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Motivated on the very recent experiments to determine the acceleration
of the alpha decay of meta-stable radionuclides in metallic environment
some work has been done to strengthten the importance in the process of
electrons screening in metals. Thus, by combining the Gamow decay the-
ory with electrostatic screening in Debye–Hückel approximation (jellium
model) a formula for “the shift” in screening energy which enters in the de-
cay enhancement factor expression that copes well with these experiments
has been derived. It was established that to simulate the poly-atoms sys-
tem containing decaying isotopes in QM&MD codes calculations, and to
include “the screening energy shift” of protons, decay alpha, beta+ particles
due to all surrounding interacting effects, it is sufficiently only to substitute
the code ruly pseudo-potential input for hydrogen-like atoms (including al-
pha) by a screened Coulomb potential as from the well-known Gamow
alpha decay theory. For demonstration is used the QM&MD code package
which usually performs density-functional theory (DFT) total-energy cal-
culations for materials ranging from insulators to transition metals. This
package employs first-principles pseudo-potentials and a plane-wave basis-
set, and it was used to do a special calculus for some metal environments
(Pd) where protons–deuterons are implanted or when it is alloyed with a
radionuclide-like isotopes (174Hf72), the results compare well with the ex-
isting experiments on the decay enhancement. These works give further
arguments for a cheap solution to remove the transuranic waste (involving
all alpha-decay) of used-up rods of fission reactors in a time period of a few
years.

PACS numbers: 52.25.–b, 31.15.–p, 32.70.–n

1. Introduction

In a recent publication, Kettner et al. [1] have suggested that one could
speed up alpha decay of transuranic nuclear waste material by embedding
it in metals at low temperature. This would have a huge impact on waste
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disposal management and quite likely initiate a completely renewed public
debate on the subject of nuclear energy. The proposed idea is that the
electron screening provided by the metal will lower the alpha-decay lifetime.

The screening enhancement effect in laboratory nuclear reactions at as-
trophysical energies has attracted a lot attention recently, especially after
the recent accomplishments of the LUNA collaboration at Gran Sasso [2].
Other low-energy experiments of the proton–proton chain [1–3] (past, cur-
rent or planned) still need a theoretical model that could account for the
observed enhancement. The use of insulators and metallic alloys in LUNA
[2] experiments indicate that only when the metallic character remained
essentially unchanged by a small content (a few %) of alloy meta-stable ele-
ment (alpha, beta+ decay) the screening effect is remarkable, mainly due to
the free electrons in metallic environment.

If we have alpha and beta particles both with a chance of escaping from
nucleus, it might be thought that every radioactive element should disinte-
grate partly with expulsion of alpha particles and partly with beta particles.
But we would argue that the escape rate is extremely sensitive to the height
to which the potential energy curve rises above the energy-level in ques-
tion; if the size of this potential barrier is increased by a small factor the
probability of escape might decrease more than million-fold.

In the literature, the different analytical approaches [4, 5] are formulated
in order to describe these important experimental findings, but most of them
fail due to a “forced” application to solids — some comments are presented
in Section 2 of this paper.

In the present paper, the new ideas are advanced, mainly to calculate the
shift of the screening energy of the decay alpha particle following interactions
in order to explain all results of Ketner et al. [1]. Thus, firstly a new
formula is derived and, secondly a numerical analysis based on the density
functional theory (DFT) is proposed. It is known that this theory permits to
account for all interaction effects of the “environment” of a system of atoms
which is only possible if more sophisticated and reliable tools in quantum
mechanics (QM) are used. Therefore, it will be shown that in order to obtain
“a screening energy shift” of the decay alpha particle due to atom system
with crystalline symmetry, it is sufficiently to substitute the ruly pseudo-
potential (QM-code input) for hydrogen-like atoms (including alpha) with
the screened Coulomb potential as deduced from the well-known Gamow
alpha decay theory.

In the present paper we have performed dedicated calculations for some
metal environments like (Pd) where either protons–deuterons are implanted,
or when they are alloyed with radionuclide-like isotopes (174Hf72). We have
used an available tool, namely FHI98MD computer code [6] that employs
quantum mechanical effects (QM) and molecular dynamics (MD).
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Before the discussion of the results obtained by means of the above
computer code, firstly, in Section 2 the screened Coulomb potentials for
hydrogen-like atoms is derived in a detailed fashion, which turns out to be
very useful in Section 3, where the binding energies calculated by the code
are used for the calculation of the decay enhancement factor and half-live
shortening.

2. The derivation of new formula for decay enhancement

2.1. Gamow factor for decay

It is well known from textbooks that the alpha particle can be regarded
as trapped by a potential barrier. In order to escape into the environment,
the alpha must tunnel through the barrier. This description of alpha decay,
which also explains the wide range in lifetimes, was given by Gamow as well
as Gurney, Condon [7] and was one of the first successes of the new quantum
theory (which introduced such counter-intuitive ideas as tunneling).

Suppose we have a wave packet representing an alpha particle mass µa

and kinetic energy E impinging on a square potential barrier of height V −E
and width ∆r. Then the transmission coefficient T is obtained from 2nd year
quantum mechanics as:

T ≈ e−2k∆r , (1)

where

k =
√

2mα |V − E| /~ , ~ =
h

2π
, (2)

and h is a Planck constant. This can be extended to any barrier shape in
the form of the WKB approximation:

T ≈ exp

(

− 2

b∫

R

k(r)dr

)

. (3)

Here, R and b are the classical turning points of the motion inside and
outside the barrier. We may take the barrier to be the sum of a square well
nuclear potential of radius R and a Coulomb potential arising from a charge
within R

V (r) =

{
0 , for r < R ,

1
[4πε0]

ZαZDe2

r , for r ≥ R . (4)

We can equate (approximately) the energy release Q in the alpha decay to
the kinetic energy E of the alpha particle and to the potential at the outer
classical turning point

Q ≈ E =
ZαZDe2

[4πε0] b
, (5)
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and hence determine b

b =
ZαZDe2

[4πε0]Q
. (6)

Therefore the integral over k(r) becomes

G =
2

~

√

2mαQ

b∫

R

[
b

r
− 1

]1/2

dr , (7)

where Q = 1
2mαv2 and the above expression for b has been used.

For thick barriers (R/b ≪ 1 or V (R) ≫ Q) and R ≪ b we have

G ≈
4ZαZDe2

[4πε0] ~v

(

π

2
− 2

√

R

b

)

∼= 2π
ZαZDe2

~v
. (8)

The decay constant for alpha decay is thus

λ = λ0e
−G , (9)

where λ0 is the frequency factor or the number of assaults on the barrier per
unit of time, and is usually estimated as

λ0 =
v

2R
≈

e

2R

√
(

2Qα

mαe2

)

, (10)

η ≡
Z1Z2e

2

~v
, (11)

where v is the relative velocity. As a rule, the known Sommerfeld parameter
is given by 2π η = 31.29 Z1Z2(µ/E)1/2 (see [1]). The quantities Z1 and Z2

are the nuclear charges of the interacting particles in the entrance channel,
µ is the reduced mass (in units of amu), and E ≡ Q is the centre of mass
energy (in units of keV).

Thus, the transmission coefficient is given as T = exp(−2πη). Otherwise,
from [8] the cross section for nuclear reactions between charges Z1 and Z2

at low energies E (i.e., below the Coulomb barrier) has the form σ(E) =
(S(E)/E)e−2πη , where S(E) is generally referred to as the astrophysical
“constant”.

A shift on Q with UD as calculated below gives the screening enhance-
ment factor defined [8] as flab(E) = σs(E)/σb(E), where σs(E) is the
higher cross section due to screening and σb(E) that for bare nuclei, and
flab(E) ∼= exp(πηUD/E).
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2.2. Models based on astrophysical stellar plasma

At astrophysical energies the potential energy is found to be shifted by
a constant screening energy Ue. In Refs. [4,5] the screening energy for the
collision of a light bare nucleus (Z2e) with a neutral multielectron atom
(Z1e) has been calculated in the framework of the Thomas–Fermi model for
a special screened Coulomb potential

USL
TF = −1.21Z

4/3
1 Z2

e2

a0
. (12)

Obviously, the screening effect reduces the half-life of the decaying nu-
cleus. This is of course expected, since the screening cloud reduces the
Coulomb barrier thus easing the way of the α particle out of the parent
nucleus. In Fig. 1, we calculated the value of USL

TF for

174Hf72
α

−→ 170Yb , (13)

with half-life 2.0×1015 years, mode of decay: alpha to Yb-170, decay energy
2.495 MeV. The screened α decay according to Liolios formula (13) being
USL

TF = 500 a.u.×27.2 = 13.6 keV.
We know that the abundance follows the usual law of exponential decay,

that is

λ =
ln 2

T1/2
, (14)

Fig. 1. The evolution of pseudo-potential (pp) versus atom radius for alpha particle

and proton according to Eg. (37); on the right axes the local component of the

potential (II) is shown; Ealpha-energy of alpha particle.
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N(t) = N(0) exp

(

−
ln 2

T1/2
t

)

. (15)

A similar result based on the astrophysical approach has been obtained in
Ref. [1], where the cross section of a charge-particle-induced nuclear reaction
is enhanced at subcoulomb energies by the electron clouds surrounding the
interacting nuclides, with an enhancement factor [1,3]

flab(E) = E(E + Ue)
−1 exp

(
πηUe

E

)

, (16)

where E is the centre-of-mass energy, η is the Sommerfeld parameter and Ue

is the screening energy. The electron screening in d (d, p) t has been studied
for deuterated metals, insulators and semiconductors, i.e. 58 samples in total
[3]. As compared to the measurements performed with a gaseous D2 target
(Ue = 25 eV), a large screening was observed in all metals (of order Ue =
300 eV), while a small (gaseous) screening was found for the insulators and
semiconductors. In [1], an explanation of the large screening was suggested
by the Debye plasma model applied to the quasi-free metallic electrons. In
this approach, they combined the Drude model of metals (with a kinetic
energy 0.5 kT for the quasi-free valence electrons) with the Debye model of
plasma: the Drude–Debye model, in short Debye model.

The electron Debye radius around the deuterons in the lattice is given by

RD =

(
ε0kT

e2neffρa

)1/2

= 69

(
T

neffρa

)1/2

[m] ,

with the temperature T of the quasi-free electrons in units K, neff the
number of thesis electrons per metallic atom and the atomic density ρa in
units of atoms m−3. For T = 293◦ K, ρa = 6 × 1028 m−3, and neff = 1
obtained radius RD is about a factor 10 smaller than the Bohr radius
of a hydrogen atom. With the Coulomb energy of the Debye electron
cloud and a deuteron projectile at RD set equal to Ue≡UD, one obtains

UD = 2.09× 10−11 (neffρa/T )1/2 eV. With the Coulomb energy between two
deuterons at RD set equal to Ue, one obtains Ue = (4πε0)

−1e2/RD = 300 eV
the order of magnitude of the observed Ue values.

An important deduction made in [1] is it that the Debye energy UD

should scale with the nuclear charge Zt of the target atoms

UD = 2.09 × 10−11 (Zt (Zt + 1))1/2
(neffρa

T

)1/2
[eV] , (17)

UD = ZαZtUe(d − d)

(
290

4

)1/2

. (18)
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Thus, for Pd–Hf (alpha decay), UD = 2 × 300 × 72 × 8.5 = 355 keV.
The proposed parametric model is mainly based on the known approach

of Debye–Hückel and well fits the experiment. Note that this model is in
fact based on the Maxwell–Boltzmann statistics when the temperature T is
high (which is not the case). At low temperature when T is approximately
equal to the kinetic energy EF — the Fermi energy obeys Thomas–Fermi
statistics as for free electrons gas (of non-Coulomb interacting electrons).
For strongly interacting plasma at finite temperatures, as in the case of
metals, other methods based on, say density functional theory, are needed.
This idea is pursued in the present paper. The perturbation theory applied
in both approximations Debye–Hückel or Thomas–Fermi are introduced into
the first Maxwell equation, giving

[
∇2 − k2

0

]
φ(r) = −

Q

ε0
δ(r) , (19)

which is known as the screened Poison equation. The solution is

φ(r) =
Q

4πε0r
e−k0r , (20)

which is called screened Coulomb potential. It is a Coulomb potential multi-
plied by an exponential damping term, with the strength of damping factor
given by the magnitude of k0, the Debye or Fermi–Thomas wave vector,
where for the first case

k0 ≡

√

ρe2

ε0kBT
, (Debye) (21)

and

k0 ≡

√

3e2ρ

ε0EF
, (Fermi–Thomas). (22)

The associated Debye length λD = 1/k0 is the fundamental length scale of
classical plasma. These results are obtained in perturbation theory, which
fails when the Wigner–Seitz radius rs = (3/(4πn))1/3 > 1, where n is the
number of particles per unit of volume: rs is also called the coupling constant
rs = (potential energy)/(kinetic energy). In the case of metals 2 < rs < 6.
At high density of electrons when rs < 1 the effect of Coulomb interaction
is weak and the free electron gas is a good approximation.

3. The application of the Density Functional Theory codes to

calculate the decay enhancement in poly-atomic structures

The package fhi96md is an efficient code to perform density-functional
theory total-energy calculations for materials ranging from insulators to
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transition metals. The package employs first-principles pseudopotentials
and a plane-wave basis-set. For exchange and correlation both the local
density and generalized gradient approximations are implemented.

In poly-atomic systems as for example molecules, crystals, defects in
crystals, surfaces, it is highly desirable to perform accurate electronic struc-
ture calculations, without introducing uncontrollable approximations.

The package fhi96md used in this paper is especially designed to inves-
tigate the material properties of large systems. It is based on an iterative
approach to obtain the electron ground state. Norm-conserving pseudopo-
tentials [9] in the fully separable form of Kleinman and Bylander are used to
describe the potential of the nuclei and core electrons acting on the valence
electrons. Exchange and correlation are described by either the local-density
approximation [6] or generalized gradient approximation. The equation of
motion of the nuclei (EOM) is integrated using standard schemes in molec-
ular dynamics.

The key variable in DFT is the electron density n(r). As stated by
the fundamental theorem of Hohenberg and Kohn the ground state energy
E0({RJ}) of the system for given positions of the nuclei {RJ} is the mini-
mum of the Kohn–Sham total energy functional with respect to the electron
density n. The total energy functional E[n] is:

E [n] = T S [n] + EH [n] + Ee−nuc [n] + EXC [n] + Enuc−nuc , (23)

where T S is the kinetic energy of non-interacting electrons, EH is Hartree
energy, and EXC is the exchange-correlation energy. The expressions for the
energy are briefly discussed in the following. The explicit expression for each
of the contributions to the total-energy, potentials and forces are given in a
form implemented in the program.

The energy of the electron–nuclei and nuclei–nuclei interaction Ee−nuc

and Enuc−nuc are

Ee−nuc[n]=

∫

d3r V e−nuc(r)n(r) , Enuc−nuc =
1

2

∑

IJ,I 6=J

Z1Z2

|RI−RJ |
, (24)

.where Z1 and ZJ are the charges of the corresponding nuclei. Throughout
the paper we employ atomic units (energy in hartree) unless otherwise noted.
As approximations to the exchange-correlation energy functional EXC[n] the
local-density approximation (LDA) is employed in a form obtained for the
homogeneous electron gas by Ceplerley and Alder in the parameterization of
Perdew and Zunger, and the generalized gradient approximations of Becke
and Perdew and of Perdew et al. are used.

The effect of the core electrons and the Coulomb potentials of the nuclei is
replaced by soft pseudo-potentials which enables the efficient use of a plane-
wave basis.
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We employ the norm conserving pseudopotentials (GNCPP) constructed
e.g. following the schemes of Hamann [9], shown bellow. These have been
proven to yield transferable potentials for a broad class of nuclei ranging from
first row elements to transition metals. The pseudopotentials are represented
in the fully separable form as proposed by Kleinman and Bylander.

In this form the pseudopotential splits into a local part ~V ps,local
Is

and

a non-local but separable part ~V ps,nl
Is

. Correspondingly the potential ~V e−nuc

and the E e−nuc are expressed as:

~V e−nuc = ~V ps,local + ~V ps,nl ,

and

E e−nuc = E ps,local + E ps,nl . (25)

The energy expressions Eq. (24) evaluated in vofrho subroutine becomes:

E = Ekin + EH + Esr − Eself + Eps,local + Eps,nl + EXC = Edipole , (26)

where, for example, Esr is the energy of screened ions-variable.
In the Kohn–Sham scheme [6] the electron density is expressed by a set

of orthogonal, normalized Kohn–Sham orbitals φα(r)

n(r) =
∑

α

fα |φα(r)|2 . (27)

The occupation numbers fα vary between 0 and 2 as the electron spin is
not included explicitly and the sum over all occupation numbers is the total
number of electrons Nel per super cell. The ground state electron density
is calculated by solving the Kohn–Sham equation self-consistently for these
orbitals

(
1
2∇

2 + V e−nuc + V H[n] + V XC[n]
)

︸ ︷︷ ︸

~HKS

φα(r) = eα φα(r) . (28)

The Kohn–Sham orbitals are represented by a plane-wave basis-set

φi,k(r) =
∑

G, 1
2
|G+K|2≤Ecut

ciG+K ei(G+K) r (29)

truncated and a energy cut-off Ecut. The Brillouin zone integral over the
k-points is replaced by a sum over a set of special k-points with the corre-
sponding weights wk.

Once the ground state of the electrons is calculated the atomic EOMs
are integrated with standard MD techniques. Two schemes are implemented
— namely the Verlet algorithm and a predictor-corrector algorithm.
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3.1. Construction of GNCPP’S

In electronic-structure calculations the desired functions are bare-ions
pseudo-potentials based on local-density-functional theory (LDF) which de-
pend on angular momentum l. The following functional from that enforces
a rcl — “core radius” or lower bound radius for unbound states

f

(
r

rcl

)

= exp

[

−

(
r

rcl

)λ
]

, (30)

with λ = 3.5, has proven effective. Following the standard procedure, an
intermediate pseudopotential is introduced

V1l(r) =

[

1 − f

(
r

rcl

)]

V (r) + cl f

(
r

rcl

)

(31)

which converges to the full potential V (r) for r>rcl. The final pseudo-poten-
tial, found from analytically inverting the Schrödinger equation, is then [9]

V2l(r) = V1l(r) + γlδlr
l+1f

(
r

rcl

)

/2w2l(r)

×

[

λ2

r2

[
r

rcl

]2λ

−
2πl+λ(λ+1)

r2

[
r

rcl

]λ

+2εl−2V1l(r)

]

, (32)

where γl-scale factor for wave functions ul, wl reads γl =ul(Rl)/w1l(Rl), c
(n)
l

are trial functions used in Eq. (31) which correspond to “eigenvalue” ε
(n)
l .

In contrast to the case of bound-state-only pseudopotentials found for
several different atomic configurations, a single valence-electron electrostatic
and exchange-correlation potential can be subtracted from V2l to find the
full set of ionic pseudopotentials,

V ion
l (r) = V2l(r) −

4π

r

r∫

0

ρ(r′)r′2dr′ − 4π

∞∫

r

ρ(r′)r′dr′ −
δEexc [ρ(r)]

δρ(r)
, (33)

where w1l(r) is an intermediate wave function; λ = 3.5, ρ(r)=
∑

l

nl

(
w2l(r)

r

)2

and nl is the occupancy of bound valence state l.
In the case of rare gases, when all the electrons in the ground configura-

tion are being treated as a core, there is no unscreening, and V ion
l (r) = V2l(l).

For computational convenience Kleinman and Bylander [6] proposed a fully
separable form as mentioned above.
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In the following it will be shown that this form could be reduced to
the one more “understandable”, especially for low charge number atoms like
protons, alpha. Thus, in [10] as a canonical first step these algorithms
generate angular momentum-dependent screened pseudopotentials V eff

l [n0]
from a particular reference configuration, e.g., the ground state of the neutral
atom, assuming spherical screening. These act as effective potentials on the
atomic pseudo valence states via the radial Schrödinger equations

(

−
1

2

d2

dr2
+

l(l + l)

2r2
+ V eff

l [n0; r] − εl

)

rRl(r) = 0 . (34)

V eff
l [n0] contain a common spherical screening potential which is self-consis-

tent with the total atomic charge density n0(r), comprised of the (pseudo)
valence density nυ

0 and the core charge density nc
0 obtained from the all-

electron core states. The effective potentials can be decomposed rigorously
into the Hartree potential VH and the XC potential due to valence and core
electrons and an angular-momentum-dependent bare potential V bare

l which
conveys the nuclear attraction and the Pauli repulsion due to the core states.
For an arbitrary valence configuration one has

V eff
l [n; r] = V bare

l (r) + VH [nc
0; r] + VH [nv; r] + VXC [nv + nc

0; r] , (35)

which, in the reference configuration (n = nv
0 + nc

0), reduces of course, to the
screened pseudopotentials.

The approximate procedure for dealing with exchange and correlation
proposed by Kohn and Sham [11] has been adopted with Veff given by

Veff(~r) = −
e2

r
+ e2

∫

d3 r′
n(~r′)

|~r − ~r′|
+ µXC(n(~r)) . (36)

The first two terms of Eq. (3) constitute the electrostatic Hartree potential.
The last term accounts for exchange and correlation by approximating the
electron gas locally by a uniform gas of mean density n(~r), where µXC(n0)
is the exchange-correlation part of the chemical potential for the uniform
interacting electron gas of mean density n0. This approximation, valid for
slowly varying densities, will be poor near the proton. However, in this re-
gion Veff will be dominated by the Hartree potential ∼ −e2/r. Therefore we
suggest to use for hydrogen-like atoms (for other atoms the original formula-
tion is kept) the pseudo-potential form as in Eq. (4) neglecting the non-local
contributions at the level of the atom itself

pp = UD =
1

[4πε0]

ZαZDe2

r
for r ≥ R . (37)
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Consequently, the complementary tool from the package FHIPP was mod-
ified (the package being of open source type), and the results of this mod-
ification for pseudo-potentials of alpha particles and protons are shown in
Fig. 1. The start utility (FHIstart) of the code includes an automatic search
for point group symmetries and the symmetry center in the system.

The input file start.inp used in FHIstart describes the geometry of
the super cell, the configuration of the nuclei and parameters relevant for
the MD simulation or the structure optimization, and the calculation of the
electron ground state.

For each of the nsp atomic species one declares the properties of the
pseudopotential (zv, lmax and lloc) and the radius of the screening charge

nGauβ
is

(r) (rgauss). The positions of the nuclei τ0 and operationally also the
velocities vau0 follow the declaration (c.f. npos). Pseudopotential data need
to be provided in the files fort.11, fort.12,. . . (see Table I) for the nsp

atomic species as tabulated on a logarithmic mesh (parameter tpsmesh).
Output generated during the calculation is written to several files. The

chief output file is fort.6. It contains a complete protocol of the initializa-
tion, the molecular dynamic simulation or the structure optimization on each
step of the energy minimization. Partial results are presented on Table I.

4. Discussion of the results and conclusions

An analysis of the existing models and experiments on strong enhance-
ment of alpha decay in metallic environments show that the Fermi–Thomas
free gas electrons based models [4, 5] fail at high atom charge numbers
(Z). By comparison a parametric Debye plasma model [1] which gives re-
liable results is theoretically controversial (low temperature and high elec-
tron density). Therefore, in the present paper we derive a screening po-
tential from the Gamow decay theory in order to substitute the Hatree
pseudo-potential in case of the hydrogen-like atoms (including alpha parti-
cle), that is subsequently used in density functional theory (DFT) calcula-
tions. The results of DFT code package FHI98MD for the system Pd lattice
(bcc)+ 174Hf72 +He (alpha) are given in Table I. From there on can remark
the following:

In Fig. 1, if we look to position of atoms as given in Table I, it results
that the distance between alpha particle and Hf nuclei (0.04 a.u.) is just the
turning point when the kinetic alpha energy plus the “screening energy shift”
equals the pseudo-potential (pp), thus confirming the following rule: the out
of tunneling [4] is at about a0/ZHf , where the Hf atom radius a0 = 3.1 a.u.,
but more that it could be considered at ∼= 0.01 a0.

With Somerfeld factor as given by Eq. (11) equal 184 and Ue =
4215 a.u. × 27.2 = 116 keV (from code results, see Table I) and with en-
hancement factor as given by Eq. (16) flab = 95, the half-life is shortened



On the Numerical Analysis of Decay Rate Enhancement in . . . 3299

TABLE I

Input file: Fort.11 & output file: Fort.6 (fragments)

Pd–He–Hf

Lattice vectors
a1 10.470000 0.000000 0.000000
a2 0.000000 10.470000 0.000000
a3 0.000000 0.000000 10.470000
Reciprocal lattice vectors
b1 1.000000 0.000000 0.000000
b2 0.000000 1.000000 0.000000
b3 0.000000 0.000000 1.000000
Atomic positions τ0:
Species No. x y z
Palladium 1 −2.6175 −2.6175 0.0000
Palladium 2 2.6175 2.6175 0.0000
Palladium 3 2.6175 −2.6175 5.2350
Palladium 4 −2.6175 2.6175 5.2350
Helium 1 0.0000 0.0000 2.6175
Hafnium 1 0.0000 0.0000 2.6594

Number of k-points: nkpt = 1
internal energy at zero temperature = −4215.495899 a.u.

Kohn–Sham orbital energy = −4654.635696 a.u.

Pd–proton–proton

Atomic positions τ0:
Species No. x y z
Palladium 1 −2.6175 −2.6175 0.0000
Palladium 2 2.6175 2.6175 0.0000
Palladium 3 2.6175 −2.6175 5.2350
Palladium 4 −2.6175 2.6175 5.2350
Hydrogen 1 0.0000 0.0000 2.6175
Hydrogen 2 0.0000 0.0000 2.6384

internal energy at zero temperature = −21.848761 a.u.

case Pd–Hf–proton

Atomic positions τ0:
Species No. x y z
Palladium 1 −2.6175 −2.6175 0.0000
Palladium 2 2.6175 2.6175 0.0000
Palladium 3 2.6175 −2.6175 5.2350
Palladium 4 −2.6175 2.6175 5.2350
Hydrogen 1 0.0000 0.0000 2.6175
Hafnium 1 0.0000 0.0000 2.6594

internal energy at zero temperature = −2041.224846 a.u.
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to 2.0 × 1015 years/95 = 2.0 × 1013 years, unfortunately this is an unseize-
able effect at this scale for the chosen isotope, so other reactions need to be
considered in order to be proven by experiment, the present case could be
viewed as an exercise. If we apply formula from Eq. (18), we obtain

UD = 2 × 72 × 300 eV × (290/4)1/2 = 2 × 72 × 0.3 × 8.5 = 355 KeV

or 42 keV without temperature correction. Quite different values are ex-
plained due to temperature correction in formula but not considered in the
code.

In the case of the isotopes sensitive to beta+ decay, when a proton from
inside the nuclei + energy converts into a neutron with a positron release
(e+), or the same beta+ decay plus an electron capture from inner shell
neutrons when neutrinos are released, like in a reaction 176 Lu71 → 176Hf70,
1.316 MeV, 3.666 h. It follows from [1] that in an experiment realized by
proton bombardment in the range: 0.8 MeV÷1.4 MeV of PdLu10% alloy,
the measured neutrons yield, implies an enhancement factor of 2.5 around
Epr = 0.81 MeV that may be attributed to Debye electrons screening of
UD = 33 keV. In the case of code application with proton inside nuclei the
value of screening energy shift is equal 2041. × 27.2 = 54 keV, and with
Somerfeld factor of 39, flab = 1.29, and the half-life is shortened to 8.09/1.29
h, so the values are comparable with the experiment.

In case of fusion reaction d + d after deuterons implantation in Pd, the
code gives 20 × 27.2 = 544 eV which is in the range of experimental values
(800 eV) [3] for Pd.

Now, it becomes clear that the Debye formula for data parametrization
as advanced by Kettner et al. [1] agrees well with experiments, the question
is why this works so well. One of the major motivations of the present work
is to find an answer to this question. If we look at the formula for UD, we can
observe that it could be split in two parts: the part due to the screening at
an “early” turning point of Debye length Eq. (21) λD = 1/k0 in place of b, so

b = λD ≡ 1/
√

ρe2

ε0kBT , or at such 1/b which accounts for overall “interaction”

as coming from the “plasma sea” of free electrons of the metallic environment
as described by a density ρa neff ; and the second part which accounts for the
alpha particle already screened till the reduced Debye length by a type of
interaction suggested by Coulomb potential introduced by Gamow Eq. (5).

By repeating the calculus of Gamow factor (Eq. (2)–(8)) with WKB
integration limit b = λD we obtain:

V = E + UD = Z1Z2e
24πε0λD ,

with

V (r) =
λD(E + UD)

r
, E + UD =

1

2
mredv

2
relativvrelativ ,
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where vrelativ is the relative velocity of fragments, mred is the reduced mass
of disintegrating system. Screening is then governed by:

Gscr =
2

~

√

2mredUD

λD∫

∼=0

[
λD

r
− 1

]1/2

dr ,

Gscr ≈
4ZαZDe2

[4πε0] ~vrelativ

(
π

2
− 2

√
∼= 0

λD

)

∼= 2π
ZαZDe2

~vrelativ
,

2πη = 31.29ZαZD
mred

(E + UD)1/2
.

So, the enhancement of the cross section σ(E)= S(E)
E e−2πη(E) is then simply

like in [12].

flab =
σ(E + Ud)

σ(E)
=

S(E + UD)

S(E)

E

E + UD

exp[−2πη(E + UD)]

exp[−2πη(E)]

≈ exp

{

πη(E)
UD

E

}

,

The penetrability factor through external barrier is Tscr = exp(−2πη).
Finally, the energy shift is

UD =
Z1Z2e

2

4πε0λD

∼= 2.09 × 10−11Z1Z2

( ρ

T

)1/2
[eV] , (38)

where e2 = 1.4399652MeV fm, for example for metals ρ ∼= 6 × 1028m−3 and
T = 293K, for two deuterons: UD = 2.09× 10−11 × 1× 1× 2.4× 1014/17 ∼=
370 eV and for Hf-alpha decay and T = 1K, and UD ≡ 2.09 × 10−11 × 2 ×
74 × 2.4 × 1014/1 ∼= 148 keV. The values calculated by the DFT code are
comparable with the ones above if we consider the temperature correction.

Therefore, the present DFT code application by using a modified pseudo-
potential in accord with the decay theory because it describes much better
the overall neighboard interactions, that permits to furnish the correct re-
sults, and finally it could be applied for other different atoms systems, except
the atoms containing f electron shells. Due to the present simple formula,
it has been constructed on the basic physical assumptions and can be used
to approximate quickly the screening energy “shift” which enters in the fi-
nal expression of the enhancement decay factor of alpha, beta+ decay type
isotopes in metallic environment.
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If these kind of predictions continue to be verified by appropriate ex-
periments, one may have a cheap solution to remove the transuranic waste
(involving all alpha-decay) of used-up nuclear fuel rods of fission reactors in
a time period of a few years.
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