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This paper discusses the stability to linearized radial perturbations of
spherically symmetric thin-shell wormholes with a “phantom-like” equation
of state for the exotic matter at the throat: P = ωσ, ω < 0, where σ is
the energy-density of the shell and P the lateral pressure. This equation
is analogous to the generalized Chaplygin-gas equation of state used by
E.F. Eiroa. The analysis, which differs from Eiroa’s in its basic approach,
is carried out for wormholes constructed from the following spacetimes:
Schwarzschild, de Sitter and anti de Sitter, Reissner–Nordström, and reg-
ular charged black-hole spacetimes, followed by black holes in dilaton and
generalized dilaton-axion gravity.

PACS numbers: 04.20.Jb, 04.20.Gz

1. Introduction

A powerful theoretical method for describing or mathematically con-
structing a class of spherically symmetric wormholes from black-hole space-
times was proposed by Visser in 1989 [1]. This type of wormhole, constructed
by the so-called cut-and-paste technique, is commonly known as a thin-shell
wormhole, since the construction calls for grafting two black-hole spacetimes
together. The junction surface is a three-dimensional thin shell. The cut-
and-paste technique is now considered standard.

While there had already been a number of forerunners, the concept of
a traversable wormhole was proposed by Morris and Thorne in 1988 [2].
Ten years later a renewed interest was sparked by the discovery that our
Universe is undergoing an accelerated expansion [3, 4]: ä > 0 in the Fried-
mann equation ä/a = −(4π)/3(ρ + 3p). (Our units are taken to be those
in which G = c = 1.) The acceleration is caused by a negative pressure
dark energy with equation of state (EoS) p = ωρ, ω < −1/3, and ρ > 0.

(2017)
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A value of ω < −1/3 is required for an accelerated expansion, while ω = −1
corresponds to a cosmological constant [5]. The case ω < −1 is referred
to as phantom energy and leads to a violation of the null energy condition,
a primary prerequisite for the existence of wormholes. Wormholes may also
be supported by a generalized Chaplygin gas [6] whose EoS is p = −A/ρα,
where A > 0 and 0 < α ≤ 1.

In a thin-shell wormhole the exotic matter is confined to the thin shell.
This suggests assigning an equation of state to the exotic matter on the shell.
Eiroa [7] used the above generalized Chaplygin EoS P = A/|σ|α, where σ
is the (negative) energy-density of the shell and P the lateral pressure, to
perform a stability analysis for linearized radial perturbations. In this paper
we will consider, analogously, the EoS P = ωσ, ω < 0, which will be called
a phantom-like equation of state. The stability analysis will be carried out
for several spacetimes: Schwarzschild, de Sitter and anti de Sitter, Reissner–
Nordström, and regular charged black hole spacetimes, as well as black holes
in dilaton and generalized dilaton-axion gravity. The phantom-like equation
of state yields explicit closed-form expressions for σ. Our approach to the
stability analysis is therefore different from Eiroa’s.

2. Thin-shell wormhole construction

Our starting point is the spherically symmetric metric [7]

ds2 = −f(r)dt2 + [f(r)]−1dr2 + h(r)
(
dθ2 + sin2 θdφ2

)
, (1)

where f(r) and h(r) are positive functions of r and h(r) is increasing.
(In Sections 3–6, h(r) = r2.) As in Ref. [8], the construction begins with
two copies of a black-hole spacetime and removing from each the four-
dimensional region

Ω± = {r ≤ a | a > rh} , (2)

where r = rh is the (outer) event horizon of the black hole. Now identify
(in the sense of topology) the time-like hypersurfaces

∂Ω± = {r = a | a > rh} .

The resulting manifold is geodesically complete and possesses two asymp-
totically flat regions connected by a throat. Next, we use the Lanczos equa-
tions [1, 7–15]

Sij = − 1
8π
([
Ki

j

]
− δij [K]

)
, (3)

where [Kij ] = K+
ij −K

−
ij and [K] is the trace of Ki

j . In terms of the surface
energy-density σ and the surface pressure P, Sij = diag(−σ,P,P). The
Lanczos equations now yield
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σ = − 1
4π

[
Kθ

θ

]
(4)

and
P =

1
8π

(
[Kτ

τ ] + [Kθ
θ]
)
. (5)

A dynamic analysis can be obtained by letting the radius r = a be
a function of time [8]. As a result,

σ = − 1
2πa

√
f(a) + ȧ2 (6)

and
P = −1

2
σ +

1
8π

2ä+ f ′(a)√
f(a) + ȧ2

. (7)

Since σ is negative on the shell, we are dealing with exotic matter. In
fact, the weak energy condition (WEC) is trivially satisfied since the radial
pressure p is zero for a thin shell. (TheWEC requires the stress-energy tensor
Tαβ to obey Tαβµαµβ ≥ 0 for all time-like vectors and, by continuity, all null
vectors.) So for the radial outgoing null vector (1, 1, 0, 0), we therefore have
Tαβµ

αµβ = ρ+ p = σ + 0 < 0.

3. Schwarzschild wormholes

For our first case, the Schwarzschild spacetime, h(r) = r2 in line ele-
ment (1), as noted earlier. Also, recall that the radius r = a is a function of
time. It is easy to check that P and σ obey the conservation equation

d

dτ

(
σa2
)

+ P d

dτ
(a2) = 0 .

(In Eqs. (6) and (7), the over dot denotes the derivative with respect to τ .)
The equation can be written in the form

dσ

da
+

2
a
(σ + P) = 0 . (8)

For a static configuration of radius a0, we have ȧ = 0 and ä = 0. More-
over, we will consider linearized fluctuations around a static solution char-
acterized by the constants a0, σ0, and P0. Given the EoS P = ωσ, Eq. (8)
can be solved by separation of variables to yield

|σ(a)| = |σ0|
(a0

a

)2(ω+1)
,
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where σ0 = σ(a0). So the solution is

σ(a) = σ0

(a0

a

)2(ω+1)
, σ0 = σ(a0) . (9)

Next, we rearrange Eq. (6) to obtain the equation of motion

ȧ2 + V (a) = 0 .

Here the potential V (a) is defined as

V (a) = f(a)− [2πaσ(a)]2 . (10)

Expanding V (a) around a0, we obtain

V (a) = V (a0)+V ′(a0)(a−a0)+ 1
2 V
′′(a0)(a−a0)2+O

[
(a−a0)3

]
. (11)

Since we are linearizing around a = a0, we require that V (a0) = 0 and
V ′(a0) = 0. The configuration is in stable equilibrium if V ′′(a0) > 0.

Now recall that for the Schwarzschild spacetime, f(r) = 1 − 2M/r. It
follows that

V (a) = 1− 2M
a
− 4π2a2σ2 = 1− 2M

a
− 4π2a2σ2

0

(a0

a

)4+4ω

from Eq. (9). From Eq. (6) with ȧ = 0,

σ0 = − 1
2πa0

√
1− 2M

a0
,

so that

V (a) = 1− 2M
a
−
(

1− 2M
a0

)
a2+4ω

0

a2+4ω
. (12)

The first requirement, V (a0) = 0, is clearly met, but not the second. (If the
exotic matter on the shell were not required to meet the extra condition in
the form of an EoS, then V ′(a0) would indeed be zero [8].) From

V ′(a0) =
2M
a2

0

−
(

1− 2M
a0

)
a2+4ω

0 (−2− 4ω)a−3−4ω
0 = 0

we obtain the condition

ω = −1
2
a0/M − 1
a0/M − 2

. (13)
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Observe that as a0 → +∞, ω → −1/2−, and as a0 → 2M+, ω → −∞.
At a0 = 3M , ω = −1. Substituting in

V ′′(a) = − 4M
a3
−
(

1− 2M
a0

)
a2+4ω

0 (2 + 4ω)(3 + 4ω)a−4−4ω

and simplifying, we obtain the intermediate result

V ′′(a0) =
2
a2

0

(
− 2
a0/M

+
1

a0/M

a0/M − 4
a0/M − 2

)
> 0 . (14)

Since the Schwarzschild black hole has an event horizon at r = 2M ,
a0/M −2 > 0, and we conclude that the inequality V ′′(a0) > 0 can only
be satisfied if

a0 < 0 .

As a result, there are no stable solutions.
To allow a comparison to some of the other cases, let us choose (arbi-

trarily) a0/M = 5, as a result of which ω = −2/3, and plot V (a) against
a/M , as shown in Fig. 1.
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-0.0005
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 0.0005
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V

a/M
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Fig. 1. The wormhole is unstable.

The more general analysis in Ref. [8] depends on the parameter β2(σ) =
∂P/∂σ, where β is usually interpreted as the speed of sound, so that 0 <
β2 ≤ 1. There are no stable solutions in this range. However, as discussed
in Ref. [8], since we are dealing with exotic matter, this assumption may
be questioned, that is, β2 may be just a convenient parameter. In that
case, some stable configurations may not be out of question. Our additional
assumption, the EoS P = ωσ on the shell, eliminates this possibility.



2022 P.K.F. Kuhfittig

4. Wormholes with a cosmological constant

4.1. Schwarzschild–de Sitter spacetimes

In the presence of a cosmological constant, f(r) = 1−(2M)/r−(1/3)Λr2.
For the de Sitter case, Λ > 0. To keep f(r) from becoming negative, we must
have ΛM2 ≤ 1/9. This condition results in two event horizons, where the
inner horizon is between 2M and 3M . (See Ref. [7] for details.) We therefore
assume that a is greater than the outer horizon. Proceeding as in Sec. 3,

V (a) = 1− 2M
a
− 1

3
Λa2 −

(
1− 2M

a0
− 1

3
Λa2

0

)(a0

a

)2+4ω
. (15)

Observe that V (a0) = 0. As before, we have to determine the condition on
ω so that V ′(a0) = 0:

ω = −1
2

1− 1/(a0/M)− (2/3)ΛM2(a0/M)2

1− 2/(a0/M)− (1/3)ΛM2(a0/M)2
. (16)

(As in the Schwarzschild case, as a0 → +∞, ω → −1/2−, and ω → −∞ as a0

approaches the outer event horizon.) Substituting in V ′′(a0) and simplifying,
we get

V ′′(a0) =
2
a2

0

−1/(a0/M) + 3ΛM2(a0/M)− (2/3)ΛM2(a0/M)2

1− 2/(a0/M)− (1/3)ΛM2(a0/M)2
> 0 . (17)

The form of V ′′(a0) forces us to consider two cases, a positive and negative
denominator.

If the denominator is positive, then

ΛM2 >
1

(a0/M)[3(a0/M)− (2/3)(a0/M)2]
. (18)

This inequality implies that a0/M < 4.5 to keep the right side positive. It is
easy to show analytically that ΛM2 > 1/9; in fact, (3, 1/9) is a minimum.
We may also plot ΛM2 against a/M , as shown in Fig. 2. So for this case,
the condition V ′′(a0) > 0 cannot be met (since we must have ΛM2 ≤ 1/9),
and we get only unstable solutions. Plotting V (a) around a0/M = 5 yields
a graph that is very similar to the graph in Fig. 1.

For the second case,

1− 2
a0/M

− 1
3
ΛM2

( a0

M

)2
< 0 (19)

in inequality (17) we obtain

ΛM2

[
3
( a0

M

)
− 2

3

( a0

M

)2
]
<

1
a0/M

. (20)
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Fig. 2. K = ΛM2 is plotted against a/M .

If a0/M > 4.5, then the left side is negative, and the condition is auto-
matically satisfied. If a0/M < 4.5, then, according to Fig. 2, ΛM2 < 1/9,
the region below the graph. So we conclude that in the second case, the
wormholes are stable.

For comparison, let us choose a0/M = 5 again and ΛM2 = 0.11 < 1/9,
resulting in ω = −1.63. The plot of V (a) against a/M is shown in Fig. 3.

V

a/M

(5, 0)

Fig. 3. The wormhole is stable.
In summary, in the Schwarzschild–de Sitter case, the thin-shell worm-

holes are stable if, and only if,

1− 2
a0/M

− 1
3
ΛM2

( a0

M

)2
< 0 .
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4.2. Schwarzschild–anti de Sitter spacetimes

To study the case Λ < 0, we return to inequality (17) and consider first
a negative denominator

1− 2
a0/M

− 1
3
ΛM2

( a0

M

)2
< 0 .

Solving for ΛM2, we obtain

ΛM2 >
3− 6/(a0/M)

(a0/M)2
.

Since a0/M > 2, we conclude that ΛM2 > 0, so that this case cannot arise.
Reversing the sense of the inequality, we have from inequality (17)

ΛM2

[
3
( a0

M

)
− 2

3

( a0

M

)2
]
>

1
a0/M

.

Then the second factor on the left must be negative, which implies that
a0/M > 4.5.

So the wormhole is stable whenever

(1) ΛM2 <
1

(a0/M)[3(a0/M)− (2/3)(a0/M)2]

and
(2) a0/M > 4.5 .

5. Reissner–Nordström wormholes

If the starting point is a Reissner–Nordström spacetime, then

f(r) = 1− 2M
r

+
Q2

r2
, (21)

whereM and Q are the mass and charge, respectively, of the black hole. For
0 < |Q| < M , this black hole has two event horizons at r = M±

√
M2 −Q2.

As usual, we require that r = a is larger than the outer horizon.
Here we have

V (a) = 1− 2M
a

+
Q2

a2
−
(

1− 2M
a0

+
Q2

a2
0

)(a0

a

)2+4ω
. (22)

Once again, V (a0) = 0. From V ′(a0) = 0 we obtain

ω = −1
2

(a0/M)2 − a0/M

(a0/M)2 − 2(a0/M) +Q2/M2
. (23)
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Substituting into V ′′(a0) and simplifying, yields the following inequality

V ′′(a0) =
2
a2

0

−a0/M − (Q2/M2)[1/(a0/M)] + 2Q2/M2

(a0/M)2 − 2(a0/M) +Q2/M2
> 0 . (24)

Since a0/M > 2, the denominator is positive. Solving for Q2/M2, leads to

|Q|
M

>
a0/M√

2(a0/M)− 1
, (25)

which exceeds unity. To meet this condition, |Q| would have to exceed M .
So to obtain a stable solution, we will have to tolerate a naked singularity

at r = 0, but since a0 > 0, the naked singularity is removed from the
wormhole spacetime.

6. Wormholes from regular charged black holes

Thin-shell wormholes from regular charged black holes, due to Ayon-
Beato and García [16], are discussed in Ref. [17]. For this black hole

f(r) = 1− 2M
r

+
2M
r

tanh
(
Q2

2Mr

)
. (26)

Again, M and Q are the mass and charge, respectively. It is shown in
Ref. [16] that the black hole has two event horizons whenever |Q| < 1.05M .
Consider next

V (a) = 1− 2M
a

+
2M
a

tanh
(
Q2

2Ma

)
−
[
1− 2M

a0
+

2M
a0

tanh
(

Q2

2Ma0

)](a0

a

)2+4ω
. (27)

As before, V (a0) = 0, and from V ′(a0) = 0, we get

ω =
1
2

[
−1 +

g(a0)
a0/M − 2 + 2 tanh [Q2/(2Ma0)]

]
, (28)

where

g(a0) = −1 + tanh
(

Q2

2Ma0

)
+
Q2/M2

2a0/M
sech2

(
Q2

2Ma0

)
.

Based on the graphical output, we get only unstable solutions. For ex-
ample, choosing a0/M = 5 again for comparison and letting |Q|/M = 0.9,
we get ω = −0.63. The resulting graph, shown in Fig. 4, resembles Fig. 1.
Other choices of the parameters lead to similar results.
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Fig. 4. The wormhole is unstable.

7. Wormholes from black holes in dilaton
and dilaton-axion gravity

Of the remaining thin-shell wormholes, based on dilaton and dilaton-
axion black holes, respectively, we will consider in detail only the latter,
which is the more complicated of the two.

The dilaton-axion black-hole solution, inspired by low-energy string the-
ory, was discovered by Sur, et al., [18] and is also discussed in Ref. [19].
We need to list certain parameters in order to define V (a). As in the
Reissner–Nordström wormhole, there are two event horizons, denoted by
r− and r+, respectively. Returning now to line element (1), we can list both
f(r) and h(r) [18]

f(r) =
(r − r−)(r − r+)

(r − r0)2−2n(r + r0)2n
,

h(r) =
(r + r0)2n

(r − r0)2n−2
.

Since h(r) is no longer equal to r2 in line element (1), Eq. (6) becomes

σ = − 1
4π

h′(a)
h(a)

√
f(a) + ȧ2 (29)

and the conservation equation (8) has to be replaced by [7]

d

dτ
(σA) + P dA

dτ
=
{

[h′(a)]2 − 2h(a)h′′(a)
} ȧ√f(a) + ȧ2

2h(a)
, (30)

where A = 4πh(a) is the area of the throat by Eq. (1). The prime and dot
denote, respectively, the derivatives with respect to a and τ . Substituting
Eq. (29) on the right-hand side, we get
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d

dτ
[4πh(a)σ] + P d

dτ
[4πh(a)] = −

{
[h′(a)]2 − 2h(a)h′′(a)

} ȧ(4πσ)
2h′(a)

,

whence

d

da
[σh(a)] + P d

da
[h(a)] = −

{
[h′(a)]2 − 2h(a)h′′(a)

} σ

2h′(a)
.

Our final form is

h(a)σ′ + h′(a)(σ + P) +
{

[h′(a)]2 − 2h(a)h′′(a)
} σ

2h′(a)
. (31)

Making use of P = ωσ, this equation can be solved by separation of variables

σ(a) = σ0

[
h(a0)
h(a)

]3/2+ω [h′(a0)
h′(a)

]−1

. (32)

(Here we used the fact that h′(a) > 0.) It is shown in Ref. [17] that

σ0 = −4 [a0 + (1− 2n)r0] (a0 − r−)(a0 − r+)
D(a0 − r0)(a0 + r0)

, (33)

where
D = 8π(a0 − r0)1−n(a0 + r0)n

√
(a0 − r−)(a0 − r+) . (34)

Using the equation of motion ȧ2+V (a) = 0 once again, we get from Eq. (29),

V (a) = f(a)−
[
4π

h(a)
h′(a)

σ(a)
]2

. (35)

Eq. (32) now yields

V (a) =
(a− r−)(a− r+)

(a− r0)2−2n(a+ r0)2n
−
[
4π

h(a)
h′(a0)

σ0

]2 [h(a0)
h′(a)

]3+2ω

. (36)

While it is easy enough to check that V (a0) = 0, it is no longer convenient
to compute ω as a function of the various parameters. Plotting V (a) against
a instead of a/M , we can determine ω by trial and error: V (a) must be tan-
gent to the a-axis at a = a0, where V (a0) = 0 automatically. For example,
if a0 = 5, r0 = 1, r− = 2, r+ = 2.05, and n = 0.8, then ω = −0.915. If
a0 = 5, r0 = 1, r− = 2, r+ = 3, and n = 0.8, then ω = −1.132. Reducing n
to 0.6 produces ω = −0.84 in the first case and ω = −1.041 in the second.
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In all cases the graphs are concave down at a0 = 5 and look similar to the
graph in Fig. 1. Based on the graphical output, there do not appear to be
any stable solutions.

For the dilaton case we have [20]

V (a) =
(

1−A
a

)(
1−B

a

)(1−b2)/(1+b2)

−
[
4π

h(a)
h′(a)

σ0

]2 [h(a0)
h(a)

]3+2ω

, (37)

where h(a) = a2(1 − B/a)2b2/(1+b2) for various constants. Once again, one
can readily check that V (a0) = 0.

As in the dilaton-axion case, ω can be found by trial and error. For
example, if a0 = 5, b = 0.5, A = 2, and B = 1, then ω = −0.693; if a0 = 6,
b = 0.8, A = 4, and B = 2, then ω = −0.94, etc. The resulting graphs are
similar to those in the dilaton-axion case.

8. Conclusion

This paper discusses the stability to linearized radial perturbations of
spherically symmetric thin-shell wormholes with the equation of state P =
ωσ, ω < 0, for the exotic matter at the throat. This EoS is referred to as
phantom-like. Various spacetimes were considered.

It was found that the wormholes are unstable if constructed from Schwarz-
schild spacetimes, as well as from black holes in dilaton and dilaton-axion
gravity. For the Reissner–Nordström case, stable solutions exist only if

|Q|
M

>
a0/M√

2(a0/M)− 1
,

leading to a naked singularity. For the Schwarzschild–de Sitter case, the
wormholes are stable if, and only if

1− 2
a0/M

− 1
3
ΛM2

( a0

M

)2
< 0 .

In the Schwarzschild–anti de Sitter case, the configurations are stable when-
ever

(1) ΛM2 <
1

(a0/M)[3(a0/M)− (2/3)(a0/M)2]

and
(2) a0/M > 4.5 .
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