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Phylogeny is the field of modelling the temporal discrete dynamics of
speciation. Complex models can nowadays be studied using the Approxi-
mate Bayesian Computation approach which avoids likelihood calculations.
The field’s progression is hampered by the lack of robust software to es-
timate the numerous parameters of the speciation process. In this work,
we present an R package, pcmabc, publicly available on CRAN, based on
Approximate Bayesian Computations, that implements three novel phylo-
genetic algorithms for trait-dependent speciation modelling. Our phyloge-
netic comparative methodology takes into account both the simulated traits
and phylogeny, attempting to estimate the parameters of the processes gen-
erating the phenotype and the trait. The user is not restricted to a prede-
fined set of models and can specify a variety of evolutionary and branch-
ing models. We illustrate the software with a simulation-reestimation
study focused around the branching Ornstein–Uhlenbeck process, where the
branching rate depends non-linearly on the value of the driving Ornstein–
Uhlenbeck process. Included in this work is a tutorial on how to use the
software.

DOI:10.5506/APhysPolBSupp.12.25

1. Introduction

The relationship between genotypes and phenotypes originates from a
very complex spatial and temporal, non-linear dynamical system. Due to
the quick and microscopic dynamics, parts of the developmental process are
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usually hidden from direct observation. Data on adult animals are rarely
collected in a continuous manner. The characteristics of a phenotype de-
pend on both genetic and environmental factors so the genetically identical
individuals could have a different phenotype expressively due to the subtle
dependency on environmental (exposomes) factors.

Phylogenetics occupies an extremely important position in the Modern
Synthesis and it is central to most areas of biology. It bridges population
genetics [1], genomics and cancer research [2]. Furthermore, there is hope
that it may assist in discovering relationships between complex diseases [3].

In the last decade, the area of phylogenetics has been tremendously ex-
posed to novel statistical and computational models previously adopted only
in theoretical studies. Bayesian methodologies are now at the core of phy-
logenetic comparative methods (PCM — the study of phenotypic data on
the between-species level, the trait measurements are dependent through the
species’ common evolutionary history) and are used to evaluate macroevo-
lutionary hypotheses of phenotypic evolution under distinct evolutionary
processes in a phylogenetic context.

In particular, Approximate Bayesian Computation (ABC) is a power-
ful methodology to estimate the posterior distributions of model parame-
ters without evaluating the (usually computationally very costly) likelihood
function [4, 5]. That property has widened the domains of application of
Bayesian models (see e.g. [6] for recent developments of ABC approaches for
evolutionary biology) and has offered interesting challenges in parameters’
estimation tasks. This leads to an interesting consideration: biology, in par-
ticular DNA sequence analysis, has been central for the development of the
ABC methodology [7], in return, biology represents a rich application do-
main for Bayesian analysis which could probably inspire further theoretical
developments.

Another key factor for these new Bayesian theoretical frameworks has
been the statistical computing language R [8] that is central to a community
of scientists who have developed a wide range of tools and functions for phy-
logenetic comparative analyses. The development of software tools (see, for
instance, https://cran.r-project.org/web/views/Phylogenetics.html)
has grown in parallel with the perception of how the use of newly developed
tools would facilitate the understanding of statistical and biological con-
cepts, produce successful instances of phylogenetic inference and bridge the
gap between mathematicians and biologists. Therefore, the large existing
variety of tools reflects and accommodates the current rich interdisciplinary
and multidisciplinary field of phylogenetic studies. To a beginner, phyloge-
netics as a field, represents the intersection of interesting questions, great
data and powerful tools.

https://cran.r-project.org/web/views/Phylogenetics.html
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With the above considerations in mind, here we would like to address
trait-dependent speciation models by means of phylogeny-based evolutionary
dynamics. The vastity and complexity of the research theme is attacked by
means of a general, although focused, tool based on powerful ABC approach.
The beginner is accurately guided by a tutorial and a description of the
package. The R code found in the tutorial is available from the authors on
request.

The paper has the following structure. In the next section, 2, we in-
troduce the pcmabc R package and the algorithms for simulation of traits
and trees. In particular, in Section 2, we describe three novel phylogenetic
algorithms required by the ABC inference procedure. Then, in Section 3,
we describe a simulation study to evaluate whether the ABC inference pack-
age can capture any signal on the trait-dependent speciation process, based
only on the contemporary sample and phylogeny. The tutorial in Section 4 is
self-contained although it uses the same Ornstein–Uhlenbeck (OU) process
as in Section 3. We end the paper with Section 5 which summarizes the
possibilities of the software, its limitations and possible directions of future
development. Although we leave to the reader the choice of the order, we are
delighted to report that the tool is not only serving the scope of studying by
simulations the theory on evolution of traits or rapid prototyping the imple-
mentation of new hypotheses. It embeds a large generality towards a class of
problems at the core of today’s theoretical advancements in phylogenetics.
Therefore, we aim in the future at collecting and presenting in a website the
parameters and the biological results obtained using this methodology and
software.

To facilitate reading, we have adopted the following fonts for the com-
puter code. Programming language names are written in typewriter font
(e.g. R), R package names are written in bold (e.g. pcmabc) and inline code
is written in italicized typewriter font (e.g. x<-1 ).

The package is publicly available on CRAN and can be downloaded from
https://cran.r-project.org/web/packages/pcmabc/

2. The pcmabc R package

2.1. The ABC algorithm

Obtaining the exact likelihood for a phylogenetic comparative sample is
possible only in special cases. This is essentially only for normal models
[13, 14] or discrete state Markov chains [15, 16]. Hence, for these types of
models, a pleiphora of estimation packages are available (e.g. [11, 17–23]).
However, beyond these types of models, development has yet to take off
(however, see [24–28]).

https://cran.r-project.org/web/packages/pcmabc/
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The issue at heart is that the likelihood cannot be obtained exactly.
Hence, alternative methods need to be employed, numerically solving an
ODE system [29–31] or ABC (e.g. [32–34] and see a review in [35]).

The pcmabc package implements an ABC algorithm that allows for
estimation of parameters of an arbitrary Markov model of trait-dependent
speciation (see also Figs. 1 and 2). Let Θ denote the set of model parameters
(known ones and those to be estimated) and d(·, ·) the distance between two
phylogenetic comparative data sets (tip data and phylogeny). The general
structure of the ABC algorithm in the PCM context is also described in
[35]. The parameter point estimate is the inverse distance weighted average.
We take the inverse distance to take into account how close the simulated
sample resembles the original under the given parameter set.

Fig. 1. On the left: a branching OU process simulated on a realization of a tree
with n = 5 tips using the TreeSim [9, 10] and mvSLOUCH [11] R packages.
Parameters used are: α = 1, σ = 1, X0 − θ = 2, after the tree height was scaled
to height 1. On the right: the species tree disregarding the trait values supplied
with the notation for the inter-speciation times. Reprinted by permission of the
Applied Probability Trust. First published in J. Appl. Probab. 52(4). Copyright
c©Applied Probability Trust 2015.

The ABC inference algorithm is invoked as

PCM_ABC( phyl t ree , phenotypedata , par0 , phenotype .model
, f b i r t h , fdeath , X0 , step , abcsteps , eps ,

fupdate , typepr in tp rog r e s s , t r e e . f i xed , d i s t_method )

The first three parameters are “standard” ones, phyltree is the phylogeny in
ape’s [36] phylo format, phenotypedata is a matrix of trait measurements
(rows are the different tips) and par0 are the initial starting parameters. As
described in Section 2.3, the ABC algorithm’s distance function treats the
phylogeny and trait data separately, hence there is no need for the order of
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Fig. 2. Examples of phylogenies (top row) and trait trajectories (second row) gener-
ated by trait-dependent speciation models. The phenotype follows an OU process,
dXt = −3(Xt − ψ)dt + 0.25dBt and the birth rate is 10 × | sin(Xt)|. The choice
of the birth rate is for illustrative and not biological purposes, i.e. we want speci-
ation dynamics to visibly follow trait dynamics. It is important for the reader to
remember that the phylogenies and traits are simulated jointly and not that the
trait is simulated conditional on the tree, as is the case with most PCM simula-
tions. Columns from left to right: (X0 = 0.25, ψ = 0.25), (X0 = 0.25, ψ = 1.25),
(X0 = 1.25, ψ = 0.25), (X0 = 1.25, ψ = 1.25). The simulations were done by
the presented here pcmabc package. The trajectories are plotted using the func-
tion pcmabc::draw_phylproc() , but without the axes, these have to be manually
added by the user. Note that the vertical axis of the trait trajectories are not
to scale. The height of all trees is 1. The stationary mean (solid) and ancestral
(dashed) values are marked with gray lines. If there is only one line, it is because
they are equal.

rows to correspond to the tips’ order. The initial parameters object, par0 ,
is a list of named lists. The first list corresponds to the parameters of the
phenotypic evolution process, the second to the speciation dynamics, and
the third to the extinction dynamics. Inside each list, the user can indi-
cate which parameters are to be optimized over, which treated as fixed and
which are to be positive. If the user would like some further modifications or
transformations of the parametrization that is optimized over, they will need
to provide their own simulation, birth–death and parameter update func-
tions. The next parameter, phenotype.model , is a user-provided function
that models the evolution of the phenotype (see Section 2.2), fbirth and
fdeath are user-provided birth and death rate functions (see Section 2.2),
X0 is the root state, step is the step size of the simulation (see Section 2.2),
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abcsteps is the number of parameter draws of the ABC algorithm, eps is
the acceptance threshold for the parameters (see Alg. 1), fupdate is the
parameter update function (see Section 2.4), typeprintprogress is a pa-
rameter that indicates what sort of summary should be printed out by the
inference algorithm during its progress. The user is free to provide their
own function here. Then, the parameter tree.fixed is a logical variable if
the phylogeny’s branching dynamics depend on the phenotype or not (see
Alg. 1), and lastly, dist_method is a vector of two entries indicating the dis-
tance measure between the trait data and phylogenetic trees, respectively
(see Section 2.3).

Algorithm 1 pcmabc ABC algorithm, PCM_ABC()
1: input: A phylogenetic tree T (n) with n tips and phenotypic observations

for each tip
2: output: Point estimates of parameters with posterior distribution
3: Set Θ1 := Θinitial, P := ∅, R = ∅, invtotaldist:= 0, j = 1
4: for i = 1 to abcsteps do
5: accept=FALSE
6: if tree fixed then
7: Simulate phenotypic data on tree according to Alg. 2 .

Section 2.2, simulate_phenotype_on_tree()
8: else
9: Simulate phenotypic data and tree according to Alg. 3 .

Section 2.2, simulate_phylproc()
10: end if
11: ρ := d(simulated data,observed data) . Section 2.3
12: if ρ < ε then
13: P[j] := Θi, R[j] = ρ
14: accept=TRUE
15: invtotaldist := invtotaldist+1/ρ
16: j ++
17: end if
18: Θi+1 :=ParameterProposal(Θi,accept) . Section 2.4
19: end for
20:

Θ̂ :=

∑
j

P[j]/R[j]

 /invtotaldist

21: return (Θ̂,P,R)
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2.2. Simulating the phylogeny and trait(s)

At the core of an ABC method is the ability to simulate data under the
model given parameter proposals. In our situation, we have two possibilities
to consider. Firstly, the tree is assumed fixed, i.e. the trait value does not
affect the branching dynamics (Alg. 2) and, secondly, the branching rates
depend on the phenotype (Alg. 3).

Algorithm 2 Trait simulation algorithm, simulate_phenotype_on_tree()
1: input: A phylogenetic tree T (n) with n tips, a Markovian model of trait

evolution and trait value at root, x0
2: output: Simulated values of the trait along the whole tree
3: procedure simulate_on_tree(tree, simulation_model, x0)
4: XT (n) := list()
5: for daughter branch i of root of tree do
6: Xi := simulate trajectory on ith branch
7: XT (n) [i] := join(Xi,simulate_on_tree(subtree from ith

daughter node, simulation_model, Xi[end]))
8: end for
9: return joined entries of XT (n)

10: end procedure
11: return simulate_on_tree( T (n), simulation_model, x0)

The first situation is a standard one and we just mention it for complete-
ness’ sake. At the root, one starts at the initial value (user provided). Then,
along the branch, of length t, one simulates the phenotype according to the
provided simulation procedure (conditional on the candidate parameters).

The user provides their own simulation function defined as

f_user_t r a i t_s imul<−function (time , params ,X0 , step )

where time is the duration of the simulation, params is a named list of
model parameters that are interpreted inside the simulation function, X0 is
the initial trait value and step is the simulation’s step size. The output of
the function is to be the trajectory of the trait starting from X0 for time
time with values at points i·step . The output object is a matrix. In the
first row, there are the time instances (starting from 0, in steps of size step ,
correction for the actual time from the root is done later by the package),
and in the next rows, the trait values at the time instances. It is important
to point out that the trait can be of any dimension.
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Algorithm 3 Trait and tree simulation algorithm, simulate_phylproc()
1: input: Tree height, number of tips, a Markovian model of trait evolution

and trait value at root, x0
2: output: Tree and simulated values of the trait along the whole tree
3: procedure simulate_on_tree(height, simulation_model, x0)
4: X(t) := simulate trait trajectory on lineage with length height
5: Calculate the birth rate λ(t) as a function of X(t)
6: Calculate the death rate µ(t) as a function of X(t)
7: Λ = maxλ(t)
8: Decompose λ(t) = Λpλ(t)
9: Simulate a Poisson process for time height and rate Λ
10: Accept events from the Poisson process with probability pλ(t) .

these will be branching events
11: M = maxµ(t)
12: Decompose µ(t) =Mpµ(t)
13: Simulate a Poisson process for time height and rateM
14: Accept events from the Poisson process with probability pµ(t) .

these will be extinction events
15: Check if a death event is along the lineage. If so, remove all branching

events following it.
16: for each accepted branching event i do
17: Ti :=simulate_on_tree(height decreased by time of node i,

simulation_model, trait value at node i)
18: end for
19: return joined Ti and X(t)
20: end procedure
21: return simulate_on_tree(Tree height, simulation_model, x0)

Special support is provided for trait simulation by the yuima package
[37], through the simulate_sde_on_branch() function. The call is

s imulate_sde_on_branch ( branch . length , model . yuima , X0 ,
step )

where model.yuima replaces params and defines the stochastic differential
equation that should be used to model the trait. The model.yuima pa-
rameter is the output of the function yuima::setModel() . Details how to
construct it can be found in yuima::setModel() ’s manual pages and also
in simulate_sde_on_branch() ’s manual page there is an example how to
set it.
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After simulating along the branch, a speciation event occurs. Indepen-
dent evolution is then repeated as above along all the daughter lineages.
The starting condition for these is the value at the parental node. More
concisely, we describe this in Alg. 2. Algorithm 2 is invoked by calling

s imulate_phenotype_on_t r e e ( phy l t ree , fs imulphenotype ,
s imul . params , X0 , step )

phyltree is the phylogeny, X0 the root state, step the step size. The func-
tion to simulate the phenotype is passed through fsimulphenotype and the
named list of parameters passed to it through simul.params . To simulate
the phenotype through the simulate_sde_on_branch() function, one sets
fsimulphenotype="sde.yuima" .

The second situation is more involved. Branching dynamics are trait-
dependent so a straightforward simulation, by time steps of some size, would
be very computationally heavy. Hence, we employ a variation of the rejec-
tion sampling algorithm for the Inhomogeneous Poisson process (Proposition
p. 32, [38]). Inside Alg. 3, we did not write how one uses the number of tips.
This is a very technical detail in the implementation. The simulation will
terminate if it reaches the maximum number of tips (contemporary or also
including extinct, the user decides which to provide). However, there is no
guarantee that a tree with this number of tips will actually be simulated.
If there are death events, then the process may die out before the value is
reached. Alternatively, too few birth events get simulated and, again, the
desired number is not reached.

The simulation function is more involved, then in the case of simulation
on a fixed tree,

s imulate_phylproc ( t r e e . he ight , s imul . params , X0 ,
f b i r th , fdeath , f b i r t h . params , fdeath . params ,
fs imulphenotype , n . contemporary , n . t i p s . t o ta l , step )

Some parameters are self-explanatory, tree.height is the height of the
tree, X0 the root state, step the simulations step size, n.contemporary the
number of contemporary tips, n.tips.total total number of tips, includ-
ing extinct ones. As before, fsimulphenotype is the function to simulate
the trait but if it equals "sde.yuima" , then simulate_sde_on_branch() is
invoked. Parameters of trait simulation function are passed as a named list
in simul.params .

The user additionally provides the birth and death rates (the latter can
be passed as NULL meaning that it is a pure-birth process) as functions.
The birth rate function is provided through the fbirth parameter and
the death function through the fdeath parameter. The parameters of the
two rate functions are passed through the named lists fbirth.params and
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fdeath.params . Both can be NULL . It is up to the user to make sure that
the functions return positive values. Some rate functions are provided in-
side the package, namely rate_const (constant rate, with a possibility to
switch to a different value if the first trait variable exceeds some value) and
rate_id (equals the value of the first trait or linear transformation of it, see
manual for options).

The first parameter of the birth and death function has to be the trait
vector. The user should remember that the first entry of the trait vector is
time (counted from the start of the lineage, i.e. from the speciation event
where the lineage appeared). Hence, some sort of time heterogeneity is
possible. The second parameter is the named list of rate function parameters.
Both rate functions should return a single non–negative real number.

It is worth pointing out that the package has also basic graphic capa-
bilities. The function draw_phylproc() takes the output of the function
simulate_phylproc() and draws the trajectory of the trait (as can be seen
in Fig. 2). If one wants the tree (in phylo format), then one can access it
through the field tree of simulate_phylproc() output. It is good to know
that the tree has a couple of extra fields with respect to the usual fields of
the phylo format tree. In particular, it has the field tree.height which
stores the height of the tree (time from origin to contemporary tips) and
node.heights which stores the time from each node to the origin of the
tree.

2.3. The summary statistics and distance measure

A key element of an ABC algorithm is the choice of the summary statistic
for the simulated/observed sample and the distance function between the
observed and simulated statistics. In our situation, the sample consists of
two components — the phylogeny and observed trait values.

The pcmabc package offers various possibilities in this respect. We
describe the ones that through numerical experiments seemed to work best.
It turned out that looking at the sample mean and variance of the trait
values was the best option. Statistics based on tips’ means and variances
have already been considered in the PCM setting [32–34]. However, the
situation is different in the previous two cases.

In [34], terminal lineages corresponding to higher taxonomic levels is
considered. Each such tip contains a number of species for which phylo-
genetic relationships might not be resolved. Then, the differences between
the means and variances of the trait measurements from species inside each
higher order tip are taken. Earlier, in a similar spirit, just the variances
inside clades were compared [32]. Similarly, in [33], the mean and variance
of the difference between tip measurements are calculated.
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Our situation is different as we do not consider a fixed tree but a random
one, so we will not have a correspondence between the tips. On the other
hand, even with a fixed tree, there are multiple possible symmetries, from
the perspective of the trait process, in the tip labellings. Take, for example,
the simplest case of a cherry (i.e. two tips stemming from a single ances-
tral node). Then, as trait evolution is independent following speciation,
one cannot distinguish between the two tips, unless there is some additional
information, like branch specific parameters. Without such, taking the dif-
ference between tips by the original labels might not be the optimal choice.

The distance between trees is actually more involved. It seems that the
weighted and normalized Robinson–Foulds metric [39, 40] implemented in
the phangorn [41] package as wRF.dist() with normalize=TRUE seemed to
work the most effectively in our experiments. These are the default distance
functions. However, it should be pointed out that the simulation-based
tests were performed using OU models of trait evolution. These are normal
processes and hence all information is stored in the mean and variance.
Should the trait evolve as a non-normal process other distance measures
could be more appropriate.

2.4. Proposing parameters

The standard ABC algorithm draws parameter proposals from the prior
distribution (see the ABC steps description in [35]). In our situation, due
to the complexity of the sample, this would have resulted in nearly all pa-
rameter proposals being rejected. Hence, we employed a hybrid proposal
algorithm that attempts to explore in detail the parameter space around
“good” proposals.

If the previous parameter set was rejected, the inference algorithm sam-
ples each parameter uniformly from the interval [−10, 10]. Such a restriction
was chosen not to have extreme parameter values. If this restriction is prob-
lematic, a user may provide their own proposal function as described below.
If the previous parameter set was accepted, then each new parameter is the
previous parameter modified by a mean-zero normal deviation (with user
specified standard deviation). As a result, we cannot say that we obtain
a sample from the posterior distribution as a usual ABC algorithm would
result in. Nevertheless, this method seems to result in decent parameter
estimates as presented in Section 3. The user is allowed to specify which
parameters are to be positive (transformation by taking the exponential).

However, the user is also free to specify their own parameter update
function. The function has to handle the call

f_user_update (par , par0 , baccept , ABCdist , phenotypedata ,
phy l t r e e )
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where par is the list (as described in Section 2.1) of parameters from the
previous step, par0 are the initial parameters provided to PCM_ABC() (see
Section 2.1), baccept is a logical variable indicating if the par parameters
were accepted (TRUE ) or not (FALSE ), ABCdist is the distance between the
observed and simulated (under par ) data, phenotypedata is the original
data matrix of trait measurements and phyltree is the original phylogenetic
tree.

In particular, this means that it is possible to change the inference to
a usual ABC algorithm with independent proposals from the prior. The
user-defined function just samples from the prior ignoring all information on
the previously considered parameter set.

3. Proof of concept simulation study

We performed a simple simulation study to evaluate whether the ABC
inference package can capture any signal on the trait-dependent speciation
process, based only on the contemporary sample and phylogeny. This is
not a trivial question, as it is not clear what exactly is estimable in such a
setup. The trait and branching dynamics interact with each other with many
potential masking effects (see Fig. 3 for example plots on how to present the
tree’s dynamics). In the PCM context, such masking effects occur in even
simpler setups (e.g. [42]). Hence, we aim at a proof of concept study to
evaluate the potential usefulness of the inference algorithm.

We simulate a univariate trait that follows an OU process, defined as

dXt = −α(Xt − ψ)dt+ σdBt,

s imulate_OU_sde<−function (time , params ,X0 , step ) {
A <− c (paste ( "(−" , params$a11 , " )∗( x1−(" , params$psi1

, " ) ) " , sep="" ) )
S <− matrix ( params$s11 , 1 ,1)
yuima . 1 d <− yuima : : setModel ( d r i f t = A, d i f f u s i o n =

S , s t a t e . variable=c ( "x1" ) , solve . variable=c ( "x1
" ) )

s imulate_sde_on_branch (time , yuima . 1 d ,X0 , step )
}

with parameters

t rue_sde . params<−l i s t ( a11=1, s11=1, p s i 1 =0, p o s i t i v e v a r s
=c (TRUE,TRUE,FALSE) , abcstepsd=rep ( 0 . 5 , 3 ) )

The reader can also see how one indicates positive parameters positivevars
and the standard deviation for the Gaussian update of proposed parameters
abcstepsd . We assume a pure birth process, with speciation rate function
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Fig. 3. Lineage through time and skyline plots corresponding to the phyloge-
netic trees of Fig. 2. In the first row, we provide the lineage through time plots,
ape::ltt.plot() , and in the second row, the skyline plots, ape::skyline() with
epsilon=-log(0.95)/3 . The choice of epsilon is motivated by how quickly an-
cestral effects are lost. The parameter epsilon controls the temporal structure in
the population data [1]. From our perspective, we can think of it as controlling
how long the coalescent rate will be approximately constant. The expectation of
the OU process after time t equals e−3tX0 + (1− e−3t)θ. Hence, we may ask how
much time is needed to pass for the expectation of the trait to lose a “significant”
amount of the ancestral value. If by a “significant” amount of loss we take losing
5% of the ancestral value, then we obtain the time to lose this as − log(0.95)/3

(cf. with phylogenetic half-life [12]).

f b i r t h_r a t e_cons t ra ined<−function (x , params , . . . ) {
x<−x [ 2 ]
params$scale/(1+exp(−x ) )

}

with parameters

t rue_b i r th . params<−l i s t ( scale=5, abcstepsd =0.5 ,
p o s i t i v e v a r s=c (TRUE,TRUE) , f i x e d=c (FALSE) )

We chose the OU model for the phenotype because it is the current gold
standard in PCMs for modelling adaptive evolution. Its dynamics are very
well-understood — after an initial “burn-in period”, the trait will stabilize
around its stationary distribution. Furthermore, for a constant rate birth–
death, the process “memory effects” have been intensively studied (e.g. [43–
45]). Hence, in our setup, we should expect the birth rate to oscillate in
a controlled manner, after each lineage reaches its stationary distribution.
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However, as the scale=5 parameter is significantly greater than α = 1,
we are in the fast branching (or slow adaptation) regime. This induces
strong correlations (through remembered ancestral effects) between evolving
lineages, making estimation more difficult and in a way introducing less
straightforward process dynamics.

The speciation rate takes values between (0,scale ). With negative trait
values, it decreases to 0, with positive, increases up to scale . As the trait
follows an OU process with stationary mean 0, it will oscillate around 0.
Hence, the birth rate should oscillate around scale /2. The main question
of interest is if the inference procedure will be able to identify the value of
scale and also of the OU process’s parameters. The reader can also see how
one indicates parameters which are not to be optimized over. The logical
values in the field fixed tell this to the inference procedure. If it were TRUE ,
then scale would never be changed from its initial value.

We follow a simple procedure of simulating data under the model and
then calling PCM_ABC() to recover parameters given the simulated phylogeny
and contemporary trait measurements. We take abcsteps=1000 , number of
tips of the phylogeny 200, simulation step size 0.001, the distance between
phylogenies is taken as the Robinson–Foulds metric and the distance between
the traits compares the sample mean and variances. We take eps=0.2 as
the parameter acceptance cut-off when comparing the summary statistics.
Furthermore, we used the default setting that the inference algorithm sam-
ples each new parameter proposal after rejection, uniformly from the interval
[−10, 10]. This however is on the scale used in estimation, so if a parameter
is assumed positive (α, σ, scale ), then [−10, 10] are bounds on the log scale.
On the real scale, these translate to [e−10, e10]. Furthermore, we bounded
the scale parameter (on its actual scale) by 10, i.e. scale∈ [e−10, 10].

For the fixed tree simulation part, we did not use pcmabc’s functional-
ity. This was to avoid any potential bias and see how pcmabc can recover
parameters from a completely independent of its code simulation. We sim-
ulated the phylogeny using the TreeSim package

phy l t r e e<−TreeSim : : sim . bd . taxa (numbsim=1,n=200 , lambda
=1,mu=0) [ [ 1 ] ]

and then the OU-evolving traits using the mvSLOUCH package

OUOUparameters<−l i s t (vY0=matrix ( 0 , 1 , 1 ) ,A=matrix ( 1 , 1 , 1 )
,mPsi=matrix ( 0 , 1 , 1 ) , Syy=matrix ( 1 , 1 , 1 ) )

OUOUdata<−mvSLOUCH: : simulOUCHProcPhylTree ( phy l t ree ,
OUOUparameters )
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We perform 190 repeats of the simulate and recover parameters proce-
dure. We recover parameters for the situation where the tree is assumed
fixed (here only OU parameters can be recovered) and where the tree is
assumed to be non-fixed (we can also recover scale ). We present the sum-
mary of the results of the simulation study in Table I, and in Figs. 4, 5 the
histograms of the estimated values.

TABLE I

Mean and variance of parameter estimates for 190 repeats of the simulate and re-
estimate procedure. It is important to notice that for the fixed tree case, 36 of the
repeats resulted in an error (and no estimate), while for the non-fixed tree case, 53.
The sample’s standard deviation is abbreviated as sd. We also present estimates of
the composite parameter vy = σ2/(2α), the stationary variance of the OU process.

Fixed tree Non-fixed tree
Parameter True value Mean sd Mean sd

α 1 2.354 1.999 1.9738 1.585
σ 1 1.33 0.627 1.473 0.887
vy 0.5 0.523 0.269 0.831 1.085
ψ 0 0.010 0.313 −0.803 4.261

scale 5 — — 6.331 5.374
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Fig. 4. Histograms of the parameter estimates in the fixed tree case, top left: α,
top right: σ, bottom left: ψ, bottom right: vy. The solid gray line is the true value,
the dashed is the mean of the estimates.
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Fig. 5. Histograms of the parameter estimates in the fixed tree case, top left: α,
top center: σ, top right: vy, bottom left: ψ, bottom right: scale . The solid gray
line is the true value, the dashed is the mean of the estimates.

All simulations were done in R version 3.4.2 running on an openSUSE
42.3 (x86_64) box. A major handicap of the study were the long running
times. About two weeks were required to obtain 20 repeats of the simulation-
estimation procedure (with 1000 parameter proposals).

The results of the simulation-estimation are, on the one hand, not sur-
prising. The parameters α, σ are not easy to estimate, as was indicated in
[46]. The parameters ψ, vy (OU’s stationary mean and variance) are much
easier to estimate, as they should be close to the sample average and variance
respectively (when the tree is fixed, e.g. [45]).

On the other hand, what is optimistic in the fixed tree case, is that
these parameter estimates are close to the true ones. Previous studies were
performed for likelihood-based inference methods. Our ABC approach does
not use the likelihood and, hence, is at a serious disadvantage. Furthermore,
only 1000 ABC steps are done (including the rejected proposals), due to run-
ning times. Despite this, the estimated parameter values are in a reasonable
range.

When one looks at the more interesting situation, where the tree is not
taken to be fixed, one can also be optimistic. The key parameter, scale
seems estimated not too far away from its true value. Furthermore, a slight
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improvement in the value of α is visible. The marked deterioration of the ψ
parameter is surprising and warrants a more in-depth analysis. One possible
direction of further development is to develop (as the interface allows this)
hybrid ways of parameter proposals. For example, for ψ and vy, the sample
mean and variance values could be used more directly.

4. pcmabc: an R tutorial

One first needs to install the package from e.g. by
in s ta l l . packages ( "pcmabc" )
and begins working with it by loading it
l ibrary ( pcmabc )
Then, one needs to read-in the trait observations and tree. As this is project
specific, we will rather simulate it using pcmabc’s capabilities. We first de-
fine the trait simulation function (for the same OU process as we considered
in Section 3)
s imulate_OU_sde<−function (time , params ,X0 , step ) {

A <− c (paste ( "(−" , params$a11 , " )∗( x1−(" , params$psi1
, " ) ) " , sep="" ) )

S <− matrix ( params$s11 , 1 ,1)
yuima . 1 d <− yuima : : setModel ( d r i f t = A, d i f f u s i o n =

S , s t a t e . variable=c ( "x1" ) , solve . variable=c ( "x1
" ) )

s imulate_sde_on_branch (time , yuima . 1 d ,X0 , step )
}
and then the birth rate function (again the same as in Section 3)
f b i r t h_r a t e_cons t ra ined<−function (x , params , . . . ) {

x<−x [ 2 ]
params$scale/(1+exp(−x ) )

}
It is important to have the ... (i.e. the three dots following params in the
above code snippet) in the function’s interface. This is because when called
in the package, other parameters can be passed to it for generality, even
though the user’s implementation will not require them. Having defined the
functions, we define the parameters under which we want to simulate
t rue_sde . params<−l i s t ( a11=1, s11=1, p s i 1=0)
t rue_b i r th . params<−l i s t ( scale=5)
numtips<−200
t r e e_he ight<−max(15 , log ( numtips ) )
step<−0 .001



42 K. Bartoszek, P. Liò

If we had assumed a non-zero extinction rate, then its definition and param-
eters would be handled in exactly the same way. With all of this, we can
simulate our trait-dependent speciation process

s imres<−s imulate_phylproc ( t r e e_height , s imul . params=
true_sde . params ,X0=X0 , f b i r t h=f b i r t h_r a t e_
const ra ined , fdeath=NULL, f b i r t h . params=true_b i r th .
params , fdeath . params=NULL, fs imulphenotype=s imulate_
OU_sde , n . contemporary=numtips , n . t i p s . t o t a l =100∗
numtips , step=step )

It is worth commenting on three function parameters here, tree_height ,
n.contemporary and num.tips.total . The package first simulates the
backbone lineage of length equal to tree_height . Then, it will start to
simulate lineages coming out of the backbone lineage. The simulation needs
a stopping condition, it will either be that all birth events have taken place
or n.contemporary tips (tips at height tree_height ) are generated, or
num.tips.total are generated. The latter is for the situation when extinc-
tion is present. The value of num.tips.total will be the total number of
tips, contemporary and extinct. Here, it is just given for illustrative pur-
poses. The value of step is the simulation step size. After simulation, if
one wants to plot the trait trajectory over the tree, one may use

draw_phylproc ( s imres )

The figure is a bare drawing of the trait’s evolution on the tree. Any plot
components like axes have to be added manually by the user. The tree can
also be plotted, using e.g. ape’s plotting capabilities

plot ( s imres$ t ree , show . t i p . l a b e l=FALSE, root . edge=TRUE)

In order to estimate parameters, we need a phylogenetic tree and a matrix
with tip measurements. The phylogeny has to be in the phylo format. We
can recover them from the simulated object as

phy l t r e e<−s imres$ t r e e
phenotypedata<−get_phy logene t i c_sample ( s imres )

The package provides the functionality to recover the tip measurements using
an inbuilt function get_phylogenetic_sample() . We are now ready to
perform the ABC inference, using some random starting parameters and
choosing the distance calculation methods
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sde . params<−l i s t ( a11=5∗runif (1 ) , s11=5∗runif (1 ) , p s i 1 =0,
p o s i t i v e v a r s=c (TRUE,TRUE,FALSE) , abcstepsd=rep
( 0 . 1 , 3 ) )

b i r th . params<−l i s t ( scale=4+5∗runif (1 ) ,maxval=10,
abcstepsd =0.5 , p o s i t i v e v a r s=c (TRUE,TRUE) , f i x ed=c (
FALSE,TRUE) )

par0<−l i s t ( phenotype .model . params=sde . params , b i r th .
params=b i r th . params )

X0<−c (0 )
t r e e_d i s t<−"wRFnorm. d i s t "
data_d i s t<−"variancemean"
eps<−0 .2
abcs teps<−1000
step<−0 .001
ABCres<−PCM_ABC( phy l t r e e=phyl t ree , phenotypedata=

phenotypedata , par0=par0 , phenotype .model=simulate_OU
_sde , f b i r t h=fb i r th , fdeath=NULL,X0=X0 , step=step ,
abcs teps=abcsteps , eps=eps , t r e e . f i x ed=FALSE, d i s t_
method=c (data_d i s t , t r e e_d i s t ) ) }

If we wanted to assume a fixed tree (i.e. the phenotype does not affect
speciation), we would set tree.fixed=FALSE and e.g. tree.dist<-NA .

Afterwards (for the above setup, it takes a bit under one day in R 3.4.2 for
openSUSE 42.3 (x86_64) on a 3.50GHz processor), we need to extract the
estimated parameters. The field ABCres$param.estimate is a list with two
lists (one if tree.fixed=FALSE or three if extinction present). The first list
phenotype.model.params contains the point estimates of the trait evolu-
tion’s process’s parameters and the second list birth.params the point esti-
mates of the speciation rate’s parameters. If extinction is present, a third list
death.params with the point estimates of the extinction rate’s parameters
will be present. The point estimates are calculated as described in Alg. 1 as
a weighted, by the inverse distances, average of the accepted parameter val-
ues. The field ABCres$all.accepted contains all the accepted parameters,
including the distance from the observed data, field distance.from.data
for each accepted parameter set and also the inverse of the distance, field
inv.distance.from.data . In the output object of PCM_ABC , there are also
two further fields: sum.dists.from.data the sum of the distances from the
observed data for all accepted parameters and sum.inv.dists.from.data
the sum of the inverses of these distances.
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5. Conclusions

5.1. The possibilities of the software

The pcmabc package is designed for maximum flexibility from the user’s
perspective. It will be easiest to provide the full call of the function and
discuss the more involved components. This we did in the short tutorial in
Section 4.

One could say that some of the parameters are extremely technical and
maybe should be hidden from the user. However, as a lot concerning the
probabilistic/statistical properties of these models is not clear at this stage,
the user should have the possibility to experiment. Such experimentation
should lead to better understanding of the underlying properties of the sys-
tem. In turn, this will allow us to know what is the best choice of these
parameters (and to make them the default ones).

The package is extremely flexible and hence should be attractive for var-
ious types of studies. Coupled with a model selection procedure, it will
allow for comparing different models of evolution and hence, asking ques-
tions about the system under study. The basic question one will want to ask
is whether the speciation dynamics depend on the trait under study or not.
For this, one can try a constant birth–death rate function, time-dependent
(but trait-independent) speciation dynamics and trait-dependent speciation
dynamics. Treating time as a “trait”, one may study if the speciation dy-
namics increase, decrease with time or maybe exhibit some sort of periodic
behaviour. Similarly with trait-dependent dynamics — are the speciation
rates monotonic w.r.t. the trait, is there a carrying capacity, periodicity or
maybe some more complicated dynamics.

5.2. Some limitations

The one main feature that is lacking in the package at the moment is the
possibility to implement punctuated equilibrium models (e.g. [47, 48]), i.e.
jumps at speciation points, or more generally, including direct feedback from
the speciation dynamics into the trait dynamics. This is as for computational
efficiency, we first simulate the whole lineage and only afterwards, through
the rejection sampling algorithm, simulate the points of speciation on this
lineage. Hence, if the speciation event is meant to have an effect on the
already simulated lineage (e.g. through a jump), the already simulated trait
data following the speciation point becomes invalid. And this, in turn, could
invalidate the thinning from the rejection sampling algorithm and hence, the
simulated speciation event. Therefore, to include such models, a different
simulation algorithm has to be developed.



Modelling Trait-dependent Speciation with ABC 45

Having written the above caveat, our approach is still extremely general
and it is important to point out that it allows for another, biologically very
relevant, type of speciation driven evolution. Namely, the simulation algo-
rithm has an inbuilt concept of a “spine” (or in other words main) lineage.
Speciation driven dynamics, like jumps at speciation points, can take place
at the start of new lineages. This is consistent with the idea that a new
lineage (species) broke off because of some dramatic event, sudden jump in
the trait.

Even though this is not directly evident from the user interface, the
package can easily handle time-heterogeneous models. What one passes to
the simulation functions is the trait value at the start of the branch or
the trait value at the potential branching event time. Then the simulation
procedure evolves taking (from the package’s perspective) 0 as the starting
time of the branch. However, one can have time (from the root) as one of
the elements of the trait vector and then this can be used appropriately in
the definition of the transition simulation procedures and birth–death rate
functions. Therefore, one can immediately recognize that one can include
other dummy “control” traits, e.g. environments, (geological) epochs, etc.
All that needs to be remembered is that all user-defined functions have to
appropriately treat these dimensions. Furthermore, the package allows for
defining fixed (i.e. not estimated) trait and speciation dynamics parameters,
providing immense flexibility.

5.3. Directions of development

Despite the generality of the package, there is a lot of space for further
development both in theoretical and implementation directions. A more in-
volved and detailed study is required to know what are the optimal inference
settings, what distance measures should be used. For specific models, one
should ask what parameters are estimable.

From the perspective of the implementation, speciation-dependent trait
evolution is missing. For effectiveness’ sake, full lineages are simulated and
only then are speciation events marked on them. This implies that on the
“main” lineage-dependent speciation-dependent trait evolution cannot take
place. Hence, new simulation algorithms have to be developed that will not
discard everything after the first time the branching influences the pheno-
type.
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