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We show how non-compact space-time (ZZ branes) emerges as a limit
of compact space-time (FZZT branes) for specific ratios between the square
of the boundary cosmological constant and the bulk cosmological constant
in the (2, 2m − 1) minimal model coupled to two-dimensional Euclidean
quantum gravity. Furthermore, we show that the principal (r, s) ZZ brane
can be viewed as the basic (1,1) ZZ boundary state tensored with a (r, s)
Cardy boundary state for a general (p, q) minimal model coupled to two-
dimensional quantum gravity. In this sense there exists only one ZZ bound-
ary state, the basic (1,1) boundary state.

PACS numbers: 11.25.Pm, 11.25.Hf, 04.60.Nc, 04.60.–m

1. Introduction

Two-dimensional Euclidean quantum gravity serves as a good laboratory
for the study of potential theories of quantum gravity in higher dimensions.
Although it contains no dynamical gravitons and does not face the problem
of being non-renormalizable, it can address many of the other conceptional
questions which confronts a quantum field theory of gravity. How does one
define the concept of distance in a theory where one is instructed to integrate
over all geometries, how does one define the concept of correlation functions
when one couples matter to gravity and the resulting theory is supposed to
be diffeomorphism invariant? These are just two of many questions which
can be addressed successfully and which are as difficult to answer in two
dimensions as in higher dimensions. In addition two-dimensional quantum
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gravity coupled to a minimal conformal field theory is nothing but a so-called
non-critical string theory and serves as a good laboratory for the study of
non-perturbative effects in string theory.

The quantization of 2d gravity was first carried out for compact two-
dimensional geometries using matrix models, combinatorial methods and
methods from conformal field theory. Later on Zamolodchikov, Zamolod-
chikov and Fateev and also Teschner (FZZT) used Liouville quantum field
theory to quantize the disk geometry [2], thereby reproducing results already
obtained from matrix models. Then the Zamolodchikovs (ZZ) turned their
attention to a previously unadressed question crucial to quantum gravity,
namely how to quantize non-compact 2d Euclidean geometries [1]. They
asked if the quantization of the disk geometry could be generalized to the
Lobachevskiy plane, also known as Euclidean AdS2 or the pseudosphere.
The pseudosphere is a non-compact space with no genuine boundary. How-
ever, one has to impose suitable boundary conditions at infinity in order
to obtain a conformal field theory. The crucial difference compared to the
quantization of the compact disk is that one can invoke the assumption of
factorization when discussing the correlator of two operators. One assumes
that

〈O1(x)O2(y)〉 → 〈O1(x)〉〈O2(y)〉 (1)

when the geodesic distance on the pseudosphere between x and y goes to
infinity. This additional requirement results in a number of self-consistent
boundary conditions at infinity compatible with the conformal invariance of
quantum Liouville theory.

It is the purpose of this article to address the question of quantizing
non-compact 2D Euclidean geometries using a different approach than the
Zamolodchikovs. However, our results will relate to the random geometries
obtained by the Zamolodchikovs.

In modern string terminology boundary conditions are almost synony-
mous to “branes” and in this spirit the conventional partition function for
the disk and the partition function for the pseudosphere were reinterpre-
tated in non-critical string theory as FZZT and ZZ branes, respectively. In
this context it was first noticed that there is an intriguing relationship be-
tween the FZZT and the ZZ branes [3–6], as well as between the analytical
continuation of the disk amplitude to the complex plane and the space of
conformal invariant boundary conditions one can impose.

It is the objective of this article to analyze these relations from a world-
sheet perspective.
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2. From compact to non-compact geometry

The disk and cylinder amplitudes for generic values of the coupling con-
stants in minimal string theory were first calculated using matrix model
techniques. In order to compare with continuum calculations performed in
the context of Liouville theory, it is necessary to work in the so-called con-
formal background [7]. In the following we will, for simplicity, concentrate
on the disk and the cylinder amplitudes in the (2, 2m−1) minimal conformal
field theories coupled to 2d quantum gravity. In the conformal background
the disk amplitude is given by:

wµ(x) = (−1)mP̂m(x,
√

µ)
√

x +
√

µ = (−1)m (
√

µ)(2m−1)/2 Pm(t)
√

t + 1 ,

(2)
where t = x/

√
µ and where [4, 7]

P 2
m(t) (t + 1) = 22−2m(T2m−1(t) + 1) . (3)

Tp(t) being the first kind of Chebyshev polynomial of degree p. In Eq. (2) x
denotes the boundary cosmological coupling constant and µ the bulk cosmo-
logical coupling constant, the theory viewed as 2d quantum gravity coupled
to the (2, 2m−1) minimal CFT. The zeros of the polynomial Pm(t) are all
located on the real axis between−1 and 1 and more explicitly we can write:

Pm(t) =
m−1
∏

n=1

(t − tn) ,

tn = − cos

(

2nπ

2m − 1

)

, 1 ≤ n ≤ m − 1 . (4)

The zeros of Pm(t) can be associated with the m−1 principal ZZ branes
in the notation of [4]. In order to understand this, i.e. in order to understand
why the special values tn (and only these values) of the boundary cosmolog-
ical constant are related to non-compact worldsheet geometries, it is useful
to invoke the so-called loop–loop propagator Gµ(x, y; d) [12–16]. It describes
the amplitude of an “exit” loop with boundary cosmological constant y to be
separated a distance d from an “entrance” loop with boundary cosmological
constant x (the entrance loop conventionally assumed to have one marked
point). Gµ(x, y; d) satisfies the following equation:

∂

∂d
Gµ(x, y; d) = − ∂

∂x
wµ(x)Gµ(x, y; d) , (5)
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with the following solution:

Gµ(x, y; d) =
wµ(x̄(d))

wµ(x)

1

x̄(d) + y
, d =

x
∫

x̄(d)

dx′

wµ(x′)
, (6)

where x̄(d) is called the running boundary coupling constant.
For the (2, 2m−1) minimal model coupled to 2d gravity (6) reads:

Gµ(t, t′; d) ∝ 1√
µ

1

t̄(d) + t′

√

1 + t̄(d)
∏m−1

n=1 (t̄(d) − tn)√
1 + t

∏m−1
n=1 (t − tn)

, (7)

where we use the notation of (2), i.e. t = x/
√

µ, t′ = y/
√

µ and t̄(d) =
x̄(d)/

√
µ. For m = 2, i.e. pure gravity d measures the geodesic distance.

For m > 2 this is not true. Rather, it is a distance measured in terms
of matter excitations. This is explicit by construction in some models of
quantum gravity with matter, for instance the Ising model and the c =−2
model formulated as an O(−2) model [18, 19]. However, we can still use d
as a measure of distance and we will do so in the following. When d → ∞ it
follows from (6) that the running boundary coupling constant t̄(d) converges
to one of the zeros of the polynomial Pm(t), i.e.

t̄(d) −−−→
d→∞

tk , tk = − cos

(

2kπ

2m − 1

)

. (8)

The cylinder amplitude (7) vanishes for generic values of t′ in the limit
d → ∞. However, as shown in [8] we have a unique situation when we choose
t′ = −tk since in this case the term 1/(t̄(d) + t′) in (7) becomes singular for
d → ∞. After some algebra we obtain the following expression:

Gµ(t, t′ = −tk, d → ∞) ∝ 1√
µ

1√
1 + t

m−1
∑

n=1

(−1)n sin

(

2nπ

2m − 1

)

×
[

1√
1 + t +

√
1 + tn

− 1√
1 + t −√

1 + tn

]

. (9)

Notice, Gµ(t, t′ = −tk, d → ∞) is independent of which zero tk the running
boundary coupling constant approaches in the limit d → ∞, apart from an
overall constant of proportionality.

Formula (9) describes an AdS-like non-compact space with cosmological
constant µ and with one compact boundary with boundary cosmological
constant x as explained in [8] in the case of pure gravity. In the last section
we will comment on the fact that we have to set t′ = −tk in order to generate
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an AdS-like non-compact space in the limit d → ∞ and that tk serves as an
attractive fixed point for the running boundary coupling constant. Now, we
will explain how the cylinder amplitude (9) is related to the conventional
FZZT–ZZ cylinder amplitude in the Liouville approach to quantum gravity.

3. The cylinder amplitudes

Like the disk amplitude (2), the cylinder amplitude in the (2, 2m−1)
minimal CFT coupled to 2d quantum gravity was first calculated using the
one-matrix model. Quite remarkable it was found to be universal, i.e. the
same in all the (2, 2m−1) minimal models coupled to quantum gravity [7,17]:

Zµ(t1, t2) = − log

[

(√
t1 + 1 +

√
t2 + 1

)2√
µ a

]

, (10)

where a is a (lattice) cut-off.
The amplitude Zµ(t1, t2) is only one of many cylinder amplitudes which

in principle exist when we consider a (2, 2m−1) minimal conformal field
theory coupled to 2d gravity. If we consider the cylinder amplitude of the
(2, 2m−1) minimal conformal field theory before coupling to gravity we have
available m−1 Cardy boundary states |r〉Cardy, r=1, . . . ,m−1, on each of the
boundaries, and a corresponding cylinder amplitude for each pair of Cardy
boundary states [10]:

Zmatter(r, s; q) =
√

2 b

m−1
∑

l=1

(−1)r+s+m+l+1 sin(πrlb2) sin(πslb2)

sin(πlb2)
χl(q) , (11)

where

b =

√

2

2m − 1
(12)

and where we consider a cylinder with a circumference of 2π and length πτ
in the closed string channel. The generic non-degenerate Virasoro character
χp(q) is

χp(q) =
qp2

η(q)
, q = e−2πτ , (13)

where η(q) is the Dedekind function. However, the degenerate Virasoro
character χl(q) in Eq. (11) is given by [11]:

χl(q) =
1

η(q)

∑

n∈ Z

(

q(2n/b+1/2(1/b−l b))2 − q(2n/b+1/2(1/b+l b))2
)

. (14)
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In order to couple the cylinder amplitude in Eq. (11) to 2d quantum
gravity one has, in the conformal gauge, to multiply Zmat(r, s; q) by a con-
tribution Zghost(q) obtained by integrating over the ghost field, as well as
by a contribution ZLiouv(t1, t2; q) obtained by integrating over the Liouville
field. Explicitly we have

Zghost(q) = η2(q) , ZLiouv(t1, t2; q) =

∞
∫

0

dP Ψ̄σ1
(P )Ψσ2

(P )χP (q) , (15)

where Ψσ(P ) is the FZZT boundary wave function [2], such that

Ψ̄σ1
(P )Ψσ2

(P ) =
4π2 cos(2πPσ1) cos(2πPσ2)

sinh(2πP/b) sinh(2πPb)
, (16)

and where σ is related to the boundary cosmological constant by

x√
µ
≡ t = cosh(πb σ) . (17)

One finally obtains the full cylinder amplitude by integrating over the single
real moduli τ of the cylinder:

Zµ(r, t1; s, t2) =

∞
∫

0

Zghost(q)ZLiouv(t1, t2; q)Zmat(r, s; q) . (18)

This cylinder amplitude depends not only on the Cardy states r, s, but also
on the values of the boundary cosmological constants t1, t2 as well as the
bulk cosmological constant µ.

From the discussion above it is natural that the matrix model (for a spe-
cific value of m) only leads to a single cylinder amplitude since it corresponds
to an explicit (lattice) realization of the conformal field theory, and thus only
to one realization of boundary conditions. In the language of Cardy states
we want to identify which boundary condition is realized in the scaling limits
of the one-matrix model. We do that by calculating the cylinder amplitude
(18) and then comparing the result with the matrix model amplitude.

The calculation, using (11), (15) and (18), is in principle straight forward,
but quite tedious, see [9] for some details. The result is for r + s ≤ m (for
r + s > m we have a slightly more complicated formula, which we will not
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present here, but all conclusions are valid also in this case)1

Zµ(r, t1; s, t2) =−
r−1
∑′

k=1−r

s−1
∑′

l=1−s

log
([

(
√

t1 + 1 +
√

t2 + 1)2−fk,l(t1, t2)
]√

µa
)

,

(19)
where a is the cut-off (as in (10)) and the summations are in steps of two,
indicated by the primes in the summation symbols.

fk,l(t1, t2) = 4

[

√

(t1 + 1)(t2 + 1)+2 cos2

(

(k + l)πb2

4

)]

sin2

(

(k + l)πb2

4

)

.

(20)
From Eqs. (19) and (20) it follows that we have agreement with the matrix
model amplitude (10) if and only if r=s=1. The r=1 boundary condition is
in the concrete realizations of conformal field theories related to the so-called
fixed boundary conditions and for the matter part of the cylinder amplitude
it corresponds to the fact, that only the conformal family of states associated
with the identity operator propagates in the open string channel.

Following Martinec [3] it is now possible to calculate the FZZT–ZZ am-
plitude by replacing one of the FZZT wave functions in (15) with

Ψn̂(P ) ∝ Ψσ(n̂)(P ) − Ψσ(−n̂)(P ) , (21)

where (in the (2, 2m − 1) models)

σ(n̂) = i

(

1

b
+ n̂ b

)

, (22)

and where n̂ = 1, . . . ,m − 1 is an integer labeling the different principal
ZZ-branes.

Notice, the boundary cosmological constants tn̂ and t−n̂ corresponding
to the complex valued σ(n̂) and σ(−n̂) are real and are actually the same
for a given value of n̂:

tn̂ = t−n̂ = − cos
( 2n̂π

2m + 1

)

, (23)

i.e. they are the zeros of the polynomial Pm(t) in formula (2). We now obtain
the following FZZT–ZZ cylinder amplitude2 for r + s ≤ m, differentiated

1 The prime in the summation symbol
X′

means that the summation runs in steps

of two.
2 The upper sign in (24) is for 0 ≤ k + l + n̂, while the lower sign is for k + l + n̂ ≤ 0.
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after the boundary cosmological constant on the FZZT brane:

Z ′
µ(r, n̂; s, t) ∝

r−1
∑′

k=−(r−1)

s−1
∑′

l=−(s−1)

(±)
√

µ
√

1 + t

×
[

1√
t+1+

√
1+tk+l+n̂

− 1√
t+1−√

1+tk+l+n̂

]

. (24)

The differentiation after the boundary cosmological constant is performed in
order to compare with the corresponding amplitude Gµ(t, t′ =−tn̂, d → ∞)
given by (9), which is the amplitude of a cylinder with one marked point on
the compact boundary.

Let us now consider the FZZT-ZZ cylinder amplitude with an r = 1
Cardy matter boundary condition imposed on the FZZT boundary. This
is the natural choice if we want to compare with the matrix model results
since the Cardy matter boundary condition captured by the matrix model is
precisely r=1. In this case the summation over s is not present in Eq. (24)
and comparing formula (24) with the expression (9) for Gµ(t,−tn̂, d → ∞)
one can show that

Gµ(t,−tn̂, d → ∞) ∝
m−1
∑

r=1

S1,r Z ′
µ(r, n̂; 1, t) , (25)

where Sk,l is the modular S-matrix in the (2, 2m−1) minimal CFT, i.e. [11]

Sk,l =
√

2 b (−1)m+k+l sin(πkl b2) . (26)

This result is valid for any (2, 2m−1) minimal CFT coupled to quantum
gravity and is valid independent of which zero tk the running boundary
coupling constant approaches in the limit d → ∞. The proof of (25) is
straight forward but tedious and will not be given here (see [9] for some
details).

The natural interpretation of Eq. (25) is that the matter boundary state
of the exit loop in the loop–loop amplitude Gµ(t,−tn̂, d) is projected on the
following linear combination of Cardy boundary states in the limit d → ∞:

|a〉 =
m−1
∑

r=1

S1,r |r〉Cardy ∝ |1〉〉 , (27)

where the last state is the Ishibashi state corresponding to the identity op-
erator and where we have used the orthogonality properties of the modular
S-matrix and the relation between Cardy states and Ishibashi states:

|r〉Cardy =

m−1
∑

k=1

Sr,k
√

S1,k

|k〉〉 . (28)
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The Ishibashi state corresponding to the identity operator is in a certain
way the simplest boundary state available, and it is remarkable that it is
precisely this state which is captured by the explicit transition from compact
to non-compact geometry enforced by taking the distance d → ∞.

4. The nature of ZZ branes

A ZZ-brane is defined as the tensorproduct of a ZZ boundary state |r, s〉zz
and a Cardy matter state |k, l〉Cardy. Hence, in addition to specifying a ZZ
boundary condition, we have to impose a Cardy matter state at infinity.
In the original article by the Zamolodchikovs only Liouville field theory
was considered [1]. However, their line of reasoning relied crucially on the
interpretation of quantum Liouville theory as describing 2d quantum gravity.
Invarians under diffeomorphisms demands that the total central charge is
zero. Hence, for a given value of the Liouville central charge we should think
of the corresponding matter and ghost fields (which have central charges
such that the total central charge is zero) as having been integrated out. In
the article of the Zamolodchikovs the nature of the various boundary states
at infinity was unclear. The successive work in the context of non-critical
string theory [4–6] showed how to reduce the possible ZZ branes to a number
of principal ZZ branes. However, the origin of precisely these principal ZZ
branes remained somewhat of a mystery.

In (p, q) minimal non-critical string theory the principal ZZ-branes are
defined as

|1, 1〉Cardy ⊗ |r, s〉zz , (29)

where 1 ≤ r ≤ p−1, 1 ≤ s ≤ q−1 and rq−sp > 0. It turns out that we may
interpret the (p− 1)(q − 1)/2 different principal ZZ branes in (p, q) minimal
string theory as matter dressed basic (1, 1) ZZ boundary states [23]:

|1, 1〉Cardy ⊗ |r, s〉zz = |r, s〉Cardy ⊗ |1, 1〉zz . (30)

Eq. (30) should be understood in the following way: With regard to expec-
tation values of physical observables it does not matter whether we use the
right hand side or the left hand side of Eq. (30). Thus, in this sense there
exists only one ZZ boundary condition, the basic (1, 1) boundary condition.
Furthermore, we have the following generalization of (30):

|k, l〉Cardy ⊗ |r, s〉zz =





top(r,k;p)
∑′

i=|r−k|+1

top(s,l;q)
∑′

j=|s−l|+1

|i, j〉Cardy



 ⊗ |1, 1〉zz , (31)

where
top(a, b; c) ≡ min(a + b − 1, 2c − 1 − a − b) . (32)
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Notice, this summation is precisely the same which appears in the fusion of
two primary operators in the (p, q) minimal conformal field theory:

Ok,l × Or,s =

top(r,k;p)
∑′

i=|r−k|+1

top(s,l;q)
∑′

j=|s−l|+1

[Oi,j ] . (33)

Why are Eqs. (30) and (31) true? (we refer to [23] for the full details of the
proof.)

Recall the definition of the Cardy matter boundary states in the (p, q)
minimal conformal field theory:

|k, l〉Cardy ≡
∑

i,j

S(k, l; i, j)
√

S(1, 1; i, j)
|i, j〉〉 , (34)

where the summation runs over all the different Ishibashi states |i, j〉〉 in the
(p, q) minimal model and

S(k, l; i, j) = 2

√

2

pq
(−1)1+kj+li sin(πb2lj) sin(πki/b2) , (35)

is the modular S-matrix in the (p, q) minimal model. The Cardy matter
boundary states are labeled by two integers (k, l), which satisfy that 1 ≤
k ≤ p−1, 1 ≤ l ≤ q−1 and kq − lp > 0.

On the other hand the principal ZZ boundary states are defined as

|r, s〉zz =

∞
∫

0

dP
sinh(2πrP/b) sinh(2πsPb)

sinh(2πP/b) sinh(2πPb)
Ψ1,1(P ) |P 〉〉 , (36)

where b=
√

p/q. Ψ1,1(P ) is the basic ZZ wave function [1]:

Ψ1,1(P ) = β
iPµ−iP/b

Γ (1 − 2iP b)Γ (1 − 2iP/b)
, (37)

where the constant β is independent of the cosmological constant µ and P .
Finally, |P 〉〉 denotes the Ishibashi state corresponding to the non-local pri-
mary operator exp(2(Q/2 + iP )φ) in Liouville theory, where Q=b+1/b.

Notice, the ranges of the indices k, l labeling the different Cardy matter
boundary states and the indices r, s labeling the principal ZZ branes are
the same. As noted already by the Zamolodchikovs in [1], the modular
bootstrap equations for the ZZ boundary states are surprisingly similar to
the bootstrap equations for the Cardy matter boundary states in the minimal
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models. The key point is now that the physical operators in minimal string
theory carry both a matter “momentum” and a Liouville “momentum” and
these are not independent, but related by the requirement that the operators
scale in a specific way. In particular, the Liouville momenta P of the physical
observables are imaginary and the imaginary i explains the shift from sin
to sinh going from (34) to (36). The coupling between the matter and
Liouville momenta implies, that physical expectation values will be the same
irrespectively of whether we use the left or the right side of Eq. (30).

Our interpretation of the term

sinh(2πrP/b) sinh(2πsP b)

sinh(2πP/b) sinh(2πP b)
(38)

in the definition of the principal (r, s) ZZ boundary state (36) as a dress-
ing factor arising from the integration over the matter and the ghost fields
becomes evident when considering the cylinder amplitude. For simplicity
we only consider this amplitude in (2, 2m − 1) minimal string theory. The
cylinder amplitude does not factorize into a matter part and a Liouville
part. The integration over the single real moduli τ correlates matter with
geometry. If one imposes the (1, s) Cardy matter state on a ZZ boundary
and performs the integrations over both τ , the matter and the ghost fields,
the ZZ boundary wave function get dressed exactly with the term (38) with
r = 1 [23].

5. Discussion

We have shown how it is possible to construct an explicit transition from
compact to non-compact geometry in the framework of 2d quantum gravity
coupled to conformal field theories. The non-compact geometry is AdS-like
in the sense that the average area and the average length of the exit loop
diverge exponentially with d when d → ∞ as shown in [8] (for pure gravity),
and the corresponding amplitude can be related to the FZZT–ZZ cylinder
amplitude with the simplest Ishibashi state living on the ZZ brane. The
d → ∞ limit plays an instrumental role and we would like to address two
important aspects of this.

Firstly, our construction also adds to the understanding of the relation
(21) discovered by Martinec. In Liouville theory there is a one-to-one cor-
respondence between the ZZ boundary states labeled by (m,n) and the
degenerate primary operators Vm,n [1]. This correspondance completely de-
termines the Liouville cylinder amplitude with two ZZ boundary conditions:
The spectrum of states flowing in the open string channel between two ZZ
boundary states is obtained from the fusion algebra of the corresponding de-
generate operators. Similarly, there is a one-to-one correspondence between
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the FZZT boundary states labeled by σ > 0 and the non-local “normaliz-
able” primary operators Vσ = exp((Q + iσ)φ), where φ is the Liouville field.
The conformal dimension of the spin-less degenerate primary operator Vm,n

is given by

∆m,n =
Q2 − (m/b + nb)2

4
, (39)

while the conformal dimension of the spin-less non-local primary operator
Vσ is given by

∆σ =
Q2 + σ2

4
. (40)

Since ∆m,n = ∆σ for σ = i(m/b + nb), one is naively led to the wrong
conclusion, that a FZZT boundary state turns into a ZZ boundary state, if
one tunes σ = i(m/b + nb). However, the operator Vm,n is degenerate and
in addition to setting σ = i(m/b + nb) we therefore have to truncate the
spectrum of open string states, that couple to the FZZT boundary state,
in order to obtain a ZZ boundary state. This is precisely captured in the
relation (21) concerning the principal ZZ boundary states. The world-sheet
geometry characterizing the FZZT brane is compact, while the world-sheet
geometry of the ZZ-brane is non-compact. Hence, truncating the spectrum
of open string states induces a transition from compact to non-compact
geometry.

In order to clarify how this truncation is obtained in our concrete real-
ization of a transition from compact to non-compact geometry, we have to
discuss the boundary cosmological constant of the exit loop. The cylinder
amplitude (6) may be expressed as

Gµ(x, y; d) =

∞
∫

0

dle−ylGµ(x, l; d) , (41)

where the cylinder amplitude Gµ(x, l; d) with fixed length l of the exit loop
is given by

Gµ(x, l; d) = e−x̄(d)l wµ(x̄(d))

wµ(x)
. (42)

Hence, an interpretation of the running boundary coupling constant t̄ =
x̄(d)/

√
µ (measured in units of

√
µ) as a boundary cosmological constant

induced on the exit loop seems obvious. Notice, this induced boundary
cosmological constant approaches one of the values tk associated with the
ZZ-branes in the limit d → ∞. However, an AdS geometry emerges in the
limit d → ∞ if and only if we set the boundary cosmological constant of the
exit loop y/

√
µ = −tk.
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The induced boundary cosmological constant approaches one of the zeros
tk in the limit d → ∞ regardless of whether we set y/

√
µ = −tk i.e. regard-

less of whether we generate an AdS geometry or not. Hence, these discrete
values of the boundary cosmological constant induced at infinity seems to be
generic to non-compact geometries. This suggests, that we should regard the
boundary cosmological constants associated with the ZZ-branes as induced.

Secondly, in [4] it was advocated that the algebraic surface

Tp

(

w

Cp,q(µ)

)

= Tq(t) , (43)

where Cp,q(µ) is a constant, is the natural “target space” of (p, q) non-critical
string theory. For (p, q) = (2, 2m−1) Eq. (43) reads

w2 = µ(2m−1)/2P 2
m(t)(t + 1) , (44)

and in this case the extended target space is a double sheeted cover of the
complex t-plane except at the singular points, which are precisely the points
(tk, w=0) associated with the zeros of the polynomial Pm(t). One is also led
to this extended target space from the world-sheet considerations made here.
We want the running boundary coupling constant to be able to approach
any of the fixed points tk in the limit d → ∞, i.e. we want all the fixed
points to be attractive. This is only possible if we consider the running
boundary coupling constant t̄(d) = x̄(d)/

√
µ as a function taking values on

the algebraic surface defined by (44). The reason is that tk is either an
attractive or a repulsive fixed point depending on which sheet we consider
and some of the fixed points are attractive on one sheet, while the other
fixed points are attractive on the other sheet. Hence, we are forced to view
t̄(d) as a map to the double sheeted Riemann surface defined by Eq. (44) in
the (2, 2m−1) minimal model coupled to quantum gravity.

The picture becomes particularly transparent if we use the uniformiza-
tion variable z introduced for the (p, q) non-critical string in [4] by

t = Tp(z), w/Cp,q(µ) = Tq(z) , (45)

i.e. in the case of (p, q) = (2, 2m−1):

z =
1√
2

√
t + 1 . (46)

The map (45) is one-to-one from the complex plane to the algebraic surface
(43), except at the singular points of the surface where it is two-to-one. The
singular points are precisely the points corresponding to ZZ branes. If we
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change variables from x to z in Eq. (5) (choosing µ = 1 for simplicity) we
obtain

∂

∂d
G̃µ(z, z′; d) = − ∂

∂z
P̃m(z)G̃µ(z, z′; d) , (47)

where G̃µ(z, z′; d) = zGµ(x, y; d) and where the polynomial P̃m(z) is

P̃m(z) ∝
m−1
∏

k=1

(z2 − z2
k) , zk = sin

(π

2
b2 k

)

. (48)

Each zero tk of Pm(t) gives rise to two zeros ±zk of P̃m(z). The zeros ±zk

are the fixed points of the running “uniformized” boundary cosmological con-
stant z̄ associated with the characteristic equation corresponding to Eq. (47).
For a given value of k one of the two zeros ±zk is an attractive fixed point,
while the other is repulsive. Moving from one sheet to the other sheet on
the algebraic surface (44) corresponds to crossing the imaginary axis in the
z-plane. Hence, for a given value of k the two fixed points ±zk are each
associated with a separate sheet and z̄ will only approach the attractive of
the two fixed points ±zk, if t̄(d) belongs to the correct sheet.

Quite remarkable Eq. (47) was derived in the case of pure 2d gravity (the
(2, 3) model corresponding to c = 0) using a completely different approach
to quantum gravity called CDT3 (causal dynamical triangulations) [20] and
the uniformization transformation relating the CDT boundary cosmological
constant z to the boundary cosmological constant t was derived and given
a world-sheet interpretation in [21], but again from a different perspective.
From the CDT loop–loop amplitude determined by (47) one can define a
CDT “ZZ brane” with non-compact geometry [22].
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