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The goal of this work is to construct a simplified model of the core-halo
structures in binary systems, such as Thorne–Żytkov objects, hot Jupiters,
protoplanets with large moons, red supergiants in binaries and globular
clusters with central black hole. A generalized planar circular restricted
three-body problem is investigated with one of the point masses, M , re-
placed with a spherical body of finite size. The mechanical system under
consideration includes two large masses m and M , and a test body with
small mass µ. Mass µ, initially, is placed at the geometric center of massM ,
and shares its orbital motion. Only gravitational interactions are considered
and the extended mass M is assumed to be rigid with rotational degrees
of freedom neglected. Equations of motion are presented, and linear insta-
bility criteria are derived using quantifier elimination. The motion of the
test mass µ is shown to be unstable due to the resonance between orbital
and internal frequencies. In the framework of model, the central mass µ
can be ejected if resonance conditions are met during the evolution of the
system. The above result is important for core-collapse supernova theory,
with mass µ identified with the helium core of the exploding massive star.
The instability cause off-center supernova “ignition” relative to the center of
mass of the hydrogen envelope. The instability is also inevitable during the
protoplanet growth, with hypothetical ejection of the rocky core from gas
giants and formation of the “puffy planets” due to resonance with orbital
frequency. Hypothetical central intermediate black holes of the globular
clusters are also in unstable position with respect to perturbations caused
by the Galaxy. As an amusing example, we note that the Earth–Moon or
the Earth–Sun systems are stable in the above sense, with the test body µ
being a hypothetical black hole created in the high-energy physics experi-
ment.
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1. Introduction
Traditional classical mechanics approaches to astrophysical binaries usu-

ally assume that mechanical system can be described in terms of point
masses. However, in many important situations, this assumption is not
valid, e.g., the motion of a spacecraft in the gravitational field of a non-
spherical asteroid [1] requires a more general description [2]. In astrophysics,
we frequently deal with core-halo objects which possess spherical symmetry,
however their total mass is unevenly divided into nearly point-like central
object and extensive low-density envelope. For example, all red-giants are
composed of small, high-density helium core of mass ∼ 4–5 M�, surrounded
by a low-density envelope whose mass varies by orders of magnitude from
few solar masses up to ∼ 100 M� [3].

Gaseous giant planets (“Jupiters”) are composed of a rocky core and an
extended envelope. Inside icy moons (e.g. Europa, Enceladus) and exoplan-
ets (“blue ocean” super-earths, see [4]), we also find a rocky core, this time
“floating” in the surrounding liquid ocean [5, 6]. Therefore, in some situa-
tions, aforementioned bodies should be treated as two-component structures.

Globular cluster (GC) with central intermediate-mass black hole (IMBH,
see [7–13]) is another very important case of the core-halo object. Since
non-gravitational effects are essentially negligible in GC–IMBH system, it
provides a perfect testbed for our model.

There are also more exotic examples: the Thorne–Żytkow object [14]
composed of a central neutron star or black hole and a normal star [15–17],
non-standard Solar model with black hole inside [18, 19], or a tiny black hole
created on Earth in a high-energy experiment [20–22].

We are interested in the situation where the core-halo system is a part
of an orbiting gravitationally bound system. For red giants, it would be a
binary companion star. For planets: moons, and vice versa. For globular
clusters, it is the host Galaxy. In all above examples, binary interaction
effects, e.g., tidal interactions, are known to be non-negligible. In extreme
cases, mass transfer or a total disruption of one component is possible. Are
there other types of instability, resonant in particular? We try to answer
this question in the framework of mechanical model.

An original motivation for the model to be described below is the sug-
gestion of [23] that in the core-collapse supernovae, the iron core might be
displaced with respect to the geometric symmetry center of the extended
and usually much more massive hydrogen envelope. Arnett and Meakin [23]
proposed hydrodynamical L = 1 instabilities during Si burning as a main
cause of the displacement. They wrote: If there were a driving mechanism
for core-mantle oscillation, here would be an asymmetry due to the displace-
ment of the core and mantle relative to the center of mass. Here, we propose
another mechanism: gravitational instability in the binary core-halo sys-
tem.



Generalized Three-body Problem and the Instability of the Core-halo . . . 2557

The point mass in the center of an extended object starts oscillating
when it is perturbed (displaced) from the central position. Is this position
stable with respect to perturbations caused by the third body orbiting out-
side? If we could tune internal and orbital frequencies simultaneously pro-
viding unlimited supply of energy in the form of driving force, the answer
is yes. However, we are dealing with an energy-conserving system. Many
years of struggle to answer very similar questions in the classic three-body
problem [24] suggest caution, and rigorous mathematical approach.

The article is organized as follows. In Sect. 2, we present details of
the model describing core-halo system in binary. The standard framework
based on restricted planar circular three-body problem is presented in Sub-
sect. 2.1, together with linear stability analysis for the uniform density ball.
In Subsect. 2.2, we solve numerically the full system and confirm the linear
instability criterion in the non-linear regime. In Subsect. 2.3, much more
general model with non-planar motion and a third body of finite mass µ
is provided. Potential astrophysical applications of the instability are dis-
cussed in Sect. 3: massive pre-supernova stars (Subsect. 3.1), (exo)planets
and moons (Subsect. 3.2) and globular clusters with IMBH (Subsect. 3.3).
Finally, the importance of the proposed mechanism of instability, limita-
tions of mechanical model, and the chances for observational verification
and directions of future research are summarized in concluding Sect. 4.

2. Derivation and numerical verification of the instability criteria

2.1. Restricted planar circular three-body problem approach

To handle dynamics of a core-halo object in a binary system, we propose
the following model. Mechanical system of interest (cf. Fig. 1) includes two
masses m and M orbiting the center of mass on circular orbits. The mass
m (first body) is a point mass. The mass M (second body) is an extended
spherical rigid body with known density ρ(r). Rotational degrees of freedom
for mass M are neglected. Third body is a test body, so its mass is assumed
to be negligible (see Subsect. 2.3 for more general model with this assumption
relaxed). In this subsection only, in order to simplify formulae, and facilitate
derivation of linear instability criteria, we further assume that density ρ(r)
inside massM is constant. Additionally, mass m is assumed to orbit outside
radius R of mass M . This allows us to use classic restricted planar circular
three-body problem formulae. The distance between the center of mass M
and m is equal to d, and d ≥ R. The third test body is initially in the
center of mass M , where also coordinate origin is placed. In the co-rotating
Cartesian system (x, y) (cf. Fig. 1), equations of motion for the third body,
restricted to orbital plane, are
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Fig. 1. Co-rotating coordinate system used to derive (1).

ẍ− 2ω ẏ + k x+
Gm (x− d)

[(x− d)2 + y2]3/2
+
Gm

d2
= 0 , (1a)

ÿ + 2ω ẋ+ k y +
Gmy

[(x− d)2 + y2]3/2
= 0 , (1b)

where the dot denotes the time derivative. The frequency ω is given by
Kepler’s third law

ω2 =
G (m+M)

d3
(2)

and
k = 4

3πGρ− ω
2 . (3)

System (1) is very similar to the classical planar restricted circular three-
body problem, see [25]. Without terms explicite involving gravitational con-
stant G, system (1) describes the Foucault pendulum [26].

The conserved energy for system (1) is

E =
1

2
ẋ2 +

1

2
ẏ2 + U(x, y) , (4a)

U(x, y) =
1

2
k
(
x2 + y2

)
− Gm√

(x− d)2 + y2
+
Gm(x+ d)

d2
. (4b)

Equations of motion (1) and energy (4b) with constant k are suitable for
analysis of the small (linear) perturbations of the test body only. To ex-
plore non-linear effects, in particular possible ejection of the test body from
mass M , we have to use the model with non-constant density ρ(r). This is
done in Sect. 2.2.
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Linearization of equations (1) for small perturbations around point x = 0,
y = 0 is done as follows. After substitution x(t) = ε ζ(t), y(t) = ε ξ(t)
into (1), series expansion has been calculated with respect to ε, and higher-
order terms dropped. Following linear system, it has been obtained

ζ̈ − 2ω ξ̇ + (k − 2q) ζ = 0 , (5a)
ξ̈ + 2ω ζ̇ + (k + q) ξ = 0 , (5b)

where
q =

Gm

d3
. (6)

Eigenvalues λ of system (5) are solutions to the algebraic equation(
λ2 + k − 2q

) (
λ2 + k + q

)
+ 4ω2 = 0 . (7)

The system is considered linearly unstable with respect to small pertur-
bations if at least one solution of (7) has a positive real part Re(λ) > 0.

Resolving above conditions leads us to the instability criteria

M

d3
<

4

3
πρ <

M + 3m

d3
, (8a)

4

3
πρ <

1

2

m

d3
M −m/8
M +m

. (8b)

Criteria (8) has been verified solving (1) numerically, and solving lin-
earized system (5) analytically. Result (8a) can be obtained from analysis
of potential (4b) extremum at x = 0, y = 0 as well. The left-hand side
of (8a), i.e., condition M/d3 < 4/3πρ, is trivial from astrophysical point of
view, because the central density cannot be smaller than average density.
In any realistic astronomical body, density decrease outwards: ρ(r) ≤ ρ(0).
The same argument apply to (8b). Even in the most favorable situation
m = 2M , the central density should be less than half of the average density
for mass m for this instability to occur1.

If we assume that density decreases outwards from the center, we may
simply write simplified form of (8), relevant to the astrophysical applications

4

3
πρ <

M + 3m

d3
. (9)

It is instructive to compare this instability criterion with the Roche sta-
bility limit [27, 28]

d

R
> κ

(m
M

)1/3
, (10)

where κ = 3
√

3.
1 However, an artificial body with such properties could be created, and experiments
performed in micro-gravity at orbital station.
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Re-writing (9) in terms of R instead of ρ and combining with (10), we
obtain

κ
(m
M

)1/3
<
d

R
<

(
1 +

3m

M

)1/3

. (11)

2.2. Numerical verification of the instability and the long-term behavior
in non-linear regime

In the unstable case, the point mass is likely to abandon the central
region. Then the entire density distribution ρ(r), not just ρ(0), becomes
important. Location of “surface radius” defined as ρ(R) = 0 determines
cases of “core ejection”. The non-constant density changes linear harmonic
oscillator force into the non-linear one. Introducing the mass function m(r)

m(r) = 4π

r∫
0

ρ(ζ)ζ2dζ ,

the system of equations of motion becomes similar to (1), but now

k =
Gm(r)

r3
− ω2 , r2 = x2 + y2 . (12)

System (1) with non-constant k(x, y) given by (12) is more general, and
covers astrophysically interesting cases with non-constant density.

Mass M is now given by

M ≡ m(R) = 4π

R∫
0

ρ(ζ)ζ2dζ .

Let us note, if we allowed the mass m to orbit inside the region where
ρ(r) > 0, then the inertial mass Minert would be different from the gravita-
tional mass Mgrav. In such a situation, the circular two-body problem has
a slightly different solution compared to the classic one. In particular, the
Kepler frequency is given by

ω2 = G
Mgrav +m

Mgrav

Minert

d3
. (13)

In what follows, we assume that R < d, i.e., the mass m orbits outside the
mass M .
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For general ρ(r), we have the conserved energy

E =
1

2
ẋ2 +

1

2
ẏ2 + U(x, y) , (14a)

U = φ(r)− 1

2
ω2 r2 − Gm√

(x− d)2 + y2
+
Gm(x+ d)

d2
, (14b)

where r =
√
x2 + y2 and the gravitational potential of the star is

φ(r) = G

r∫
0

m(ζ)

ζ2
dζ . (15)

The simplest example, a uniform density ball of radius R, leads to a
piecewise-constant density

ρ(r) =

{
ρ0 for r < R ,

0 for r > R ,
(16)

which by (15) gives the gravitational potential

φ(r) =

{
2
3πGρ0r

2 for r < R ,

−GM
r + 3

2
GM
R for r > R .

(17)

Before presenting the numerical computations, it is helpful to under-
stand possible trajectories qualitatively. Using energy considerations, we
can find allowed regions on x–y plane. The test body at rest in the central
point x = 0, y = 0 has the energy E = 0. Three typical cases are presented
for uniform sphere of density ρ and radius R (dashed circle in Fig. 2). En-
ergy had been perturbed with small positive value δE. Allowed Hill region
U(x, y) < δE has been shaded. In the stable situation, see Fig. 2 (a), we
have three disconnected regions: the central region of mass M , the neigh-
borhood of mass m, and the “outer space” extending to the infinity. The
perturbed test body simply oscillates with frequency related to the central
density, simultaneously rotating like the Foucault pendulum. In the pres-
ence of the drag, it will settle down at the geometrical center of mass M .
When the density drops below the critical value, given by Eq. (9), the cen-
tral region of massM and region surrounding mass m become connected, cf.
Fig. 2 (b). The test body begins to oscillate with growing amplitude forced
by the gravitational pull of mass m. After some time, depending on the
amplitude of initial perturbation, the test body is ejected from mass M and
enters a chaotic orbit around mass m, see Fig. 2 (b), but it is still bounded
with binary system. For the density much smaller than critical, all three
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allowed regions become connected, and the test body will be ejected from
the system, spiraling out to infinity (Fig. 2 (c)). The behavior described
above has been confirmed by the numerical solution of system (1) with non-
constant k from Eq. (12). Sample trajectories for uniform density ball are
shown in Fig. 2.
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Fig. 2. Three typical cases of the dynamics: stable (a), unstable chaotic (b), un-
stable with ejection (c). Shading has been used to show regions allowed to motion
by energy conservation. Potential barrier (white) prevents escape to infinity for
linearly unstable case (b).
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Instability is not a resonance with Kepler frequency (2), because insta-
bility criterion (8a) involves additional factor 3 before mass m. However,
using the language of resonances, we can easily understand the underlying
physics [24]. Consider the classical first-year student textbook example of
uniform density ball with radius R and satellite in circular orbit just above
the surface (d = R). Then, the internal harmonic oscillator and orbital
frequencies are identical. Therefore, the test mass in the center is in reso-
nance with the small mass in orbit. However, astrophysical bodies are cen-
trally condensed (ρc > ρ̄) and binary companions are usually more distant
(d > R), so this resonance disappears. But the orbital frequency depends
on both masses M and m. By increasing the mass m, we can make these
frequencies equal again. Note that we have never assumed that the mass M
is dominant, so the mass m may be arbitrarily large.

An inevitable presence of the dynamic drag inside gaseous objects (in-
cluding GC, see [29]) and other forms of friction forces acting on a test body
inside mass M has, surprisingly, only a minor effect on resulting dynamics,
at least in the framework of our model. The drag suppresses the amplitude
of oscillations and delays the onset of instability. However, in the resonant
regime, point x = 0, y = 0 has a “top-hill” position in the potential landscape
given by equation (14b). In effect, the global dynamics remains the same.
Numerical tests with simple drag of the form −κ(ρ) ṙ confirmed this, and
revealed that main effect is to delay the onset of instability until the ejection
from the system becomes possible, cf. Fig. 2 (c). Therefore, with a drag,
the ejection becomes more likely, while chaotic orbits (Fig. 2 (b)) become
rarer. After the test body leaves the mass M , the evolution is identical to
the classical restricted planar circular three-body problem.

2.3. Three-body instability

In this section, we drop the assumptions of planar motion and negligible
mass of the third body. Without these simplifying assumptions, the full
system of nine equations describing the motion of the three masses can also
be transformed to the co-rotating system. Very lengthy calculations for full
system show that the criteria (8) nearly persist. Using quantifier elimina-
tion [30, 31] for stability analysis of the linearized 18-order eigensystem we
found that instability is present if

M

d3
<

4

3
πρ <

M + 3m (1 + µ/M)−1

d3
, (18a)

4

3
πρ <

1

2

m

d3
M + µ−m/8
M + µ+m

(1 + µ/M)−1 . (18b)
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The new factor in (18) is the mass of the third body equal to µ. For µ→0,
(18) reduces to (8). Again, only (18a) is of astrophysical interest. Using
orbital frequency

ω2 =
G(m+ µ+M)

d3
,

and internal frequency
ω2
c = 4

3 πG ρ ,

we may rewrite (18a) as

ω2 +
G(m+ µ)

d3
< ω2

c < ω2 +
G(m+ µ)

d3
+

3Gm

d3
(1 + µ/M)−1 .

The instability is a consequence of internal and orbital frequency overlap.
The width of the resonance is proportional to the “forcing” mass m and
reduced by a factor depending on the mass ratio µ/M . The most important
is magnitude of mass m, because it increases the orbital frequency allowing
for the resonance. Simultaneously, it increases the width of the instability
window.

3. Discussion of potential astrophysical sites of the instability

3.1. Massive binaries

The application of the results from Sect. 2.1 to a massive star is not
straightforward because the “core” is not well-defined and separated from
the envelope. Red supergiants are indeed objects with nearly point-like core
and extended low-density envelope. However, the radius separating these
two regions is a matter of convention. It is also not clear what really will
happen if instability becomes operational. The Thorne–Żytkov objects are
an exception because central object is indeed well-approximated by the point
mass.

To overcome these difficulties, we adopted the following procedure: a
star with total mass M∗ and radius R∗ is artificially divided into two parts:
(i) central “core” region with r < ξ, and (ii) outer envelope with R∗ > r > ξ.
Now, the instability criteria (18) are functions of parameter ξ with

µ = m̃(ξ) , M = M∗ − m̃(ξ) , ρ = ρ(ξ) , (19)

where m̃(ξ) denotes the mass enclosed by the sphere with radius ξ. To
further reduce complexity (dimensionality) of the analysis, we assume that
the perturbing mass m is as close to the star as possible, i.e., d = R∗. The
stellar model s15 of [3] with mass M∗ = 12.8 M� and radius R∗ = 3.85 AU
at Si burning stage has been used as an example. The system is stable if

4

3
πρ(ξ)R3

∗ > (M∗ + 3m)

(
1− m̃(ξ)

M∗

)
. (20)
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In the above example, the instability is present for splitting mass m̃ below
' 4.3 M�. Noteworthy, edge of the He core is placed at ' 4.2 M�. This
result does not significantly vary with perturber mass 1 M� < m < 100 M�.
we conclude that splitting the red giant into helium core and hydrogen en-
velope is the most appropriate. If we treat He core as a point mass, then
our model can be applied. It is likely, that during a supernova event in close
binary system, the explosion engine will be displaced with respect to geo-
metrical center of the hydrogen envelope. The recently discovered stripped
helium core (low-mass white dwarf) in binary system [32] might have been
formed in this manner.

3.2. Exoplanets and moons

The models of exoplanet formation and structure often consider a com-
pact core accreting mass in the form of extended low-density envelope [33].
In this situation, dominant is the mass m, i.e., the central star, and the
instability occurs if

ρ

1 g/cm3

(
T

1 day

)2

< 0.057
Menv

Mtot
, (21)

where ρ is the density of the envelope, Menv is the mass of accreted envelope
and Mtot is the total (core+envelope) mass of the protoplanet.

It is not surprising that all of the analyzed exoplanets are stable accord-
ing to criterion (21). This is also true for so-called Ultra Short Period Plan-
ets [34] with orbital period less than a day. However, the stability margin
is often small. We may speculate that some of the “puffy planets” [35], i.e.,
very low density Jupiter-like objects close to the central star, were formed in
processes involving ejection of the dense planetary core due to the instability
presented in Sect. 2.3. Even if the instability do not lead to the core ejec-
tion (because of, e.g., friction), the dissipated energy may inflate the planet.
This alone, however, does not explain an absence of the rocky core.

3.3. Globular cluster

Most galactic globular clusters are believed to harbor an intermediate-
mass black hole in the center [8, 36, 37]. Therefore, we can use our model
to check if central position is stable with respect to perturbations caused
by the Galaxy. Using database of Harris (2010 edition) [38] and Eq. (9) we
have found that only few out of 157 of GC are unstable, namely Lynga 7,
FSR 1735, Terzan 4, 2MS-GC01, 2MS-GC02, BH 261, GLIMPSE02 and
GLIMPSE01. In simulations of [10], the instability apparently has not ap-
peared. This is not surprising due to the resonant character of phenomena.
It is unlikely to encounter such an instability for a randomly chosen set of
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initial conditions. Very interesting is the case of Terzan 3. It is stable if
we put m = 2 × 1011 M�, i.e. the mass of the Galaxy without dark mat-
ter [39]. However, if we include dark matter, it becomes unstable. Therefore,
the search for a central black hole in Terzan 3 might provide a test for the
amount of dark matter in the Galaxy. If the dark matter dominates the
mass of the Galaxy, then IMBH in Terzan 3 should not exist. This requires
further investigation, because orbits of GC are usually not circular, and
Galaxy cannot be treated as a point mass. Another complication is caused
by infinite radius of popular GC models, like Plummer sphere, see discussion
related to (13). More detailed investigation of GC with IMBH and N -body
validation of the model from Subsect. 2.3 is in progress.

3.4. LHC black hole

It has been speculated that LHC or other future high-energy experiments
might produce artificial black holes that do not evaporate immediately via
the Hawking radiation [20–22]. Such a black hole would settle at the center of
Earth and slowly consume our home planet. We have applied the instability
criterion (9) to the Earth–Moon and Earth–Sun systems. Unfortunately, the
central position is stable by a wide margin in the sense of instability (8).

4. Conclusions and discussion

The generalized three-body model has been analyzed using analytical
and numerical techniques. The instability of the point mass in the core-
halo system was found. Analytical criteria (8) and (18) were derived using
linearized system, and verified numerically.

Results were applied to astrophysical binaries where one of the compan-
ions has a core-halo structure. A few possible sites for the instability were
discussed: massive red supergiants in binary system (Subsect. 3.1), forma-
tion of the exoplanets (Subsect. 3.2) and globular clusters with intermediate
black hole (Subsect. 3.3). The model can also be applied to more exotic sit-
uations, e.g., Thorne–Żytkov objects or central black holes of astrophysical
and artificial origin.

Binary and multiple systems in astrophysics are rather a rule than an ex-
ception, as well as core-halo structure of components, including dark matter
halos and central black holes. Therefore, the mechanism of instability pre-
sented in this paper may be very common in nature, influencing formation
and evolution of the astrophysical bodies and structures on various scales.

Note that our simple analytical model can provide input parameters for
more advanced models and numerical simulations. Without such a guide,
finding resonant behavior randomly sweeping parameter range is improba-
ble. This is especially important for 3D simulations, which are limited by
available computing power to just a few models [40].
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In the real world, the instability appears in situations where the per-
turbing mass m is either very close to the mass M , or is much larger than
mass M . In the former case, it is likely that the mass m eventually enters
the mass M , with a dynamic drag causing inspiral, sweeping all orbital fre-
quencies. Encountering instability conditions seems inevitable. However, a
reduced timescale available to the system may prevent the instability de-
spite its exponential growth. If m � M , tidal effects are non-negligible
and instability asymptotically reduces to the Roche limit. The body with
mass M might be destroyed by tidal forces before the resonant instability
becomes operational. However, the resonant instability appears before the
tidal disruption. The assumption of spherical symmetry and neglected ro-
tation might miss some additional effects, but usually spherical models are
good enough to derive instability criteria.

Observational verification of the instability would be difficult in stars
and planets, due to the proximity of the Roche limit and complex hydrody-
namics with similar timescales. For globular clusters, the model seems more
realistic. Minor details such as dynamic drag, non-circular orbits and finite
size of the Galaxy are manageable, at least numerically. Unfortunately, the
existence of IMBH in the GC center is still under debate. An interesting op-
tion is an experimental verification of the instability at space station, using
manufactured bodies in the form of, e.g., gas or liquid spheres.

Three-body model needs to be validated. In particular, astrophysical
bodies of interest are not rigid (typically gaseous, liquid or composed of
particles), and might not react to a driving force as a whole. Ultimately,
three-dimensional hydrodynamic model with appropriate treatment of exter-
nal gravity source, either analytical or numerical, should be used to verify
instability in binary stars. For globular clusters, N -body simulations provide
a good framework to test the model (work is in progress).

The author would like to thank Piotr Bizoń for reading the manuscript
and valuable comments.
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