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We discuss firstly possible experimental probes for the strong di-neutron
correlations in halo nuclei 6He and 11Li. We then secondly study a nucleus
beyond the drip line 26O through the direct two-neutron decay. The excites
2+ state of 26O is also discussed. We use consistently a three-body model
to this end, taking into account the coupling to the continuum. Calcu-
lated results are compared with the recent experimental data from RIBF
(Radioactive Ion Beam Factory) in RIKEN.
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1. Introduction

One of the most important issues in many-body physics is to clarify the
nature of correlations beyond the independent particle picture. In nuclear
physics, the pairing correlation has been well-recognized as a typical many-
body correlation which leads to the phase of superfluidity characterized by
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phenomena such as the even–odd staggering of binding energy, the moment
of inertia of rotating deformed nuclei and the difference of the excitation
energy spectra between even–even and odd–even nuclei [1–3].

With the pairing correlation, one may naively expect that two nucleons
forming a pair are located at a similar position inside a nucleus. A spatial
structure of two valence neutrons has, in fact, attracted much attention in
the past. One of the oldest publications on this problem is by Bertsch,
Broglia, and Riedel, who solved a shell model for 210Pb and showed that
the two valence neutrons are strongly clusterized [4]. Subsequently, Migdal
argued that two neutrons may be bound in a nucleus even though they are
not bound in the vacuum [5].

The strong localization of two neutrons inside a nucleus has been referred
to as the di-neutron correlation. It has been nicely demonstrated in Ref. [6]
that an admixture of configurations of single-particle orbits with opposite
parity is essential to create the strong di-neutron correlation. This implies
that the pairing correlation acting only on single-particle orbits with the
same parity may not be sufficient in order to develop the di-neutron corre-
lation, and the pairing model space needs to be taken sufficiently large so
that both positive parity and negative parity states are included.

Although the di-neutron correlation exists even in stable nuclei, it is,
therefore, more enhanced in weakly bound nuclei because the admixtures of
single-particle orbits with different parities are easier due to the couplings
to the continuum spectra [7, 8]. Three-body model calculations have re-
vealed that a strong di-neutron correlation indeed exists in weakly-bound
Borromean nuclei, such as 11Li and 6He [9–14]. For instance, Fig. 1 shows
the two-particle density for the 11Li and 6He nuclei obtained with the three-
body model calculation with a density-dependent contact pairing interac-
tion [12]. One can see that the densities are concentrated in the region with

 0  1  2  3  4  5  6  7  8  9  10
r  (fm)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

e 1
2 

 (d
eg

)

 0
 0.005
 0.01
 0.015
 0.02
 0.025
 0.03
 0.035
 0.04

 0  1  2  3  4  5  6  7  8  9  10
r  (fm)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

e 1
2 

 (d
eg

)

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07

Fig. 1. The two-particle densities for 11Li (the left panel) and for 6He (the right
panel) obtained with a three-body model calculation with a density-dependent
contact pairing interaction [12]. These are plotted as a function of neutron–core
distance, r1 = r2 ≡ r, and the opening angle between the valence neutrons, θ12.
The densities are weighted with a factor 8π2r4 sin θ12.
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small opening angles, that is nothing but the di-neutron correlation. It has
been shown that the di-neutron correlation exists also in heavier neutron-
rich nuclei [15, 16] as well as in infinite neutron matter [17]. The di-proton
correlation, which is a counter part of the di-neutron correlation, has also
been shown to exist in the proton-rich Borromean nucleus, 17Ne [18].

From these studies, the di-neutron correlation seems to have been theo-
retically established. However, it is not straightforward to probe it experi-
mentally. In this contribution, we discuss how one can probe the di-neutron
correlation. To be more specific, we shall discuss the Coulomb breakup, and
the two-nucleon radioactivity as prominent probes for the correlation.

2. Electric dipole strength of Borromean nuclei
and di-neutron correlations

Let us first discuss the Coulomb breakup reactions of Borromean nu-
clei, 11Li and 6He, for which the experimental data have been available in
Refs. [19,20]. Those experimental breakup cross sections, especially those for
the 11Li nucleus, show a strong concentration in the low excitation region,
reflecting the halo structure of these nuclei. Moreover, the experimental data
for 11Li are consistent only with the theoretical calculation which takes into
account the interaction between the valence neutrons, strongly suggesting
the existence of the di-neutron correlation in this nucleus (see also Ref. [21]).

For the Coulomb breakup of Borromean nuclei, one can go one step
further, given that the Coulomb breakup process takes place predominantly
by the dipole excitation. The Coulomb breakup cross sections with the
absorption of dipole photons are given by

dσγ
dEγ

=
16π3

9~c
Nγ(Eγ)

dB(E1)

dEγ
, (1)

where Nγ is the number of virtual photons, and

dB(E1)

dEγ
=

1

2Ii + 1
|〈ψf ||D||ψi〉|2 δ (Ef − Ei − Eγ) (2)

is the reduced E1 transition probability. In this equation, ψi and ψf are the
wave functions for the initial and the final states, respectively, Ii is the spin
of the initial state, and Dµ is the operator for the E1 transition. For the
Borromean nuclei, assuming a three-body structure with an inert core, the
E1 operator Dµ reads [22],

D̂µ =
eE1
2

(
r1Y1µ

(
~̂r1

)
+ r2Y1µ

(
~̂r2

))
, (3)
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where the E1 effective charge is given by

eE1 =
2Zc

Ac + 2
e , (4)

with Ac and Zc being the mass and charge numbers for the core nucleus.
The dipole transition of di-neutrons is entirely the recoil effect of protons in
the core and the center-of-mass motion is exactly removed from the dipole
operator (3). Experimental data of the transition probabilities (2) are shown
in Fig. 2 with results calculated by a three-body model in Ref. [21]. We can
see clearly a strong enhancement of B(E1) strength just above the threshold
energy due to the di-neutron correlations.

Fig. 2. (Color online) The elctric dipole transitions in 11Li and 6He observed by
the Coulomb breakup reactions. The data are taken from Ref. [19] for 11Li and
from Ref. [20] for 6He, respectively.

Using Eq. (2) and the closure relation for the final state, it is easy to
derive that the total E1 strength (that is, the non-energy weighted sum rule)
is proportional to the expectation value of R2 with respect to the ground
state, that is,

B(E1) =

∫
dEγ

dB(E1)

dEγ
=
∑
f

1

2Ii + 1
|〈ψf ||D||ψi〉|2 =

3

4π
e2E1

〈
~R2
〉
, (5)

where
~R =

~r1 + ~r2
2

(6)

is the center-of-mass coordinate for the two valence neutrons. Even though
the B(E1) strength distribution inevitably reflects both the correlation in
the ground state and that in the final state, it is remarkable that one can
extract the information which reflects solely the ground state properties after
summing all the strength distribution. This implies that the average value
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of the opening angle between the valence neutrons can be directly extracted
from the measured total B(E1) value once the root-mean-square distance
between the valence neutrons, 〈r2nn〉, is available (see Fig. 3).

Fig. 3. The geometry of a 2n halo nucleus consisting of a core nucleus and two
valence neutrons.

This quantity is related to the matter radius and 〈R2〉 in the three-body
model [9, 21,23]〈

r2m
〉

=
Ac

A

〈
r2m
〉
Ac

+
2Ac

A2

〈
R2
〉

+
1

2A

〈
r2nn
〉
, (7)

where A = Ac + 2 is the mass number of the whole nucleus. The matter
radii 〈r2m〉 can be estimated from interaction cross sections. Employing the
Glauber theory in the optical limit, Tanihata et al. have obtained

√
〈r2m〉 =

1.57±0.04, 2.48±0.03, 2.32±0.02, and 3.12±0.16 fm for 4He, 6He, 9Li, and
11Li, respectively [24,25]. Using these values, we obtain the r.m.s. neutron–
neutron distance of

√
〈r2nn〉 = 3.75 ± 0.93 and 5.50 ± 2.24 fm for 6He and

11Li, respectively. Combining these values with the r.m.s. core–di-neutron
distance,

√
〈R2〉, we obtain the mean opening angle

〈θnn〉 = 2 tan−1
(√
〈r2nn〉/2

√
〈R2〉

)
(8)

to be 51.56+11.2
−12.4 and 56.2+17.8

−21.3 degrees for 6He and 11Li, respectively [26].
These values are comparable to the result of the three-body model calcu-
lation, 〈θnn〉 = 66.33 and 65.29 degree for 6He and 11Li, respectively [12],
although the experimental values are somewhat smaller.

An alternative way to extract the value for
√
〈r2nn〉 which uses the three-

body correlation study in the dissociation of two neutrons in halo nuclei
has been proposed [27]. The two-neutron correlation function provides the



216 H. Sagawa, K. Hagino

experimental values for
√
〈r2nn〉 to be 5.9 ± 1.2 and 6.6 ± 1.5 fm for 6He,

11Li, respectively [27]. Bertulani and Hussein used these values to estimate
the mean opening angles and obtained 〈θnn〉 = 83+20

−10 and 66+22
−18 degrees for

6He and 11Li, respectively [28]. After correcting the effect of Pauli forbidden
transitions using the method presented in Ref. [21], these values are slightly
altered to be 〈θnn〉 = 74.5+11.2

−13.1 and 65.2+11.4
−13.0 degrees for 6He and 11Li,

respectively [26]. Notice that these values are in better agreement with the
results of the three-body calculation [12], especially for the 6He nucleus.

In the absence of the correlations, the mean opening angle is exactly
〈θnn〉 = 90 degrees. The extracted values of 〈θnn〉 are significantly smaller
than this value both for 11Li and 6He, providing a direct proof of the ex-
istence of the di-neutron correlation in these nuclei. A small drawback is
that this method provides only the average value of 〈θnn〉 and a detailed
distribution is inaccessible. In reality, the mean opening angle is most prob-
ably an average of a smaller and a larger correlation angles in the density
distribution, as has been shown in Fig. 1.

3. Two-neutron decays of nuclei beyond the drip lines

3.1. The ground state of 26O

In the Coulomb breakup process discussed in Sec. 2, the ground state
wave function of a two-neutron halo nucleus is firstly perturbed by the ex-
ternal electromagnetic field of the target nucleus. It may thus not be easy to
disentangle the di-neutron correlation in the ground state from that in the
excited states. The two-proton radioactivity, that is, a spontaneous emission
of two valence protons, of proton-rich nuclei [29] is expected to provide a
good tool to probe the di-proton correlation in the initial wave function. An
attractive feature of this phenomenon is that the two valence protons are
emitted directly from the ground state even without any external perturba-
tion.

Very recently, the ground state two-neutron emissions have also been
observed, e.g. in 10He [30–34], 16Be [35], 13Li [32,36], and 26O [37–40]. This
is an analogous process of the two-proton radioactivity, corresponding to
a penetration of two neutrons over a centrifugal barrier. Since the long
range Coulomb interaction is absent, one may hope that the ground state
correlation can be better probed by studying the energy and the angular
correlations of the emitted neutrons, as compared to the two-proton decays.

Figure 4 shows the calculated decay energy spectrum of 26O obtained
with the 24O+n+n three-body model for 26O [44]. The calculations are car-
ried out using the Green’s function method as explained in Refs. [8,22,41,42],
together with a density-dependent contact neutron–neutron interaction, v.
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In this formalism, the decay energy spectrum is given by

dP

dE
=
∑
k

|〈Ψk|Φref〉|2 δ(E − Ek) =
1

π
=〈Φref |G(E)|Φref〉 , (9)

where Ψk is a solution of the three-body model Hamiltonian with energy Ek
and Φref is the wave function for a reference state. The reference state can
be taken rather arbitrarily as long as it has an appreciable overlap with the
resonance states of interest. Here, we employ the uncorrelated two-neutron
state in 27F for it with the |[1d3/2 ⊗ 1d3/2]

(I=0)〉 configuration, which is the
dominant configuration in the initial state of the proton knockout reaction
of 27F to produce 26O. In Eq. (9), G is the correlated two-particle Green’s
function calculated as

G(E) = (1 +G0(E)v)−1G0(E) = G0(E)−G0(E)v(1 +G0(E)v)−1G0(E) ,
(10)

with the uncorrelated Green’s function, G0, given by

G0(E) = lim
η→0

∫
1,2

∑ |j1j2〉〈j1j2|
ε1 + ε2 − E − iη

, (11)

where η is an infinitesimal number and the sum includes all independent two-
particle states including both the bound and the continuum single-particle
states. In Eq. (10), v is the two-body interaction between two neutrons. To
calculate the single-particle energies, we use the Woods–Saxon potential for
the neutron-24O potential which reproduces the experimental single-particle
energies of ε2s1/2 = −4.09(13) MeV and ε1d3/2 = 749(10) keV for 25O [39].
The parameters for the density-dependent zero-range pairing interaction are
determined so as to yield the decay energy of 18 keV.

In the figure, we show the spectrum for the uncorrelated case by the
dotted line. In this case, the spectrum has a peak at E = 1.498 MeV, that
is twice the single-particle resonance energy, 0.749 MeV. With the pairing
interaction between the valence neutrons, the peak energy is shifted towards
lower energies. The decay spectrum obtained by including only the [d3/2]

2

configurations is shown by the dashed line. In this case, the peak is shifted
by 0.55 MeV from the unperturbed peak at 1.498 MeV. The peak is further
shifted downwards by the di-neutron correlations due to configuration mix-
ing, and gets closer to the threshold energy. This comparison implies that
the pairing correlation for the single configuration is not enough to repro-
duce the empirical decay spectrum, and the di-neutron correlations between
the two neutrons also play an essential role.
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Fig. 4. The decay energy spectrum for the two-neutron emission decay of 26O,
obtained with the 24O+n+n three-body model. For the presentation purpose, a
width of 0.1 MeV has been introduced to the spectrum. The dotted line is for the
uncorrelated spectrum, while the solid line shows the correlated spectrum for the
0+ state. The dashed line shows the spectrum obtained by including the pairing
correlation only for the [d3/2]2 configuration. The experimental data are taken
from Ref. [39].

3.2. The first excited state

Let us next discuss the first 2+ state in 26O. One of the most important
findings in the recent experiment reported in Ref. [39] is a finding of a clear
second peak at E = 1.28+0.11

−0.08 MeV, which is likely attributed to the 2+

state. In Refs. [42,44], we have investigated the 2+ state in the 26O nucleus
using the three-body model. That is, the energy spectrum for this state
can be obtained with the Green’s function approach, by using a 2+ state
for the reference state, Φref , as well as in the unperturbed Green’s function,
Eq. (11) [42]. Due to the pairing interaction between the valence neutrons,
the energy of the 2+ state is slightly shifted towards lower energies from
the unperturbed energy, whereas the energy shift is much larger for the
0+ state due to the larger overlap between the wave functions of the two
neutrons. The 2+ peak appears at 1.282 MeV, which agrees perfectly with
the experimental data [44].

While we achieve an excellent agreement with the experimental data for
the energy of the 2+ state, it is striking to notice that most of theoretical cal-
culations performed so far overestimate the energy. For instance, an ab initio
calculation with chiral NN and 3N interactions predicts E2+ to be 1.6 MeV
above the ground state [45]. Shell model calculations with the USDA and
USDB interactions [46] yield E2+ to be 1.9 and 2.1 MeV, respectively [45],
whereas the continuum shell model calculations predict the excitation energy
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of 1.8 MeV [47] and 1.66 MeV [48]. The recent three-body model calculation
by Grigorenko and Zhukov shows the energy to be 1.6 MeV [49]. We sum-
marize these results in Table I together with the energy of the 3/2+ state
in 25O for each calculation. It is not clear what causes these overestimates
of the 2+ energy, but the 2+ state should certainly appear at an energy
slightly lower than the unperturbed state, as long as the three-body struc-
ture is reasonable. In this sense, the ab initio calculation with chiral NN
and 3N interactions shows the opposite trend, and the shell model calcu-
lations, except for the continuum shell model calculations of Refs. [47, 48],
seem to overestimate the correlation (unfortunately, we cannot judge this for
the recent three-body model calculation of Grigorenko and Zhukov, because
they do not discuss the energy of the 25O nucleus and also because the exact
form of the spin-orbit form which they employ is not clear).

TABLE I

Comparison of the energies of the 3/2+ state of 25O and the 2+ state of 26O
obtained with several methods. These values, given in units of MeV, are measured
from the thresholds.

Method 25O (3/2+) 26O (2+) Reference

Shell model (USDA) 1.301 1.9 [45]
Shell model (USDB) 1.303 2.1 [45]
Chiral NN + 3N 0.742 1.64 [45]
Continuum shell model 1.002 1.8 [47]
Continuum-coupled shell model 0.86 1.66 [48]
3-body model — 1.6 [49]
3-body model 0.749 (input) 1.282 this work

Experiment 0.749 (10) 1.28+0.11
−0.08 [39]

3.3. The angular distributions of emitted neutrons

The angular distribution of the emitted neutrons can also be calculated
with the two-particle Green’s function method [22, 41, 44]. The amplitude
for emitting two neutrons with spin components of s1 and s2, and momenta
~k1 and ~k2 reads [41]

fs1s2

(
~k1,~k2

)
=
∑
j,l

e−ilπei(δ1+δ2)Mj,l,k1,k2

〈[
Yjl
(
~̂k1

)
Yjl
(
~̂k2

)](00)∣∣∣χs1χs2〉 ,

(12)
where Yjlm is the spin-spherical harmonics, χs is the spin wave function,
and δ is the nuclear phase shift. Here, M is a decay amplitude calculated to
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a specific two-particle final state [22]

Mj,l,k1,k2 = 〈(jj)(00)|1−vG0+vG0vG0−· · · |Ψi〉 = 〈(jj)(00)|(1+vG0)
−1|Ψi〉 ,

(13)
where the unperturbed Green’s function, G0, is evaluated at E = e1 + e2.
The angular distribution is then obtained as

P (θ12) = 4π
∑
s1,s2

∫
dk1dk2

∣∣∣fs1s2 (k1, ~̂k1 = 0, k2, ~̂k2 = θ12

)∣∣∣2 , (14)

where we have set z-axis to be parallel to ~k1 and evaluated the angular
distribution as a function of the opening angle, θ12, of the two emitted
neutrons.

Figure 5 shows the so obtained angular correlation. The dot-dashed line
shows the distribution obtained without including the nn interaction, which
is symmetric around θ12 = π/2. In the presence of the nn interaction, the
angular distribution turns to be highly asymmetric and the emission of two
neutrons in the opposite direction (that is, θ12 = π) is enhanced, as is shown
by the solid line. Grigorenko et al. [50] have also obtained a similar result.

Fig. 5. The angular correlation for the two emitted neutrons from the ground state
decay of 26O. The probability distribution for the opening angle of the momentum
vectors of the emitted neutrons is shown. The solid and the dot-dashed lines denote
the correlated and uncorrelated results, respectively.

This behavior reflects properties of the resonance wave function of 26O.
That is, because of the continuum couplings, several configurations with
opposite parity states mix coherently. Symbolically, let us write a two-
particle wave function as

Ψ
(
~r, ~r ′

)
= αΨee

(
~r, ~r ′

)
+ β Ψoo

(
~r, ~r ′

)
, (15)
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where Ψee and Ψoo are two-particle wave functions with even and odd angular
momentum states, respectively. The coefficients α and β are such that the
interference term in the two-particle density, α∗βΨ∗eeΨoo +c.c., is positive for
~r ′ = ~r, while it is negative for ~r ′ = −~r so that the two-particle density is
enhanced for the nearside configuration with ~r ∼ ~r ′ as compared to the far
side configuration with ~r ∼ −~r ′. This correlation appears in the opposite
way in the momentum space. In the Fourier transform of Ψ(~r, ~r ′),

Ψ̃
(
~k,~k ′

)
=

∫
d~rd~r ′ ei

~k·~rei
~k′·~r ′ Ψ

(
~r, ~r ′

)
, (16)

there is a factor il in the multipole decomposition of ei~k·~r. Since
(
il
)2 is +1

for even values of l and −1 for odd values of l, this leads to [8, 41]

Ψ̃
(
~k,~k′

)
= α Ψ̃ee

(
~k,~k′

)
− β Ψ̃oo

(
~k,~k′

)
(17)

for the two particle wave function given by Eq. (15). If one constructs a
two-particle density in the momentum space with this wave function, the
interference term acts, therefore, in the opposite way to that in the coor-
dinate space. That is, the two-particle density in the momentum space is
hindered for ~k ∼ ~k′, while it is enhanced for ~k ∼ −~k′. This feature can be
also understood by the argument of Heisenberg uncertainty principle, i.e.,
a strong correlation in the coordinate space (a small value of ∆r = |~r ′ = ~r |)
corresponds to a back-to-back correlation in the momentum space (a large
value of ∆p = ~∆k = ~|~k′ = ~k|). From this argument, we can, therefore,
conclude that, if an enhancement in the region of θ ∼ π in the angular dis-
tribution was observed experimentally, that would make a clear evidence for
the di-neutron correlation in this nucleus, although such measurement will
be experimentally challenging [51].

Incidentally, the tunneling decay of two fermionic ultracold atoms has
been measured very recently [52] (see also Ref. [53] for an application of
the Gamow shell model to this phenomenon). An attractive feature of this
experiment is that several parameters are experimentally controllable, which
include the sign and the strength of the interaction between the particles and
the shape of a decaying potential. It may be useful to carry out in future
detailed analyses of the tunneling decay of ultracold atoms in order to shed
light on the two-proton and two-neutron decay problems in nuclear physics.
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4. Summary

We have discussed possible experimental probes for the di-neutron corre-
lation in neutron-rich nuclei, with which two valence nucleons are located at
a similar position in the coordinate space. In particular, we have discussed
the Coulomb dissociation of Borromean nuclei, and the direct two-neutron
decay of the unbound 26O nucleus.

For the Coulomb dissociation of Borromean nuclei, even though the de-
tailed distribution is difficult to extract, one can use the cluster sum rule
(that is, the non-energy weighted sum rule) to deduce the mean value of
the opening angle between the valence neutrons. We have demonstrated
that the mean opening angle is 〈θnn〉 = 74.5+11.2

−13.1 and 65.2+11.4
−13.0 degrees for

6He and 11Li, respectively. These values are significantly smaller than the
value for the uncorrelated distribution, that is, 〈θnn〉 = 90 degrees, clearly
indicating the existence of the di-neutron correlation in these Borromean
nuclei.

For the direct two-neutron decay, we have discussed the recent exper-
imental data of the decay energy spectrum for the unbound 26O nucleus.
We have shown that the decay energy spectrum can be accounted for only
with the di-neutron correlation due to the mixing of many configurations
including the continuum. We have also discussed the angular correlations of
the emitted two neutrons. We have argued that the di-neutron correlation
enhances an emission of the two neutrons in the opposite direction (that is,
the back-to-back emission) and, indeed, our three-body model calculation
has revealed such feature. If the enhancement of the back-to-back emission
will be observed experimentally, it will thus provide a direct evidence for the
di-neutron correlation.

Even though we did not discuss them in this paper, there are other pos-
sible probes for the di-neutron correlation. Those include the two-neutron
transfer reactions, the nuclear breakup reaction [54], the (p, d) scattering
at backward angles [55, 56], and the knockout reactions of Borromean nu-
clei [57–60]. It would be extremely intriguing if the clear and direct evidence
for the di-neutron correlation could be experimentally obtained in near fu-
ture using also these probes.
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