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Band structures of “Rh nucleus are discussed in framework of the
spherical shell-model calculations using the jjd5pna effective interaction.
Level structures at low energies are identified as resulting from the ro-
tational bands based on the 7p;/; and mgg > configurations. The low-
est observed positive-parity state is 9/27 and corresponds to wave func-
tion consisting of the W(p%/zgg/z) ® V(g$/2d§/2) configuration. Systematics
of single-quasiparticle 7p; /o and mgg/» bands in odd-A 91-113Rh isotopes
along with the ground state bands in the corresponding even—even Ru core
isotopes is discussed to bring out the role of spin—orbit partner orbitals for
collectivity. The energy staggering plots for odd-A “'~''3Rh isotopes are
also discussed.
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1. Introduction

Nuclei with neutron number in vicinity of the major shell closure at
N = 50, and the proton number lying between the semi-closed Z = 40 and
the closed Z = 50 shells provide particularly good platform to probe the
weakly deformed nuclei. Theoretical interpretations of level structures from
new spectroscopic studies in these nuclei have revealed novel deformation-
generating mechanisms [1-4]. In this mass region, the coexistence of spheri-
cal and deformed shapes results in complex level structure. The proton—
neutron (7v) residual interaction predominates in odd-odd nuclei. The
role of proton—neutron interaction and/or core excitation in the shell-model
structure of N = Z nuclei gained impetus in recent studies. The Rh (Z = 45)
isotopes with the proton Fermi surface in the middle of the g9/ proton shell
(half-particle and half-hole) provide a platform for various intriguing phe-
nomena. Structure of these nuclei is affected by change in the neutron num-
ber, especially the neutron valence space with reference to the N = 50 core
consisting of the vds 9, vg7/2, vd3 /e and vsyp orbitals. The prolate-driving
low-£2 vhyy 5 intruder orbital starts filling up in the case of the Rh isotopes
with neutron number above N = 54, and the configuration-dependent tri-
axiality is achieved due to the competing shape-driving ability of the vhyy /o
and 7gg /o orbitals [5-7]. The odd-A and odd—odd Rh isotopes involving the
Tgg/2 @ vhyyjp and mgge ® (Vhy /2)2 configurations, respectively, exhibit
minima in the potential-energy surfaces for the triaxial nuclear shape with
large positive v parameter, and signatures of triaxiality have been observed
in these bands. In the case of the lighter isotopes, the vhyy/, orbitals are
accessible at increasing excitation energies. The other neutron and proton
states originating from the normal-parity subshells are not drive deformation
driving, except the intruder [431]1/2% proton orbital originating from the
mgr /2 subshells located above Z = 50 major shell gap. Further, large spa-
tial overlap between the vg7/; and mgg o spin-orbit partner (SOP) orbitals
accentuates the importance of strong v interaction. Three quasiparticle
configurations containing these orbitals are expected to compete with other
three quasiparticle configurations involving aligned vh; /o neutron pair [8, 9].
In the present work, shell-model calculation has been performed for the re-
cent observed band structures [10]. In the calculations, the model space
involves protons in the 2p;/5 and gg/o orbitals, and neutrons in the 2ds/s,
38172, 2d3/2, 1g7/2 and 1hyy /o orbitals. A systematic comparison of single-
quasiparticle wgg /o and 7p;/; bands in the odd-A Rh isotopes is presented
in the paper. The systematic of odd-A Rh isotopes for the importance of
spin—orbit partner orbitals for deformation in this region is also discussed.
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2. Spherical shell-model description

Theoretical shell-model calculations using different model spaces as dif-
ferent two-body interactions have been successful in reasonable understand-
ing of the observed level structure at low and medium spins for nuclei in the
A = 100 mass region [11-13]. These calculations are also quite feasible in
9Rh nucleus as there are not too many active particles. The shell-model cal-
culations provide a microscopic basis for the collective types of approach. In
order to interpret the recently observed level structure of “Rh (Fig. 1), state-
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Fig. 1. Shell-model calculations are performed for the shown levels scheme of **Rh,
which is presented in recent work [10]. Inset shows low spin part from the decay of
99Pd [14]. Energies of v rays and levels are given in keV. The width of the arrows is
proportional to the relative y-ray intensity. Identified band structures are labeled
B1-B5.

of-the-art shell-model calculations have been performed using NuShell [15]
computer code. The calculations have been carried out by taking 8Sr as
core and jj45pn model space involving valence protons distributed over the
single-particle 2p; /5 and 1gg /o orbitals and neutrons occupying 1g7 /2, 2ds/2,
2d3/5 and 3sy /5 orbitals with maximum four particles allowed in d5/, orbital.
The jj45pna effective interaction has been used in the calculations and the
corresponding two-body matrix elements were obtained from the work of
Hjorth—Jensen [16]. A comparison of the experimental excitation energies
of the positive and negative-parity states of “’Rh with the corresponding
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theoretical spectra is shown in Fig. 2. As the hjy/, orbital is not included
in the calculations, the positive-parity states in bands B1 and B2, and the
negative-parity states in band B4 have been included for comparison with
the predicted ones. The details of the wave functions for the excited higher
spins states of positive- and negative-parity states of “Rh corresponding to
the experimental ones are given in Table I.
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Fig.2. Comparison of the excitation energies of various experimentally observed
states in %Rh with those calculated using shell model [15].

It is evident from Fig. 2 that the shell-model calculations exhibit good
agreement with the experimental level energies for positive-parity states.
The shell-model calculations reproduce the low-lying 7/2%,11/2% and 13/27"
states very well with an energy difference of 25, 38 and 5 keV, respectively,
whereas the other calculated excitation energies for the levels with spin I =
17/2%, 19/2%, 21/2%, 23/2%  25/2F, 27/2%  29/2% and 31/27 of positive
parity bands have reasonable good agreement with the experimental results.
The calculations predict the 9/2% state to be 85 keV above the 7/27F state,
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TABLE I

Wave functions for protons and neutrons in “’Rh for the ground state and the
excited states in bands B1, B2 and B4.

Spin  Probability Wave function for Spin  Probability Wave function for
protons neutrons protons neutrons

7/2f 31% p%/298/2 g$/2d5/2d3/2 35/21 38% p%/zggm g%/2d5/2d3/2
9/2f 30% P} 0950 97,243 505,5 || 37/27 35% P?/zgg/z 97283 /243 /5
5/25 27% p%/Qgg/Q 93/2d5/2d3/2 127 35% p1/299/2 9?/2d5/2d3/2
1/2f 21% p%/2gg/2 9?/2d5/2d3/2 5/27 30% p1/2g9/2 g$/2d5/2d3/2
13/21_ 28% p1/299/2 9?/2d5/2d3/2 9/2y 30% p1/299/2 g$/2d5/2d3/2
17/2f 27% p1/299/2 93/2d5/2d3/2 13/27 32% p%/zgg/z 9?/2d5/2d3/2
15/2f 21% p1/299/2 9?/2d5/2d3/2 11/2y 18% p%/zggm g%/2dg/2d3/2
19/21+ 44% p1/299/2 9%/2d5/2d3/2 13/25 20% p%/298/2 g%/2d5/2d3/2
21/2f 29% p1/299/2 93/2d5/2d3/2 17/2¢ 37% p%/zggm 9$/2d5/2d3/2
21/2§ 31% PT/995/0 9772059035 || 15/21 25% 12990 97205 /243
23/2f 50% pf/QgS/z 9%/2d5/2d3/2 17/25 33% p%/zgg/z 9?/2d5/2d3/2
25/2f 32% p%/2gg/2 9?/2d5/2d3/2 17/25 23% p%/ZgS/Q g%/2d5/2d3/2
23/25 22% p%/293/2 9%/2d5/2d3/2 21/2y 40% p%/Qgg/Q g?/zds/zds/z
25/2; 36% p%/2gg/2 g%/2d5/2d3/2 19/2y 17% p%/zgg/z 9?/2d5/2d3/2
27/2? 56% p?/2gg/2 9%/2do/2d3/2 21/25 29% p%/298/2 g$/2d5/2d3/2
25/2; 31% p%/QgS/Q 9%/2d5/2d3/2 23/2¢ 22% p1/299/2 9?/2d5/2d3/2
29/2f 33% p%/298/2 9?/2d5/2d3/2 25/2y 40% p1/299/2 g$/2d5/2d3/2
27/2§ 24% p?/zgg/z 9%/2‘15/2‘13/2 25/25 47% p1/299/2 9%/2‘15/2‘15/2
29/25 35% p%/2gg/2 9%/2d5/2d3/2 27/2¢ 26% p%/298/2 g%/2d5/2d3/2
27/2§ 33% pf/2gg/2 9?/2d5/2d3/2 29/2y 45% p%/zggm g$/2d5/2d3/2
29/2; 24% p?/zggm 9%/2d5/2d3/2 31/2¢ 43% p%/QgS/Q g%/2d5/2d3/2
31/2f 59% p%/298/2 g%/2d5/2d3/2 33/2y 53% p%/zgg/z 9?/2d5/2d3/2
31/2§ 33% p?/zgg/z 9%/2d5/2d3/2 37/2y 54% p%/zgg/z g$/2d0/2d3/2
33/2£ 32% p%/Qgg/Q 9%/2d5/2d3/2 39/2¢ % p%/298/2 9?/2d5/2d3/2
31/23 55% p%/298/2 9%/2d5/2d3/2

while it is observed 137 keV below the 7/2% state. The lowest observed
positive-parity state is 9/2% and corresponds to wave function consisting of
the Tr(p%/Qggm) ® u(g%zdgﬂ) configuration with an amplitude of 30%.

The first excited 7/2%, 9/2+, 11/2+, 13/2F, 15/2+, 17/2+, 21/2+, 25/2+
and 29/2% observed states are explained with W(p%/2g3/2) ® u(g?/2d§/2) con-
figuration. The first excited 19/27, 23/2%, 27/2% and 31/2", and the second
excited 21/27%, 25/27 and 29/2" observed states are obtained by Tr(p%/Qggm)
® v (97/2d5/2d3/2) configuration, i.e., excitation of vgr/y to vds/y orbital.
The second excited 23/2%, 27/27 and 31/27" predicted states have reason-
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able good agreement with the experimental results and are obtained by
w(pf/zggm) ® u(g%ﬂdg/zdéﬂ) configuration, i.e., by excitation of a vgy /s to
vds o orbital. The first excited 35/ 27 state is also predicted to be based
on the same configuration and exhibit agreement with the observed state at
7083 keV. The first excited 35/2% state predicted to be based on W(p%/Zgg’/Q)

® V(g% /ng /ng /2) configuration shows noticeable disagreement. Higher spin
states also exhibit significant deviations.

In general, the ordering of levels have been reproduced very well by the
shell-model calculations. In fact, calculations overestimate the experimen-
tally observed levels, which is possibly due to limited model space used for
neutrons.

The negative-parity states in band B4 have been included in Fig. 2 for
comparison as the 1 /o neutrons have not been included in the present cal-
culations. The details of wave functions for the negative-parity states of “’Rh
are also given in Table I. The ground state 1/27 is well-predicted by jj45pna
interaction and the wave function consists of w(pi/zggﬂ) ® V(g$/2d§/2) con-
figuration with an amplitude of 35%. It is observed that the first excited
5/27 state lies at 427 keV above the 1/27 ground state, whereas the calcu-
lated excitation energy is 288 keV. The 9/2~ and 13/2~ states are predicted
at 705 and 1279 keV by calculations which are underestimated compared to
the experimental 979 and 1660 keV values, respectively. In calculations, the
dominant contribution from the (p} /298 /2) ® v(g3 /2d§ /o) configuration has

been observed up to 37/2~ state. The ordering of levels has been reproduced
well by the shell-model calculations. Theoretically obtained excitation ener-
gies are underpredicted as compared to the experimental data. It requires to
re-tune the two-body matrix elements or readjust the single-particle energies
in this interaction.

Singh et al. [17] have performed shell-model calculations for “’Rh using
the code OXBASH [18| with the model space encompassing the m(p1/299/2)
and v(ds/81/2) orbitals outside the 88Sr core. The level structures up to
moderate spins 31/2%7 and 21/2 are well-reproduced thus can be thought
to exhibit single-particle behavior. The v(g7/2h11/2) orbitals were not in-
cluded in the calculations which are expected to include the higher angular
momentum states. The present calculations using jj45pna interaction ex-
hibit better agreement for the low-lying negative-parity states compared to
Gloeckner interaction used by Singh et al. [17]. The present calculations
performed with comparatively larger model space, significantly improve the
predictive power of calculations and the level energies are in good agreement
with experimental ones up to higher spin states.
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3. Systematics of bands observed in odd-A Rh isotopes

Systematics of the observed 7p; /o and 7gg /o bands in the odd-A 91-113Rh
isotopes (N = 46-68) are shown in Figs. 3 and 4, respectively. It is evi-
dent from these figures that the 1/27 level from the 7p; /» orbital forms the
ground state in the odd-A ?9719Rh isotopes, whereas the 9/2% and 7/2F
states from the mgg /o orbital form the ground state in the lighter 91=97Rh
isotopes and the heavier '%°~!3Rh isotopes, respectively. Moreover, the
9/2% state becomes the quasi-ground state in ?19'Rh, i.e., it lies lower in
energy than the 7/2% state and above the 1/2~ ground state. Similarly,
the 7/2% state becomes the quasi-ground state in '“®Rh, i.e., it lies lower
in energy than the 9/2% state and above the 1/2~ ground state. The en-
ergy differences between the 7/2 and 9/2% states from the mgq /2 orbital in
the odd-A 9~13Rh [2, 8, 19-21] isotopes are +65, 425, —93, —149, —194,
—206, —211 and —212 keV, respectively, which exhibit a smooth change in
sign at 1®Rh (N = 58). In the case of nuclei with odd nucleon in the orbit
with angular momentum j, the states with spin 5 and spin 5 — 1 have been
generally observed to compete [22]. Bohr and Mottleson [23] have pointed
out that the appearance of the spin (j — 1) state as the ground state in the
case of odd-Z isotopes is possibly related to the onset of quadrupole defor-
mation in isotopes due to the rearrangement of proton orbitals as a function
of neutron number.
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Fig.3. Systematics of excited states in the single-quasiparticle mp;,, bands ob-
served in the odd-A *1=113Rh isotopes [2, 8, 19-21, 24-27].

The 13/27 — 9/2% transition energies in the Tgg/2 bands in the case
of the odd-A ?17101Rh isotopes show near constancy. The “’Rh isotope
(with N = 50 neutron shell closure) is exception where a sharp jump in
the energy is observed. The onset of deformation is noticeable at N = 60,
which is indicated by beginning of regular decrease in the 13/2% — 9/27F
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Fig. 4. Systematics of excited states in the single-quasiparticle 7gg 2 bands observed
in the odd-A 9'~!13Rh isotopes [2, 8, 19-21, 24-27].

transition energy with increase in neutron number (Fig. 4). The increase
in deformation continues for the heavier odd-A '93~113Rh isotopes. Similar
variation in the relative position of the 5/2%, 7/2% and 9/2% states has
been observed in the 7719 T¢ isotopes, where regular order of these states
occurs for 1%3Tc (N = 60) and heavier isotopes [28]. The shape transition
which occurs as neutrons are added beyond N = 58 has also been noticed
in even-even nuclei around Z = 40 [28]. Both the signature partners are
observed in the mgg/; band for the odd-A 97-113Rh isotopes, whereas for
the lighter odd-A *'=%Rh isotopes, only the favored signature partner is
observed. The plot of the staggering parameter, [E(I) — E(I — 1)]/21, vs.
spin for the odd-A ?2~113Rh isotopes is shown in Fig. 5. It shows decrease
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in staggering with increasing neutron number and hence can be related with
increase in deformation in these isotopes. The observed mp;/; band in the
odd-A =111 Rh isotopes is decoupled one with the rotational band transition
energies showing a regular decrease with increase in neutron number.
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Fig.5. Energy staggering, [E(I)-E(I — 1)]/2I, parameter plotted as a function of
spin for the 7gg > bands in the odd-A ?9~'*Rh isotopes [2, 8, 19-21].

The energies of the v transitions in the mp;/5 and mgg/o bands in the
odd-A ?'=113Rh [2, 8, 19-21, 24-27| isotopes along with those in the ground
state bands in the corresponding core 9~12Ru [29-39] isotopes are plot-
ted in Fig. 6 as a function of spin. Systematic comparison of the single-
quasiparticle 7py /o and 7gg/; bands in Rh isotopes and the ground state
bands in the respective even—even core Ru isotopes is shown in Fig. 6. It
infers ability of the odd hole or particle to polarize the y-soft core to a stable
deformation. The energies of the 5/27 — 1/27 gamma transitions in the
7p1/2 bands, and the 13/2% — 9/2% gamma transitions in the wgg/, bands
in the odd-A ?1~13Rh isotopes have been plotted in Fig. 7 as a function of
spin along with the corresponding 27 — 07 gamma-transition in the ground
state band of the respective even-even core ?°~1'2Ru isotones [29-39]. Such
a comparison should be valid for the spherical nuclei in the weak-coupling
limit and also for the deformed nuclei when the Fermi surface lies near
low-K orbits, i.e., decoupled bands. The odd-A nuclei under consideration
are transitional, and none of them is strongly deformed.

The excitation energy ratios (E4+ — Eg+)/(E9+ — Eg+) for the even—
even P°~12Ru isotopes are plotted and shown in Fig. 7. The corresponding
excitation energy ratios: (Ey7/9+ — Eg/o+)/(E13/2+ — Egja+ ), for the mgg o
bands and (EQ/Q— — El/gf)/(E%/Q— — E1/27) for the 7Tp1/2 bands in odd-A
Rh isotopes are also included in Fig. 7. In the odd-A 3~113Rh (N = 58
68) isotopes, where 7/2% is the ground state, the excitation energy ratios,
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Fig. 6. The energies of the v transitions in the 7p; /o and 7gg/» bands in the odd-A
91-113Rh isotopes [2, 8, 19-21, 24-27] along with those in the ground state bands
in the corresponding the °~12Ru core isotopes [29-39] plotted as a function of
spin. The 5/27 — 1/27 transition in the mp;/, band and the 13/2% — 9/2%
transition in the mgg /o band in odd-A Rh isotopes have been plotted corresponding
to the 2t — 0% transition in the ground state band in the even-even °~112Ru

core isotopes. There are no data points corresponding to the mp;/ band in the
93,95,113R} isotopes.
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Fig. 7. The comparison of the excitation energy ratios, (Ey7/2+ — Eg/a+)/(E13/2+
— E9/2+), for the Tg9,/2 bands and (E9/27 — E1/27 )/(E5/27 — El/zf) for the TP1/2
bands for the odd-A ?1713Rh [2, 8, 19-21, 24-27] isotopes with the excitation
energy ratios (Egq+ — Eg+)/(Eyr — Eg+) for the even—even %°~12Ru [29-39)
isotopes.
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(Ersjot — Brja+)/(Er1 2+ — E7j9+), for the mgg/, bands have closely the
same values as for the (Ey7/9+ — Egjo+)/(E13/0+ — Egjo+) ratios. The
excitation energy ratios for the mgg/; bands for the odd-A 1-103Rh (N =
46-58) isotopes closely follow the corresponding values for the even—even
90-102Ry (N = 46-58) core isotopes (Fig. 7). The v-transition energy plots
for the even—even Ru core finally merge with the mp; /o band for the heavier
105=1HR} isotopes [2, 20, 21]. The 9%92Ru [32, 33] and P*~1%2Ru [29, 30,
34] isotopes are vibrational, and the heavier 1°4=112Ru isotopes [35-39] are
quasi-rotational (Fig. 7).

As is evident from Fig. 7, the excitation energy ratio values for the mpy
band are larger than the mgg/, band for the odd-A 99-11RH isotopes [2, 8,
19-21], which indicates more rotational character for the mp; 2 band. It is
likely to be the effect of deformation induced by the 7wv interaction between
SOP orbitals. The number of protons in the gg /5 orbitals is larger in the case
of the 7p; o band when a single proton occupies the p; /5 orbital as compared
to the case of the mgg 5 band when two particles occupy the p; /5 orbital. In
the case of the mp; /5 band, the larger number of protons in the gg/o orbital
lowers the energies of the g7/o and the hy; /9 neutron orbitals, so it becomes
energetically favorable to raise neutrons to these orbitals. The increase in
occupation probability of g7/ and hy; /9 neutron orbitals, in turn, increases
the 7v interaction strength for the 7p; o configuration, which effectively
cancels out the spherically driven vv and w7 pairing correlations [40]. It
infers the importance of the spin—orbit partner orbitals for deformation in
this region.

An interesting feature of the observed spectra is that unusual shape
transition appearing in the lighter even—even °~%Ru (N = 46-52) core
is also closely reflected in the plots for the mgg/ bands in the respective
odd-mass Rh nuclei. The excitation energy of the 2% state in the °*92Ru
(N = 46, 48) isotopes [31, 33] is ~ 0.75 MeV and shows a sudden sharp
jump to 1.43 MeV for the “Ru isotope, and recovers to ~ 0.75 MeV for
the %Ru isotope. Further, 2% state excitation energy shows regular and
significant decrease to ~ 0.27 MeV till °*Ru is reached and it remains
almost constant for the heavier even—even 1%~112Ru isotopes [36-39]. The
systematics of the low-lying states in the even—even “°~12Ru isotopes have
been intricately linked with the nature of wv interaction operating between
SOP orbitals — the (7ds /2, vd3/s) and (mgg /2, vg7/2) orbitals, which cause
collectivity in nuclei [41].

4. Conclusions

The level scheme of the transitional nucleus *Rh has been studied within
the framework of shell-model calculations. The present calculations are done
by using jj45pna interaction, which are in better agreement experimentally.
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The observed structures at low and medium spins are compared with the
shell-model calculations in the (pl/g, gg/2) proton space and the (97/2, ds /2,
ds/2, s1/2) neutron space. The systematics of the single-quasiparticle mgg /o
and 7p; /o bands in odd-A Rh isotopes are discussed.
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