserved for all tested values
of A ≤ 0.6 (this maximal value of A is considerably larger than the values
found in real assortative networks, where A range between 0 and 0.4). Thus,
assortative networks are the “large” small worlds.

0 0.2 0.4 0.6 0.8 1
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10−2 10−1 1
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l

A

K −A

l

Fig. 4. Average path length l vs coefficient of assortativity for two Barabási–Albert

networks, one with N = 105 nodes (the curve that reach the largest value of A)

and another with N = 104. We note that l grows rapidly when A increases. The

average path length is plotted on double logarithmic scales as function of K − A

for the larger network (N = 105) in the inset. Here is K = 0.917. The slope of the

straight line is −1.2.
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Fig. 5. The average path length l is plotted as function of N for three values of the

coefficient of assortativity A. From bottom to top: A = 0, 0.221 and 0.443. Note

the logarithmic scale.
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Natural networks, like different co-authorship networks (physics, biology,
mathematics, etc.), the film actor collaboration network, etc. (all of them
assortative networks) seem to show somewhat smaller average path lengths
than the ones found here [4, 7]. We attribute this finding to the fact that
the mean degree of such networks is 2 to 4 times larger than in our case
(〈k〉 = 4). Therefore, one has to be cautious about comparing absolute
numerical values.

Clustering coefficient —Clustering coefficients of a network are a mea-
sure of the number of loops (closed paths) of length three. The notion has
its roots in sociology, where it was often used to analyze the groups of ac-
quaintances in which every member knows every other one. To discuss the
concept of clustering, let us focus first on a vertex, having k edges connected
to k other nodes termed as nearest neighbors. If these nearest neighbors of
the selected node were forming a fully connected cluster of vertices, there
would be k(k − 1)/2 edges between them. The ratio between the number
of edges that really exist between these k vertices and the maximal num-
ber k(k − 1)/2 gives the value of the clustering coefficient of the selected
node. The clustering coefficient of the whole network C is then defined as
the average of the clustering coefficients of all vertices. One can also speak
about the clustering coefficient of nodes with a given degree k, referring to
the average of the clustering coefficients of only this type of nodes. We shall
denote this degree-dependent clustering coefficient by C̄(k), to distinguish
it from C.

Fig. 6 shows the variation of both clustering coefficients with the assor-
tativity of the network. Fig. 6(a) corresponds to a Barabási–Albert network
with N = 105 nodes while Fig. 6(b) corresponds to a one with N = 106

nodes. We see that the clustering coefficient C increases with the assorta-
tivity (insets of the figure). However, typical values of clustering coefficients
found in our simulations are still much smaller than the ones observed in
real networks (C ≥ 0.1) [4]. The latter ones might, however, have a much
more intricate structure, partly governed by the metrics of the underlying
space, as in the models discussed in [34].

The variation of C̄(k) shows more interesting features. Our simulations
indicate that for small k the values of C̄(k) grow with the degree of nodes k
producing a peak whose height increases with the assortativity of the net-
work. The peak (probably a finite size effect) moves to larger k when the size
of the network increases. Thus, our simulations show a peak around k = 90
for the network with 105 nodes and one around k = 185 for the network
with 106 nodes. Assortative networks show a strong tendency of clustering
(for relatively large values of k) compared to uncorrelated networks, where
C̄(k) does not depend on k [18]. We also observe that C̄(k = 2) = 0 when
A ≃ 1 (k = 2 correspond to the minimal degree of the vertices). This is
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not surprising since in a strongly assortative network almost all nodes with
k = 2 are connected between themselves, forming one or several large loops
of length larger than three. This means that all nodes having this minimal
degree (in our simulations the half of the total number of vertices) do not
tend to contribute to the clustering coefficient C at all.
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Fig. 6. C̄(k) as a function of the degree of nodes k. (a) N = 105, (b) N = 106. In

both panels different curves correspond to different values of A. From bottom to top

A = 0, 0.221, 0.443; A ≃ 0.640, 0.78 and A = max (A = 0.917 for (a), A = 0.864

for (b)). Insets: clustering coefficients C versus the degree of assortativity A.

Tomography — Tomography is a useful tool to examine the local struc-
ture of networks. How can a computer virus spread in the Internet or a cer-
tain information in social networks from the original node to the others?
This depends clearly on the distribution of vertices around the node from
which the spreading starts, i.e., on the structure of shells around the orig-
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inal node. Thus, Cohen et al., examined the shells around the node with
the highest degree for uncorrelated networks. In our study we use a dif-
ferent perspective, and apply the procedure to each node of the network.
The initial node (the root) is assigned to shell number 0. Then all links
starting at this node are followed and all vertices reached are assigned to
shell number 1. Then all links leaving nodes in shell 1 are followed, and all
nodes reached that do not belong to previous shells are labeled as nodes of
shell 2, etc., until the whole network is exhausted. We then get Nl,r(k) as
the number of nodes with degree k in shell l for root r. The repetition of
the whole procedure starting at all N vertices of the network gives us Pl(k),
the degree distribution in shell l. We define Pl(k) as

Pl(k) =

∑

r Nl,r(k)
∑

k,r Nl,r(k)
. (8)

We are interested in the average degree 〈k〉l =
∑

k kPl(k) of nodes of
the shell l. In the epidemiological context, this quantity can be interpreted
as a disease multiplication factor after l steps of propagation. It describes
how many neighbors a node can infect on the average. Note that such a
definition of Pl(k) gives us the following degree distribution in the first shell

P1(k) =

∑

r N1,r(k)
∑

k,r N1,r(k)
=

kNk
∑

k kNk

=
kP (k)

〈k〉
, (9)

where P (k) and Nk are the degree distribution and the number of nodes
with degree k in the network respectively. We bear in mind that every link
in the network is followed exactly once in each direction. Hence, we find
that every node with degree k is counted exactly k times. From Eq. (9)
follows that 〈k〉1 = 〈k2〉/〈k〉. This quantity plays an important role in the
percolation theory of networks [35] and depends only on the first and second
moment of the degree distribution, but not on the correlations. Of course
P0(k) = P (k).

A similar study for more distant shells gets complicated because of cor-
relations and closed loops in the network. Let us discuss for example the
degree distribution in the second shell. In this case we find that every link
leaving a node of degree n is counted n − 1 times. Let P (k|n) be a prob-
ability that a link leaving a node of degree n enters a node with degree k.
Neglecting the possibility of short loops (which is always appropriate in the
thermodynamical limit N → ∞) we have

P2(k) =

∑

n nP (n)(n − 1)P (k|n)
∑

n nP (n)(n − 1)
, (10)
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an expression that explicitly depends on the correlations. For uncorrelated
networks, where the probability that a link connects to a node with a certain
degree is independent from whatever is attached to the other end of the link,
P (k|n) = kP (k)/〈k〉. On the other hand, in the assortative case, i.e. when
nodes attach to nodes with similar degree more likely than in uncorrelated
models, P (k|n) > kP (k)/〈k〉 for k ≈ n. Inserting this in Eq.(10), and
calculating the mean, one finds for weakly assortative networks 〈k〉2 > 〈k〉r2
as a first approximation. Note that for strongly assortative ones the short
loops could play an important role.

Fig. 7(a) shows 〈k〉 as a function of the shell number l. Here, the simu-
lations are based on a Barabási–Albert network with N = 30000 nodes. We
compare the shell structure for different assortative versions of the original
network, ranging from an uncorrelated version (A = 0) to strongly assor-
tative correlated one (A = 0.777). Note that tomographic properties can
be only investigated on fully connected networks, or on connected clusters
of nodes. For larger values of assortativity our initially connected network
breaks into clusters, with a non-negligible part of nodes not belonging to the
largest connected one. Moreover, for these extremely assortative networks
the largest connected cluster exhibits a different degree distribution than
the original network. Fig. 7 suggests that, independently on the degree of
the initial root, any spreading phenomenon on weakly assortative networks
(a realistic case) will rapidly reach highly connected vertices, and then prop-
agate to nodes with smaller and smaller degree. On the other hand, when
the assortativity increases the propagating agent does not reach the highly
connected nodes so fast, and the spreading on distant shells, where the less
connected vertices are found, is slower. Thus, the spreading agent infects
the whole network more rapidly if the network is uncorrelated.

From Fig. 7(a) we could also conclude that the propagation changes ini-
tially quite abruptly when the assortativity increases starting from A = 0,
i.e., when passing from uncorrelated networks to weakly assortative ones.
Thus, weakly assortative networks present a jump in the value of 〈k〉2 with
respect to the uncorrelated ones (where 〈k〉2 = 〈k〉1 = 〈k2〉/〈k〉, in the
thermodynamical limit); the value of 〈k〉2 then decreases slowly as the as-
sortativity grows.

Real networks present assortativity only among highly connected nodes.
Thus, the tomographical structure of real networks might be slightly differ-
ent. However, our results indicate a general property of assortative networks
that very probably is also pertinent to the realistic ones: under moderate
assortativity, disease reaches highly connected nodes more rapidly than in
an uncorrelated network.

Node percolation — Node percolation corresponds to removal of a cer-
tain fraction of vertices from the network, and is relevant when discussing
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Fig. 7. (a) Average degree 〈k〉l as function of the number of the shell l. The four

upper curves correspond, respectively, to the following values of the assortativity:

A = 0.221, 0.443, 0.634 and 0.777. The lower curve corresponds to the uncorrelated

version of the network A = 0. Note the logarithmic scale in x. The inset shows the

same curves on a linear scale, allowing to grasp the tomographical behavior close to

l = 0. From both pictures we can see that 〈k〉1 does not depend on correlations of

the network. One also infers that the value of 〈k〉2 decreases when the assortativity

grows (see text for details). (b) n̄(l) = (
∑l

i=0

∑

r,k Ni,r(k))/(
∑

r,k,i Ni,r(k)) as

function of the shell number l. The picture shows clearly that spreading over the

network gets slower the more assortative the network is. Logarithmic scale in l.

their vulnerability to a random attack (or immunization). Let q be the frac-
tion of nodes removed. At a critical fraction qc, the giant component (largest
connected cluster) breaks into isolated clusters. Fig. 8 shows the fraction of
nodes M in the giant component as a function of q for different degrees of
assortativity of the network. The four upper curves correspond to the val-
ues of assortativity found in natural networks. We note that the behavior of
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M(q) changes gradually with A from the uncorrelated case (upper curve) to
a quite different behavior when A → 1 (lower curve), which indicates a very
different topology in the network when it is strongly assortative. However,
although the particular form of the M-dependence is different for different
degrees of assortativity, the absence of the transition at finite concentrations
(qc = 1) and the overall type of the critical behavior for correlated networks
with the same P (k) seems to be the same as for uncorrelated networks,
namely the one discussed in Refs. [35, 36]. We thus see that this generic
behavior in node percolation is only quantitatively affected by reshuffling,
lowering M at a given fraction of removed nodes. This quantitative behav-
ior, however, might depend on the network’s precise nature which fact has
to be beared in mind when comparing our results with the ones for natural
networks. We also point out that in case A ≃ 1, a finite network is no longer
fully connected: a part of the nodes does not belong to the giant component
even for q = 0. The results suggest that, in the thermodynamical limit,
the giant cluster at q → 0 contains around a half of all nodes, and that its
density then decays smoothly with q.
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Fig. 8. Fraction of nodes M in the giant component depending on the fraction

of nodes removed from the network. The graph compares the results for different

degrees of assortativity. From top to bottom: A = 0, 0.069, 0.221, 0.443, 0.640,

0.777, 0.856 and 0.913 (maximal assortativity).
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3. The dissortative model

3.1. Algorithm

A minor change in our algorithm can produce dissortative mixing. As
before, we start from a given network and at each step we chose randomly
two links of the network. We order the four corresponding nodes with respect
to their degrees. Now, however, we rewire with probability p the edges so
that one link connects the highest connected node with the node with the
lowest degree and the other link connects the two remaining vertices; with
probability 1 − p we rewire the links randomly [16]. In case that any of the
new links already existed in the network the step is discarded and a new
pair of edges selected. Varying the parameter p, it is possible to construct
networks with different degrees of dissortativity. As before, the procedure
does not change the degree distribution of the network and does not lead to
the appearance of multiple and self-connections.

3.2. Correlations and dissortativity

Dissortativity means that nodes with high degree tend to connect to
ones with low degree with larger probability than in an uncorrelated net-
work. Of course, for undirected networks, this means that lowly connected
nodes connect preferably with highly connected vertices too, and thus that
the nodes with moderate degrees tend to connect among themselves. In
strongly dissortative networks this tendency is very strong. Let us assume
that our network is scale-free. In an intuitive way, we could say that all
nodes with the highest degree should be connected with nodes with the
smallest degree. Once all nodes with the highest degree are exhausted, the
nodes with the second highest degree should be also connected with nodes
with the minimum degree (which is possible, since in a scale-free network the
weakly connected nodes build an overwhelming majority). Also nodes with
the third, fourth, etc., highest degree might be connected with nodes having
the smallest degree, until all nodes with the minimum degree are connected.
After this the nodes with the second minimum degree should be connected
with those vertices with the high degree which are not yet connected, and
so on. Depending of the degree distribution P (k), this intuitive procedure
to construct a perfectly dissortative network produces actually a strong as-
sortative mixing for few medium values of k. This peculiarity of dissortative
networks is also evident in our simulations for p = 1.

The property discussed above makes theoretical analysis of correlations
Eij in dissortative networks somewhat involved. In the thermodymical limit
the solution similar to one given in Sec. 2 shows that the expected correla-
tions Eij → 0 for p → 1 for all finite values of i and j. This only indicates
that all outgoing edges of nodes with a certain degree k tend to link up to
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vertices with infinite connectivity, which makes this thermodynamical limit
unrealistic. In finite networks a direct measurement of the Eij function is
a rather complex task due to large statistical fluctuations. This discussion
shows that it might be difficult to introduce a reasonable quantity to mea-
sure the degree of dissortativity in a network. In order to study dissortative
correlations in networks, some authors study the quantity

〈knn〉 =

∑

j j(1 + δkj)Ekj
∑

j(1 + δkj)Ekj

, (11)

the nearest neighbors’ average degree of nodes with degree k. Eq. (11) cor-
responds to a constant function of value 〈knn〉 = 〈k2〉/〈k〉 for uncorrelated
networks, whereas the function is decreasing when the network presents dis-
sortative correlations. For assortative networks the function is an increasing
one. The value 〈k2〉/〈k〉 diverges in the thermodynamical limit for scale-free
networks with diverding second moment of the degree distribution, but is
finite for any finite network.

3.3. Topological properties

Let us show how does the function described by Eq. (11) vary when the
correlations are changed (Fig. 9). All simulations in this section are based
on a Barabási–Albert network with N = 30000 nodes and L = 60000 links.

1 10 100
1

10

〈knn〉

k

Fig. 9. Nearest neighbors’ average connectivity 〈knn〉 as function of k for different

dissortative correlated versions of a network. Using the parameter p to characterize

the dissortativity, the picture shows from top to bottom, p = 0 (uncorrelated), 0.5,

0.78, 0.9, 0.999 and 1. The horizontal straight line corresponds to 〈knn〉 = 〈k2〉/〈k〉.
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We see in Fig. 9 that 〈knn〉 stays constant and is equal to 〈knn〉 = 〈k2〉/〈k〉
for uncorrelated network (Eq. (1)). However, when the correlations are
modified by the increase of the parameter p, this flat curve is transformed
into a decreasing one, indicating the appearance of dissortative correlations.
In fact, the larger the value of p, the smaller is 〈knn〉 for k ≫ 1. This
behavior corresponds exactly to what is expected. Moreover, since almost
all highly connected nodes must be linked with nodes of minimum degree,
the curve should exhibit a plateau for k ≫ 1, as well as a high peak for
the minimal value of k = 2. Both properties are revealed in our simulations
(lower curve of Fig. 9).

Different dissortative real networks, as for example the Internet, show
〈knn〉 ∝ k−ν [11]. Our results, plotted on a double logarithmic scale, do not
reproduce this behavior. This means that dissortative networks which are
random with all other respects do not reproduce all properties of dissortative
real networks. We will, however, remark that real networks are also governed
by the metrics of the underlying space, normally our Euclidean physical
space.

A detailed analysis of strongly dissortative networks shows that they
exhibit properties similar to ones we have described in our ideal dissorta-
tive case, such as the assortative correlations among nodes with medium
degree. Fig. 10 shows E4k as function of k for different dissortative corre-
lated networks. We observe, for example, that E45 and E46 increase as the
dissortativity grows, in a such a way that E45 > Er

45 as well as E46 > Er
46.

This indicates that nodes with degree k = 4 connect preferably with nodes
with degrees k = 5 and k = 6, a clearly indication of assortativity.

Average path length — We now discuss the behavior of the aver-
age shortest path length l when the dissortativity of the network increases.
Fig. 11 shows l as function of the parameter p. Although the parameter p is
an internal parameter of the algorithm and does not immediately represent
any property of the network, it is clear that any reasonably defined degree
of dissortativity has to be an increasing function of p. Fig. 11 confirms that
the average path length l always grows when the dissortativity of the net-
work increases. At variance with the assortative case, the increase in l is
moderate, and its maximal value is not much higher than in an uncorrelated
network.

It is quite interesting to note the average minimal path length in all cor-
related networks studied in this work is larger than one for the uncorrelated
ones; in might be that for a fixed degree distribution, the network with the
minimum average path length would be exactly an uncorrelated one.

Clustering coefficient — Fig. 12 shows the behavior of the mean clus-
tering coefficient C as function of p. Thus, in weakly dissortative networks
the clustering coefficient does not change considerably compared to uncor-
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Fig. 10. E4k as function of k for different dissortative correlated networks. From

top to bottom: p = 0 (uncorrelated), 0.78, 0.9 and 0.999. The case p = 1 is

also plotted; it corresponds to the curve with only two points (E45 and E46) in the

top part of the figure. The graph indicates the assortative behavior of nodes with

moderate degree (see text).
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Fig. 11. Shortest average path length versus the parameter p, characterizing the

degree of dissortativity of the network.

related networks, while in strongly dissortative networks C decreases and
eventually vanishes. For networks exhibiting their maximum degree of dis-
sortativity (corresponding to p = 1), the simulations give C = 0: no loops
of length three are present in the network.
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Fig. 12. Mean clustering coefficient C as function of the parameter p.

An analysis of the degree-dependent clustering coefficient C̄(k) shows
that C̄(k) is smaller than in the uncorrelated case but remains practically
constant. For perfectly dissortative infinite correlated networks (p = 1) one
would have C̄(k) = 0 for all k.

Tomography — The study of tomography on the dissortative versions
of our original Barabási–Albert network, with N = 30000 nodes, yields in-
teresting outcomes. In the Fig. 13(a) we plot 〈k〉l as a function of the shell
number l. In uncorrelated networks the curve 〈k〉l reaches a maximum value
of 〈k2〉/〈k〉 in the first shell and then it smoothly decreases to 〈k〉 = 2
corresponding to the minimum node degree. In a dissortative network the
behavior changes: the value of 〈k2〉/〈k〉 oscillates as a function of l: now,
the second shell exhibits a local minimum of 〈k〉2, followed by a maximum
for l = 3, decreases again for shell l = 4, etc. These jumps of the tomo-
graphical curve are typical for all dissortative networks. The explanation is
not complicated. Using Eq. (10), and supposing as a first approximation
that there exists a large probability that a link leaving a node of degree n
enters a node with “opposite” degree (i.e., if n is large then k must be small,
and vice versa), one can show that the calculation of the mean, 〈k〉2, yields
〈k〉2 < 〈k〉r2 (note that for dissortative networks the number of short loops is
small). Now, if the second shell possesses a large number of lowly connected
nodes, the third shell must then be full of highly connected nodes, because
of the dissortative tendency of nodes to connect. For the same reason the
shell l = 4 must contain mostly nodes with small degree, etc.

Thus, dissortative correlations produce networks where the propagat-
ing agent more readily reaches nodes with small degree than in uncorrelated
ones. In this networks the lowly connected nodes do not form the ”periphery”
of the network, and play a more important role in the spreading phenomena,
since they represent bridges between the highly connected ones. The periph-
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Fig. 13. (a) Average degree 〈k〉l as function of the number of the shell l. From

top to bottom (or from more peaked to more smooth): p = 1, 0.999, 0.9 and 0

(uncorrelated). (b) n̄(l) = (
∑l

i=0

∑

r,k Ni,r(k))/(
∑

r,k,i Ni,r(k)) as function of the

shell number l.

ery of the network consists of a large fraction of the nodes of medium degree,
which are the last ones to be affected by the spreading agent. Fig. 13(b)
shows the cumulative distribution of the average number of nodes per shell

n̄(l) =

∑l
i=0

∑

r,k Ni,r(k)
∑

r,k,i Ni,r(k)
(12)

as function of the shell number l. We note that the average path length in-
creases when the degree of dissortativity grows and we can offer a qualitative
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explanation for this result. We note that the difference between the curves
appears starting from the shell l = 3. Under dissortative mixing a lot of
nodes with small degree, located in the second shell, are connected to nodes
with high degree in the third shell. The inverse is, however, not true since
the number of highly connected nodes is small. Starting from a smaller num-
ber of nodes in the third shell (in comparison to an uncorrelated networks)
hinders reaching a large number of further nodes and leads to a weaker pop-
ulation of the fourth shell, etc. A careful observation of the curves supports
this argument: note also that the slope of the lines is smaller when passing
from an even shell to a odd shell than when changing from an odd to an
even one.

Another important property of dissortative networks compared to their
assortative counterparts is that they always remain fully connected, inde-
pendently of their degree of dissortativity. Our simulations show that even
extremely dissortative networks (p = 1) are composed of a single connected
cluster.

Node percolation — Fig. 14 shows the fraction of nodes M in the
giant component as a function of q (fraction of nodes removed) for different
degrees of dissortative mixing of our Barabási–Albert network. Percolation
properties of dissortative networks change when we vary the degree of dis-
sortativity of the network.
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Fig. 14. Fraction of nodes M in the giant component depending on the fraction

of nodes removed from the network. The graph compares the results for different

degrees of dissortativity. From bottom to top: p = 0, 0.5, 0.9 and 1.
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Although the differences between them and uncorrelated networks are
not as large as in the assortative case, they could be important. Simulations
show that as the dissortativity grows the robustness of the networks for
small and moderate values of q increases. However, when q exceeds some
characteristic value, the network tends to break more rapidly. While weakly
dissortative networks exhibit a percolation behavior quite similar to one of
uncorrelated ones, the behavior of strongly correlated networks seems to be
different. However, our simulations do not allow us to make a definitive on
the existence of a real percolation transition in such networks.

4. Conclusions

We present two algorithms based on the idea of rewiring of the preex-
isting network which are capable to change correlations in a network and
produce assortative or dissortative mixing leaving all other properties of the
network random. Both algorithms do not change the degree distribution of
the network and avoid creating of multiple and self-connections. The algo-
rithms are governed by a single parameter, p, whose variation changes the
degree of assortativity (dissortativity) of the network to a desired amount.
Using the algorithms we show that correlations have a drastic influence on
the topological properties of networks. Assortative networks tend to form
highly connected groups of nodes with similar degree which results in an
increase of the average path length and clustering coefficient when the as-
sortativity grows. The study of tomography and percolation on assortative
networks shows that their transport properties differ from ones for uncorre-
lated networks. In dissortative networks, the tendency of hubs to connect
nodes with low degree also produce changes in the topology; in comparison to
uncorrelated networks they exhibit larger average path lengths and smaller
clustering coefficients. All our results are pertinent to networks which do not
exhibit any other correlations that the ones put by their mixing property.
We have to note that the real ones might have also other types of correla-
tions, and therefore, other statistical properties; geographical restrictions or
simply peculiar properties of certain nodes may play an important role too.

IMS uses the possibility to thank the Fonds der Chemischen Industrie
for the partial financial support.
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