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We discuss the concept of width-to-spacing ratio which plays the central
role in the description of local spectral statistics of evolution operators in
multiplicative and additive stochastic processes for random matrices. We
show that the local spectral properties are highly universal and depend on
a single parameter being the width-to-spacing ratio. We discuss duality
between the kernel for Dysonian Brownian motion and the kernel for the
Lyapunov matrix for the product of Ginibre matrices.
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1. Introduction

Local spectral properties of invariant randommatrix ensembles are highly
universal [1–4]. This means that these properties depend only on the sym-
metry class of the ensemble or, equivalently, on the type of invariance of the
probability measure. Here, we search for an analogous principle for stochas-
tic processes in the matrix space. We consider prototypes of additive and
multiplicative stochastic processes in the space of Hermitian matrices. We
show that local spectral statistics of evolution operators for these processes is
described by a determinantal point process with the kernel that interpolates
between the picket-fence kernel and the sine kernel in a universal way that
is controlled by a single parameter being the width-to-spacing ratio [5–7].

The paper is organised as follows. In Section 2, we recall the Dyson
Brownian motion [8]. In Section 3, we evoke an analytic formula for the ker-
nel of Dyson Brownian motion with the initial condition given by equidistant
eigenvalues [9]. This result is used in comparative studies towards the end
of the paper. In Section 4, we introduce a multiplicative stochastic evo-
lution in the matrix space. In Section 5, we investigate local statistics of
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the Lyapunov spectrum associated with this evolution. In Section 6, we
discuss duality and universality of the kernels of evolution operators for ad-
ditive and multiplicative stochastic processes. The material presented in
Sections 4, 5, 6 is based on a joint work with Gernot Akemann and Mario
Kieburg [5–7]. The paper is concluded in Section 7.

2. Additive matrix evolution — Dysonian random walk

We first recall the Dyson construction of additive random walk in the
space of matrices [8]. Let Xm be N × N complex matrices. The random
walk X0 → X1 → . . .→ XM is defined by the recursive formula

Xm = Xm−1 + σGm (1)

which describes incremental random changes of matrices Xm at discrete
times m = 1, 2, . . . ,M . The increments Gm’s are independent identically
distributed N ×N Ginibre matrices whose entries are themselves indepen-
dent identically distributed standard complex variables CN (0, 1) [10]. σ is a
scale parameter. One is interested in the evolution of eigenvalues of the Her-
mitian matrix Am associated with Xm, which is obtained by the Hermitian
projection Am = (Xm +X†m)/

√
2. The evolution equation for this matrix

Am = Am−1 + σHm (2)

is analogous to Eq. (1), except that the increments Hm = (Gm + G†m)/
√

2
are GUE matrices in this case. The matrix AM at time M is a sum of the
initial matrix and of i.i.d. Gaussian increments

AM = A0 + σ (H1 +H2 + . . .+HM ) . (3)

The matrix AM has N real eigenvalues aMj , j = 1, . . . , N . The process of
evolution of these eigenvalues is known as Dysonian random walk. One can
define physical time t = M∆t, where ∆t is the time interval between two
consecutive instances of the discrete process. If the scale parameter scales as
σ = σc

√
∆t, where σc is a positive constant, one can take the limit ∆t→ 0

to obtain a continuous Dyson random walk which is commonly known as
Dyson Brownian motion. It follows from the stability of GUE matrices
[11, 12] that the sum of i.i.d. increments in Eq. (3) has for N →∞ the same
limiting eigenvalue density1 as a single GUE matrix

√
MH with the scale

parameter
√
M . Eigenvalues of AM at time M have the same distribution

as eigenvalues of the matrix

ÃM = A0 + σ
√
MH = A0 + σc

√
tH . (4)

1 One has to divide out a trivial scaling factor
√
N which is proportional to the width

of the eigenvalue distribution. The matrix H/
√
N has a limiting density.
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3. Local spectral properties of Dyson Brownian motion

Using the Dyson Coulomb gas representation [1] of Eq. (2), one can
derive the following equations for eigenvalues [8]:

am,j − am−1,j =
∑
k 6=j

1

am−1,j − am−1,k
+ σgm,j , (5)

where gm,j , m = 1, 2, . . . ,M , j = 1, 2, . . . , N , is a set of independent stan-
dard real normal random variables N (0, 1). The corresponding equations in
the continuous time formalism read

daj(t) =
∑
k 6=j

1

aj(t)− ak(t)
dt+ σcdWj(t) , (6)

where Wj(t), j = 1, . . . , N , are independent Wiener processes. If one in-
terpretes eigenvalues aj(t), j = 1, . . . , N , as positions of N particles in one
dimension at time t, then equations (6) describe Brownian motions of these
particles. The particles interact with each other via a logarithmic potential
ln |aj − ai|. One calls the system “Coulomb gas” since the logarithmic po-
tential is the Coulomb potential in two dimensions. Even if this is a slight
abuse of terminology, as the system in question is one-dimensional, the term
“Coulomb gas” perfectly reflects the behaviour of the system which imitates
thermal behaviour of a gas of repelling particles. Particles’ trajectories gen-
erated by Eq. (6) are continuous. The repulsion potential ln |aj−ai| prevents
the trajectories from intersecting each other so if a1(t) < a2(t) < . . . < aN (t)
at some t, then a1(t′) < a2(t

′) < . . . < aN (t′) at any later time t′ > t.
To solve the differential stochastic equation (6) means to determine

the probability density function, PN (x1, x2, . . . , xN ; t) which is directly re-
lated to the probability PN (x1, x2, . . . , xN ; t)dx1 . . . dxN of finding eigenval-
ues a1, a2, . . . , aN at time t in the infinitesimal neighbourhood of x1, x2, . . . ,
xN . The standard way of solving the problem is to write down the Fokker–
Planck equation associated with the stochastic differential equations (6) and
to solve it for PN . One can then calculate correlation functions [13]

Rk(x1, x2, . . . , xk; t) =
N !

(N − k)!

∫
. . .

∫
dxk+1 . . . dxNPN (x1, x2, . . . , xN ; t)

(7)
which are just appropriately normalised marginal distributions of PN . They
can be interpreted as probability densities for k eigenvalues to lie in the in-
finitesimal neighbourhood of x1, . . . , xk, except that the total integral of Rk
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is not one but N !/(N−k)!. In particular, the first correlation function R1(x)
gives the distribution of eigenvalues normalised to the number of eigenvalues∫
R1(x)dx = N .
Generally, it is difficult to find a closed-form solution to the stochastic

differential equations (6) since the evolution of the system is very complex
and non-stationary. The repulsion makes the gas continuously expand. De-
tails of this expansion are sensitive to the initial positions of particles and
the statistical noise. An exception is the situation when the gas is uniformly
distributed on the whole real axis (for N =∞) since in this case, the effect
of expansion is eliminated and the average distance between particles stays
on average constant over time. An explicit solution can be found in this
case [9].

This situation can be imitated by a finite-N system with the initial con-
dition aj(0) = (j −K)s, j = 1, 2, . . . , N with N = 2K − 1, which describes
N equidistant eigenvalues (particles) uniformly distributed on the real axis
within the boundaries−s(K−1) and s(K−1). This can be realised by choos-
ing a diagonal matrix A0 = diag (−s(K − 1), . . . ,−s, 0, s, . . . , s(K − 1)) in
Eq. (3). During evolution (6) eigenvalues drift away from each other. The
peripheral eigenvalues move away the fastest. The further an eigenvalue is
from the gas boundary, the slower it moves since it is confined by eigenvalues
on both sides which have to drift away first. When N is large, the mean
spacing between internal eigenvalues is almost constant and equal to the
initial spacing s for a long time t, or more precisely for time t � Ns2/σ2c .
This can be seen from the following argument. The width of the eigenvalue
distribution (radius of gyration) is equal to the square root of the second
cumulant of the eigenvalue distribution of the matrix Ãt = A0 +σc

√
tH (4).

For large N , the second cumulant of the eigenvalue distribution of Ãt can be
approximated as a sum of the second cumulant of A0 which is (sN)2/12 and
of σc

√
tH which is σ2cNt, since for large N , the addition of these matrices

is almost free [11]. This gives (sN)2/12 + σ2cNt. Let S be the spacing of
a hypothetical distribution of N equidistant particles with the same radius
of gyration (SN)2/12 = (sN)2/12 + σ2cNt. This hypothetical spacing is
related to the initial spacing s as S = s

√
1 + 12σ2c t/(s

2N). Clearly S gives
the upper bound on the spacing between eigenvalues of matrix (4) in the
center of the spectrum. The initial spacing s gives the lower bound (since
eigenvalues repel). For fixed t, the upper bound S approaches s for N →∞.
This means that the mean spacing between eigenvalues in the center of the
spectrum is equal to s in this limit. The same holds also in the double scal-
ing limit: t = t(N) and N →∞, as long as t = t(N) grows slower than N ,
that is t ∼ o(N). More generally for N → ∞, one can assume that the
spacing between eigenvalues lying in any compact interval is constant and
equal to s. This is an enormous simplification. In effect, one can give an
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explicit closed-form solution of the evolution equations (6) for eigenvalues in
the bulk in the limit of N →∞. The solution was given in [9] where it was
shown that the correlation functions (7) have the determinantal form of

Rk(x1, . . . , xk; t) = detKt(xi, xj)i,j=1,...,k (8)

with the kernel

Kt(x, y) =
1

πs
Re

∞∑
k=−∞

exp
[
−2π2w2k(k − 1)

] exp [iπ ((2k − 1)x/s+ y/s)]

2πw2k + i(y − x)/s
.

(9)
The corresponding eigenvalue distribution is R1(x) = Kt(x, x). The evolu-
tion of the eigenvalue distribution with time is shown in Fig. 1, where we plot
the limiting density for N = ∞ derived analytically R1(x) = Kt(x, x) from
Eq. (9) and the corresponding histograms for N = 255 obtained by Monte-
Carlo simulations of Eq. (4). One can see that the histograms for N = 255
coincide with the limiting density. This means that the mean spacing be-
tween these five eigenvalues remains almost constant for the given evolution
times t, in agreement with the argument given above. The kernel Kt (9)

Fig. 1. (Colour on-line) Dyson Brownian motion of eigenvalues of Hermitian matrix
which for t = 0 is diagonal and has equidistant eigenvalues λj = j − K for j =

1, . . . , 2K − 1, where N = 2K − 1. The eigenvalue spacing is s = 1, initially. We
set σc = 1 so the width-to-spacing ratio is w =

√
t (10). In the left panel, we

plot a single realisation of the stochastic evolution (5) of five central eigenvalues of
the matrix which initially, for t = 0, are located at {−2,−1, 0, 1, 2}. The matrix
size is N = 255. The right panel shows the central part of the spectral density
for x ∈ [−2.5, 2, 5] for w =

√
t = {0.125, 0.25, 0.5, 1.0}. Solid lines represent the

limiting density for N →∞ calculated from the analytic formula R1(x) = Kt(x, x)

(9). Different colours correspond to different values of the width-to-spacing ratio
parameter (10): w = 0.125 (black), w = 0.25 (blue), w = 0.5 (red) and w = 1.0

(green). Points represent results of Monte-Carlo simulations for N = 255. For
each w, we generated 105 matrices.



1646 Z. Burda

depends on time t through the parameter

w =
σc
√
t

s
. (10)

This parameter has a clear physical meaning. The numerator σc
√
t is ap-

proximately equal to the width of the peak representing the probability of
finding an eigenvalue that undergoes Brownian motion between neighbour-
ing eigenvalues, while the denominator s is equal to the average spacing
between eigenvalues. For this reason, we call w width-to-spacing ratio. For
short times, the evolution of individual eigenvalues is described by an al-
most free Brownian motion and the peaks are Gaussian. When the peaks
get broader, the repulsion starts to deform them. Kernel (9) depends on the
positions x and y through the combinations x/s and y/s. One can express x
and y in units of s. This amounts to introducing rescaled variables ξ = x/s
and ζ = y/s. Denote the resulting kernel by Kw(ξ, ζ). It is related to ker-
nel (9) as Kw(ξ, ζ) = sKt(sξ, sζ). The prefactor s is equal to the Jacobian
dx/dξ. The kernel Kw is

Kw(ξ, ζ) =
1

π
Re

∞∑
k=−∞

exp
[
−2π2w2k(k − 1)

] exp [iπ ((2k − 1)ξ + ζ)]

2πw2k + i(ζ − ξ)
.

(11)
The width-to-spacing ratio w increases as time goes on. The peaks of the
distribution are initially localised at integers but they broaden when w in-
creases. They begin to overlap when w is of the order one. When w fur-
ther increases, the gap between peaks closes and the spectrum flattens (see
Fig. 1). Eventually, in the limit of w →∞, the spectrum becomes flat. The
density R1,w(ξ) = Kw(ξ, ξ) (9) interpolates between the Dirac-delta picket
fence

R1,w=0(ξ) =

∞∑
j=−∞

δ(ξ − j) (12)

for w = 0, and a fully translationally invariant flat distribution

R1,w=∞(ξ) = 1 (13)

for w →∞. The limiting kernel is just the standard sine kernel [1]

Kw=∞(ξ, ζ) =
sin (π(ξ − ζ))

π(ξ − ζ)
(14)

in this case.
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4. Multiplicative matrix evolution

Let us now consider a multiplicative stochastic matrix evolution defined
by the following recursive formula:

Xm = GmXm−1 , (15)

where as beforem = 1, . . . ,M is a discrete time index and the random incre-
ments Gm’s are independent identically distributed N×N Ginibre matrices.
This equation is analogous to Eq. (1) except that the incremental changes
are now multiplicative. One can analytically determine the eigenvalue dis-
tribution of XM [14, 15]. Here, we are interested in the Hermitian matrix
YM = X†MXM associated with XM . For the multiplicative process (15), YM
is a more natural Hermitian partner of XM than (X†M +XM )/

√
2 that was

used for the additive process (1). Clearly eigenvalues of YM correspond to
squares of singular values of XM . Let us for simplicity assume that X0 is
an identity matrix. In this case, YM is

Y = (GMGM−1 . . . G1)
† (GMGM−1 . . . G1) . (16)

The eigenvalue distribution of this matrix was determined in [16]. From
here on, we skip the index M and for brevity write Y , to simplify notation.
We are interested in the evolution of eigenvalues yMj , j = 1, . . . , N , of the
matrix Y or, alternatively, in the evolution of Lyapunov exponents λMj ,
j = 1, . . . , N , that is eigenvalues of the Lyaponov matrix [5–7]

L =
1

2M
log (GMGM−1 . . . G1)

† (GMGM−1 . . . G1) =
1

2M
log Y . (17)

For any finite M and N , the spectra of L and Y contain exactly the same
information since yMj = e2MλMj . The product GMGM−1 . . . G1 can be
viewed as a discrete time evolution operator or a transfer matrix in a system
with N degrees of freedom. An initial state of the system |x〉0 is mapped
onto the state

|x〉M = GMGM−1 . . . G1 |x〉0 (18)

at time M . This equation can be depicted symbolically as a multilayered
network as sketched in Fig. 2. The layout of this network is typical for signal
processing in artificial neural networks known from machine learning. Here,
the signal processing from layer to layer |x〉m = Gm |x〉m−1 is linear, while
in neural networks it is non-linear. As we shall see, even for the linear case,
the system undergoes an interesting phase transition between “deep” systems
and “shallow” ones which manifests as a change of local spectral statistics of
Lyapunov exponents in the limit M,N →∞.
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Fig. 2. (Colour on-line) Schematic representation of the architecture of a multi-
layered system. Nodes (blue dots) in a layer m represent components of the state
vector |x〉m of the system at time m. The state |x〉m is obtained from |x〉m−1 by
a linear map |x〉m = Gm|x〉m−1. Elements (Gm)ij of the transfer matrix Gm are
represented by edges of the network. The network shown in the figure represents
signal processing of N = 5 degrees of freedom in M = 6 time steps.

Let M = M(N) be a monotonically increasing function of N and let a
be the limiting aspect ratio of the system

a = lim
N→∞

aN = lim
N→∞

N

M(N)
. (19)

Depending on the value of a, one can distinguish three types of architecture:
deep systems for a = 0, shallow systems for a = ∞ and critical ones for
0 < a < ∞. When the number of time slices M super-linearly grows with
the number of degrees of freedom, N , e.g. M ∼ N2, the limiting system
is deep; when it scales sub-linearly, e.g. M ∼

√
N , the limiting system is

shallow. The architecture is critical when M is proportional to N . For large
but finite M,N , the system can be called deep when M � N and shallow
when M � N .

5. Local statistics of Lyapunov spectrum

Eigenvalues of the Lyapunov matrix (17) for the product of GUE matri-
ces assume deterministic values [17, 18]

λj =
ψ(j)

2
, j = 1, . . . , N (20)
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in the limit of M →∞, where ψ(z) = (logΓ (z))′ is the digamma function.
For finite M but very large M � N , eigenvalues of the Lyapunov matrix
(17) have a probability distribution that can be approximated by a sum of
Gaussian peaks centred around the limiting values [5, 6]

R1(λ) ≈
N∑
j=1

1√
2πσ2j

exp

[
−(λ− λj)2

2σ2j

]
. (21)

Each peak is normalised to one, so the total distribution is normalised to the
number of eigenvalues N . The widths of the peaks depend on the derivative
of the digamma function

σj =

√
ψ′(j)

4M
, j = 1, . . . , N . (22)

For M → ∞, the peaks become Dirac deltas. Distribution (21) has an
interesting property. The positions and widths of the peaks do not depend
on N . This means that when N is increased, new peaks are added to the
distribution but the old ones stay intact.

The digamma function satisfies the following identity ψ(z+ 1) = ψ(z) +
1/z. Thus, the mean spacing between neighbouring Lyapunov exponents is

λj+1 − λj =
1

2j
. (23)

The digamma function has the asymptotic expansion of ψ(z) = ln z +
1/(2z) − 1/(12z2) + . . . for Re(z) > 0. In consequence, the width of the
jth peak is j ∼

√
ψ′(j)/(4M) ≈

√
1/(4jM). This means that for large j,

the width-to-spacing ratio can be approximated by

wj =
σj+1 + σj

2(λj+1 − λj)
≈
√

j

M
. (24)

The width-to-spacing ratio increases when j increases. It is maximal for j at
the upper end of the spectrum, where it takes the value of

√
N/M =

√
aN

(19).
We are now going to discuss local spectral statistics of the Lyapunov

exponents in the limit of M,N → ∞. We start from an explicit expression
for the kernel of the matrix Y (16) for finite M and N [6, 7]

KY (x, y) =
1

x

N∑
j=1

(
x

y

)j
Gj(y) , (25)
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where

Gj(y) =

+i∞∫
−i∞

dt

2πi

sin(πt)

πt
yt
(
Γ (j − t)
Γ (j)

)M+1 Γ (N − j + 1 + t)

Γ (N − j + 1)
. (26)

There are many equivalent expressions for the kernel that can be found in
the literature on the subject [16, 19–21]. The one given above has been
derived from a formula in [19]. An advantage of the integral representation
(26) is that it is very well-suited for taking various limits M → ∞ and
N →∞. One can, for example, easily transform the kernel KY (25) to the
kernel KL for the matrix L (17) by changing variables in (25). By doing
this, one can immediately recover Eq. (21) from the asymptotic behaviour
of integrand (26) for M → ∞ [6, 7]. Here, we are mainly interested in the
double scaling limit N,M →∞ and N/M → a, for a (19) being a finite and
positive number, 0 < a <∞, which corresponds to the critical scaling.

The number of Lyapunov exponents between x and x+dx is proportional
to the eigenvalue density ρλ(x)dx. The mean spacing between Lyapunov
exponents in the neighbourhood of x is inversely proportional to ρλ(x) so
it depends on the position x in the spectrum. It is convenient to make
the spacing independent of the position in the spectrum. One does it by
unfolding the spectrum, i.e. by expressing the distribution in the variable

p =

λ∫
−∞

ρλ(x)dx (27)

which has the uniform distribution on the unit interval [13]. For finiteN , this
variable can be imitated by p = j/N , where j is the index of the Lyapunov
exponent λj . Since Lyapunov exponents are ordered λ1 < λ2 < . . . < λN ,
the quantity p = j/N can be interpreted as the probability of finding an
exponent smaller than or equal to λj : Prob(λ ≤ λj) = j/N = p. For
N → ∞, the last equation takes the form of (27), which means that the
variable p = j/N indeed unfolds the spectrum in the limit of N →∞. The
eigenvalue density ρλ(x)dx is known analytically for any finite M [22] but
unfortunately it is expressed in an intricate parametric form from which it
is hard to reconstruct the unfolding map. However, for M → ∞, one can
find another way to unfold the spectrum [17]. It is based on the asymptotic
behaviour of Lyapunov exponents λj = log(j)/2 + o(1/j) for large j that
we discussed above. A consequence of this asymptotic behaviour is that the
quantity uj = e2λj/N behaves asymptotically as uj = j/N(1 + o(1/j)) ≈ p.
Thus, for j of the order of N it unfolds the spectrum when N → ∞. The
variables uj can be viewed as eigenvalues of the matrix



Universality of Random Matrix Dynamics 1651

u =
e2L

N
=
Y 1/M

N
. (28)

ForM,N →∞, the eigenvalue spectrum of u becomes uniform on (0, 1) and
thus it unfolds the Lyapunov spectrum.

The kernel Ku(px, py) for the unfolded spectrum can by obtained from
KY (x, y) (25) by changing variables to px = x1/M/N , py = y1/M/N as
follows from (28). This amounts to replacing x and y by x = (pxN)M and
y = (pyN)M in KY (x, y). One has also to include the Jacobian dx/dpx in
the transformation law Ku(px, py) = dx/dpxKY (x, y). The mean spacing
between eigenvalues of the uniform spectrum on the unit interval is 1/N , so
if one wants to investigate local level statistics at a point p of the unfolded
spectrum, one has to zoom in at this point to the local scale

px = p+
ξ

N
, py = p+

ζ

N
, (29)

where ξ and ζ are of the order of one. One can now take the double scaling
limit N → ∞, N/M → a keeping the aspect ratio (19) finite and positive
0 < a <∞. We denote the limiting kernel for the unfolded spectrum at the
point p ∈ (0, 1) by

Kp(ξ, ζ) = lim
N→∞,N/M→a

Ku

(
p+

ξ

N
, p+

ζ

N

)
. (30)

The result reads [6]

Kp(ξ, ζ) =
1

2πap
Re

+∞∑
ν=−∞

exp

(
ν(ξ − ζ)

ap

)
erfi

(
π
√

2ap

2
+ i

ζ − ν√
2ap

)
, (31)

where erfi is the imaginary error function. The details of the calculations
are presented in [7]. Here, we only give a short recap. One begins with an
explicit expression for the kernel KY of the matrix Y for finite M and N , as
for instance the one given here by Eqs. (25) and (26). By changing variables
Y → u (28), one can then determine the kernel Ku of the u-spectrum which
becomes unfolded in the limit of M,N → ∞. Before one takes the limit,
one has to zoom in at a point p of the u-spectrum. Eventually, one takes
the double scaling limit N → ∞ and aN = N/M → a, which can be done
by replacing M by N/a and then taking the limit N →∞.

The resulting expression (31) depends on the product ap of the aspect
ratio a and the position in the spectrum p ∈ (0, 1). The combination √ap
can be easily identified from Eq. (24)

wj=pN =

√
j

M
=
√
aNp→

√
ap (32)
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as the width-to-spacing ratio at the position p of the spectrum. For brevity,
we denote it by w =

√
ap. Kernel (31) for the given width-to-spacing ratio is

K̂w(ξ, ζ) =
1

2πw2
Re

+∞∑
ν=−∞

exp

(
ν(ξ − ζ)

w2

)
erfi

(
πw√

2
+ i

ζ − ν
w
√

2

)
. (33)

We denote it here by K̂w to distinguish it from the kernel Kw (11) that
was discussed in the previous section. The corresponding eigenvalue density
R̂1,w(ξ) = K̂w(ξ, ξ) is

R̂1,w(ξ) =
1

2πw2
Re

+∞∑
ν=−∞

erfi
(
πw√

2
+ i

ξ − ν
w
√

2

)
. (34)

It interpolates between a picket fence made of Dirac delta functions for
w → 0, and a flat density for w → ∞, in the same manner as the kernel
Kw, (12) and (13). The limiting form of the kernel K̂w is given by the sine
kernel w → ∞, the same as for Kw (14). Is it a coincidence, or maybe the
kernels are equivalent?

6. Duality and universality

It was Jac Verbaarschot and Maurice Duits who first suggested that the
two kernels might be identical for any w [23]. We have checked that this is
indeed the case [7]. The map between the expressions for Kw (11) and for
K̂w (33) is provided by the Poisson summation formula which transforms the
sum over ν in Eq. (33) onto the sum over Fourier modes, k, in Eq. (11). In
a sense, the two expressions are dual to each other. The Dirac picket-fence
limit (12) corresponds to the large time behaviour of K̂w and the short-time
behaviour of Kw, while the flat limit (13) the other way round. This again
reflects the duality of the two kernels.

We have checked by Monte-Carlo simulations [6, 7] that the local spectral
density of unfolded Lyapunov spectrum coincides with the limiting density
(34) within the numerical accuracy also when one replaces Ginibre matri-
ces Gm in the evolution equation (15) by random matrices made of i.i.d.
non-Gaussian random centered complex variables, or by weakly correlated
Ginibre matrices. We refer the interested reader to [6, 7]. This is an indi-
cation that the universality of local spectral statistics extends also beyond
the realm of Gaussian Markov stochastic processes.
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7. Conclusions

We have shown here that the kernels describing local eigenvalue statis-
tics of evolution operators for multiplicative and additive Gaussian stochas-
tic processes in the space of Hermitian matrices (for Dyson index β = 2)
interpolate between the Dirac-delta kernel and the sine kernel in a universal
way. The interpolation is controlled by the width-to-spacing ratio. It would
be interesting to check if a similar universality holds also for real-symmetric
(β = 1) and quaternionic matrices (β = 4). Here, we concentrated on local
spectral statistics in the bulk but one can extend the analysis also to the
hard and soft edges of the spectrum [6, 7, 24].

The main message of the paper is that the spectrum of eigenvalues (or
Lyapunov exponents) of the evolution operator constructed as the product of
i.i.d. Ginibre matrices changes from a continuous to a discrete one depend-
ing on the ratio of the number of degrees of freedom and the propagation
time. This spectral change is a prototope of a phase transition that seems
to be generic for systems having one distinguished direction for which evo-
lution is driven by the transfer matrix composition rule. Such a situation
takes place in many physical systems. Examples include evolution opera-
tors in dynamical systems [25], quantum transport [26], sequential MIMO
systems [27], quantum maps [28], multiplex networks [29], artificial neural
networks [30], thermal field theory [31], CDT gravity [32] and others. The
occurence of such a spectral phase transition seems to be an inherent feature
of multilayered systems when they change from shallow to deep ones.

This contribution is based on a joint work with Gernot Akemann and
Mario Kieburg. I like to thank Gernot and Mario for many exciting, illumi-
nating and inspiring discussions which I have enjoyed very much. I also want
to thank Jac Verbaarschot and Maurice Duits for drawing our attention to
paper [8] and for suggesting the equivalence of the kernels.
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