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A closed-form approach for average description of the E1 radiative
strength functions is examined. It gives simple and rather accurate method
of simultaneous description of the 7y-decay and photoabsorption dipole
strength functions in the medium and heavy nuclei. The approach is able
to cover a relatively wide gamma-ray energy interval, ranging from zero to
values above GDR peak energy.
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1. Introduction

Gamma-emission is one of the most universal channel of the nuclear de-
excitation processes which can accompany any nuclear reaction. It can be
described by the radiative strength functions [1,2]. These functions are also
auxiliary quantities involved in calculations of the observed characteristics
of the nuclear structure and many different nuclear processes ( [3-8|). The
calculations, as a rule, are very time consuming and simple closed-form
expressions are preferable in evaluation of the y-ray strengths. The theory-
based approaches are also needed in improving the reliability and accuracy
of the strength estimations. Below a model of this type is considered with
statistical description of the radiative strengths of excited states.

2. Gamma-ray strengths in heated nuclei

We shall consider the radiative strength functions averaged over spins of
initial states for y-transitions of the electric dipole type with the energy €, in
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heated nuclei at fixed initial excitation energy U (the temperature T'). The
emission and absorption processes for y-rays are generally connected with
different radiative strengths [1,2]. The gamma-decay (downward) strength
function ? 1 determines the y-emission of heated nuclei. It is associated
with the average radiative width I'gi(e) per unit of the y-ray energy in-
terval. The photoexcitation (upward) strength function ? 1 is connected
with photoabsorption cross-section o1 (ey,T). Both of these strengths are
determined by spectral function F(e,, T):

- _Iml(ey) pUZN)
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where p(U,Z,N) is the total density of the initial states. The y-decay
strength function depends on temperature T of the final states. This tem-
perature is a function of the 7-ray energy in contrast to the initial states
temperature T'.

The spectral function F(e,,7T) is proportional to the imaginary part of
the nuclear response function on the electromagnetic field [8,9]. For de-
scription of the neutrons and protons motion in the nucleus we use the
semiclassical Landau—Vlasov equations with a source term for relaxation
processes [10,11]. The Fermi sphere distortions are truncated by the layers
of monopole and dipole multipolarities [12| and the hydrodynamic boundary
condition is adopted that the radial component of the nucleon current van-
ishes at the nuclear surface. This approach leads to the same equations for
particle density and velocity as they are in the hydrodynamic Steinwedel—
Jensen model with friction force between the proton and neutron fluids [13]
(extended SJ model) but provides implicit expression for damping width of
the velocity. Using the dipole mode approximation for response function
(dipole polarizability) within the extended SJ model (see, §14.4 of Ref. [13])
together with general expression between the spectral function F(e,, 7) and
the nuclear response function from [8,9], we find for F1 dipole transitions
in spherical nuclei

ey I’
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where E, is the giant dipole resonance (GDR) energy. The quantities o, and
I, are the peak value and the width of the E'1 photoabsorption cross-section
at zero temperature. Here, 0, is taken in mb and E,, I, e, in MeV.
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The scaling factor L(e,,7) defines the enhancement of magnitude of
the radiative strength functions in heated nuclei with temperature T as
compared to the cold nuclei. This factor can be interpreted as average
number of the 1p—1h excited states in heated system placed in an external
field with frequency w = ¢, /A,

400
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L(ey, T) = = exp(—2./T) = - 0/ derdean(er)(1—n(eg))d(e1 —e2+ey),

(4)
where n(e) = 1/[1 — exp((e — p)/T)] is the Fermi distribution function for
occupation of the single-particle states.

In the case of cold nuclei the photoexcitation strength function is only
defined and it is given by Eqgs. (2), (3) with factor £ = 1.

The damping width I" in Egs. (3) determines the reduced friction force
for isovector velocity (Eq. (14.60) from Ref. [13]). It is calculated by a source
term J(p, r,t) of relaxation processes in Landau—Vlasov equation for dipole
isovector mode [10,11] as I" = 2k [ dp(p/m)J(p,r,t)/((27h)3 (v, — v,))
with v, and v, for the velocities of the proton and neutron fluids. We take
into account two main relaxation mechanisms: (i) The two-body collisional
damping; (i) The fragmentation width caused by the interaction of particles
with the time-dependent self-consistent mean field which is imitated by the
isovector one-body relaxation mechanisms in the relaxation time approxi-
mation. We use non-Markovian collisional integral with retardation effects
as the source term of the collisional damping. The isovector one-body re-
laxation time is expressed by corresponding fragmentation width, which is
taken as to be equal to the wall formula value [14] but scaled with an coeffi-
cient obtained by fitting the total width at e, = E, and 7 = 0 to the GDR
width. As a result, we have

_ I7 1 o 2
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where B, = 1.08 - 10720, E?/I', = 5.39 - 1073F - E2/I is two-body con-
tribution to the GDR damping width I, = I'(e, = E,,T7 = 0) at zero
temperature with the oj, for in-medium neutron—proton cross section near
the Fermi surface; F' = 0, /0fee 18 scaling factor between the values of the
in-media and free space cross sections (ogee = 5fm2).

The dependence of the width on the energy and temperature is due to
two-body component of the width described by the first term on the right-
hand side of Eq. (5). The energy dependence results from memory effects
in the collision integral and agrees with Landau’s prescription. The temper-
ature dependence results from the smeared out behavior of the equilibrium
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distribution function near the Fermi momentum in the heated nuclei. The
second term on the right-hand side of Eq. (5) is the fragmentation compo-
nent of the width.

The expression (3) with (4)-(5) is named below as the thermodynamic
pole approximation [8] (TPA model) and the denotation Frpy is used for cor-
responding spectral function. This function has the temperature-dependent
finite value for vanishing gamma-ray energy. As a result, the y-decay and
photoexcitation dipole strength functions within this model have the same
non-zero value at e, = 0:

F (0, Ty =T) = F 51 (0,T) = 8.674-10 %0, I,TT(0,T)/EL.  (6)

3. Comparison of the closed-form E1 strength models

Here, the comparison of the calculations of the E1 radiative strength
functions is given within the framework of TPA-approach and others closed-
form models. The results are also compared with the experimental data.
Two other simple models are the following;:

(i) Standard Lorentzian (SLO) model [1,2| with Lorentzian line shape
and the energy-independent width. The SLO spectral function, Fgr1,0,
has the form of Eq. (3) but with £L=1 and I = I.

(73) An enhanced generalized Lorentzian (EGLO) model [15,16]| with ra-
diative strength function consisting of two components, namely, a
Lorentzian with the energy and temperature dependent width and
finite value term [17] for zero value of y-ray energy:

T T
Eyk FO7 R0 (7

F =8.674-10 %0, I,
EGLO(Ey, T) g (62 — E2)? + (e,1%)? E}

where the energy-dependent width I is taken as proportional to the colli-
sional component of the width with an empirical function Q(e) =k + (1 —
k)(ey —4.5)/(E, —4.5):

I

Ti(ey, T) = Qleq) 555 [&7 + (27 T)7], (8)

I'yo = I',(0, 7). The factor k£ was obtained by fitting the average resonance
capture data and it depends on the model used for level density. In the
case of the backshifted Fermi gas model [18] the & is given by [16]: k = 1
if A< 148 and K = 1+ 0.09(A — 148)2 exp (—0.18(A — 148)) whenA > 148.
We use this model, so that the temperatures T, T’ relate to one another and
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to the initial excitation energy U as Ty = (1 + /1 + 4a(aT? — T — &,))/2a,
T=(1 1+ 4a(U — A))/2a, where A the energy shift parameter and a
the level density parameter.

The foregoing expressions for spectral functions are only applicable to
spherical nuclei. In the case of the axially symmetric deformed nuclei any
spectral function is the sum of two components of the form (3) or (7) with
GDR parameters E, 1, I}, 0,1 and E,o, I}9, 02 corresponding to the
collective motion along two principal axes.
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Fig. 1.

- In Fig. 1 the results of the calculations of the gamma-decay strengths
f g1 in 2°Zr are shown: solid line — TPA; dot — SLO; dash — EGLO.
The experimental data are taken from Refs. [19,20]. The TPA and EGLO
strengths are calculated at the initial excitation energies U corresponding to
the experimental ones. The curves connect the calculated values and they are
drawn only for a vivid presentation of the results. The values of the GDR
parameters are taken from photonuclear data [16,21]. The level density
parameters are used from [16]. The contribution of collisional damping to
the GDR width was taken in TPA calculations as B, = 0.2 in agreement
with Refs. [10,11].

As it can be seen from this figure, the TPA and SLO models describe
experimental data better than the EGLO for this nucleus and energy range.
The calculations by TPA model lie also more close to the experimental data
than within SLO method. For example, the values of the least-squares de-
viations per one degree of freedom from experimental data are equal to 2.8
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and 5.2 for the TPA and SLO models, respectively. Note that the SLO
model leads to incorrect zeroth value of the gamma-decay strength function
at vanishing gamma-ray energy, contrary to EGLO and TPA approaches.
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Fig. 2.

In Fig. 2 the comparison is shown between different approaches in the
case of the photoabsorption cross-section on ?°Zr. The notations are the
same as in Fig. 1. The experimental data are taken from Ref. [21]. The
behaviour of the E1 strength functions calculated by the TPA method is
almost in coincidence with SLO model in the vicinity of the GDR peak
energy for cold nuclei. It is mainly resulted from account of the one-body
relaxation width, which is independent of the gamma-ray energy.

The comparison between calculations within TPA, EGLO and SLO mod-
els and experimental data demonstrates usefulness and reliability of the TPA
approach for unified description of the «y-decay and photoabsorption strength
functions in a relatively wide energy interval, ranging from zeroth gamma-
ray energy to the values above GDR peak energy. This is important for
prediction of the downward and upward radiative strength functions in cold
and heated nuclei as well as for extraction of the GDR parameters of heated
nuclei with small errors from y-emission data.

I am very grateful to Profs. A.V. Ignatyuk, P. Oblozinsky, M.G. Urin
and J. Kopecky for valuable discussions and comments. This work was
supported in part by the IAEA under Contract No. 10308/RO.
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