STRUCTURE OF NEUTRON-RICH ODD-MASS ^{127,129,131}In POPULATED IN THE DECAY OF ^{127,129,131}Cd*

O. ARNDT^{a,b}, S. HENNRICH^b, N. HOTELING^{c,d}, C.J. JOST^b, B.E. TOMLIN^e J. SHERGUR^{c,d}, K.-L. KRATZ^{a,b}, P.F. MANTICA^c, B.A. BROWN^e, R.V.F. JANSSENS^d W.B. WALTERS^c, B. PFEIFFER^{a,b}, A. WÖHR^{c,f}, S. ZHu^d, R. BRODA^g M.P. CARPENTER^d, B. FORNAL^g, A.A. HECHT^{c,d}, W. KRÓLAS^g, T. LAURITSEN^d T. PAWLAT^g, J. PEREIRA^{e,h}, D. SEWERYNIAK^{c,d}, I. STEFANESCU^{c,d} J.R. STONE^c, J. WRZESIŃSKI^g

 ^aOtto-Hahn-Institut, MPI für Chemie, Universität Mainz, 55128 Mainz, Germany
^bInstitut für Kernchemie, Universität Mainz, 55128 Mainz, Germany
^cDept. of Chemistry and Biochemistry, University of Maryland College Park, MD 20742 USA
^dPhysics Division, Argonne National Laboratory, Argonne, IL 60432 USA
^eNational Superconducting Cyclotron Laboratory, Michigan State University East Lansing, MI 48824 USA
^fUniversität des Saarlands, 66421 Homburg, Germany
^gH. Niewodniczański Inst. of Nuclear Physics, 31-342 Kraków, Poland
^hJoint Institute for Nuclear Astrophysics, MSU, East Lansing, MI 48824 USA

(Received October 27, 2008)

New level structures are proposed for neutron-rich ^{127,129,131}In populated in the decay of ^{127,129,131}Cd. No evidence for the presence of 1-particle-2-hole intruder structures in the neutron-rich In isotopes is observed.

PACS numbers: 21.10.-k, 21.10.Pc, 21.10.Tg, 21.60.Cs

Two unexpected systematic features of the structure of even–even neutron-rich Cd and Fe nuclei were identified in the first experiments at ISOLDE in which laser ionization of Ag and Mn, respectively, was used to achieve high selectivity for radioactive decay studies. Kautzsch, Walters and Kratz reported new level structures for 126,128 Cd_{78,80} in which the 2⁺ and 4⁺ energies for 128 Cd₈₀ were lower than those in 126 Cd₇₈ which is in sharp contrast with isotonic 130,132 Te_{78,80}, and also with isotopic 100,102 Cd [1]. The 46 ms half-life of the r-process nucleus 129 Ag₈₂ was also reported in this paper, along with the selective ionization of 122 Ag isomers achieved by hyperfine tuning of the laser ion source. At about the same time measurements were

^{*} Presented by W.B. Walters at the Zakopane Conference on Nuclear Physics, September 1–7, 2008, Zakopane, Poland.

O. ARNDT ET AL.

taken and reported by Hannawald *et al.*, showing new level structures in 64,66 Fe_{38,40} in which the 2⁺ level in 66 Fe was found at a surprisingly low energy of 574 keV, relative to the 746 keV 2⁺ energy of 64 Fe, and, also with respect to the 2⁺ energies in isotonic 66,68 Ni [2]. Half-lives for 67,68,69 Mn were also reported in this paper.

Recent studies of the level structure of neutron-rich ⁶⁴Fe by Hoteling et al. [3], ^{64,66}Fe by Lunardi et al. [4], and ^{66,68}Fe by Adrich et al. [5], revealed detailed level structure information for neutron-rich Fe nuclei near the N = 40 subshell closure. Subsequently, Pauwels et al., identified a 1-particle-2-hole $1/2^-$ intruder in ⁶⁷Co [6]. The large cross section for the twoproton knockout reaction from ⁶⁸Ni to produce ⁶⁶Fe suggests that the structure of ⁶⁶Fe is similar to that of ⁶⁸Ni. Whereas, the much reduced cross section for 2-proton knockout from ⁶⁶Fe to levels in ⁶⁴Cr indicates a significant change in structure. Thus, the drop in the 2⁺ levels in ^{66,68}Fe can now be interpreted as being driven by admixtures of intruder configurations. Combined with the existing data for neutron-rich Cr isotopes [7], the conclusion can be drawn that the ground state of ⁶⁴Cr is much more deformed than either ⁶⁸Ni or ⁶⁶Fe.

Hence, the question can be raised as to whether some form of "intruder" configuration might be responsible for the "¹²⁸Cd problem", namely, the low 2^+ energy in ¹²⁸Cd relative to that of ¹²⁶Cd. Subsequent to the ISOLDE β -decay measurements, additional studies of the low-energy structure of the neutron-rich Cd isotopes have been reported. Stoyer *et al.* [8], have studied the structures of ^{122,124}Cd, Tomlin, Mantica, and Walters have studied the structures of ^{125,126,127}Cd [9], Hoteling *et al.*, have studied the structures of ^{126,128}Cd [10], Caceres *et al.*, have reported data for levels in ¹²⁸Cd and Jungclaus *et al.*, have reported new levels for ¹³⁰Cd [11, 12]. None of these nuclei have exhibited intruder structures comparable to the well-known intruder levels in the mid-shell ^{114,116}Cd nuclei described by Juutinen *et al.* [13], for which proton 1-particle-2-hole intruder structures have been identified in the adjacent ^{115,117}In isotopes [14]. Coulomb excitation data for Cd isotopes up through ¹²⁶Cd₇₈ show decreased B(E2) values with increasing neutron numbers as N approaches the shell closure at N = 82 [15].

In this paper, new results are reported for the level structures of 127,129,131 In_{78,80,82} observed in the β decay of 127,129,131 Cd, respectively. The parent Cd nuclei were selectively ionized using the ISOLDE Resonance Ionization Laser Ion Source (RILIS) as described by Dillmann *et al.* and Erdmann *et al.* [16, 17]. The aim of this paper is to provide data that can be compared to various calculations for nuclei in this mass region, and to explore the possibility that intruder structures might exist in these nuclei that would represent configuration admixtures from across the N = 82 and Z = 50 closed shells.

Levels in ^{123,125,127}In populated in the decay of ^{123,125,127}Cd were identified by Hoff *et al.*, and provide the data for establishing the systematic behavior of the neutron-rich In nuclei [18]. Additional data for ^{123,125}Cd decay to levels of ^{123,125}In were provided by Huck *et al.* [19]. High-spin isomers in ^{123,125,127,128,129,130}In have been observed by Scherillo *et al.* [20].

The γ rays observed in the decay of expected $h_{11/2}$ and $d_{3/2}$ ¹²⁷Cd isomers are consistent with the gamma rays proposed by Hoff *et al.* The energies of the $1/2^-$ and $21/2^-$ beta-decaying isomers in ¹²⁷In have been determined by Gausemel *et al.*, to be 420(65) keV and 1863(58) keV, respectively [21]. It is possible to propose a more precise value for the position of the $1/2^$ level by noting that Hoff *et al.*, observed gamma rays at 1744.7(2) and 1755.4(4) keV to be in coincidence with the 523 keV $3/2^-$ to $1/2^-$ transition. They also observed two additional gamma rays that showed no coincidences at 2677.4(3) and 2688.6(10) keV. As the former γ rays decay to the $3/2^$ level, it is possible to place the latter γ rays as decaying to the ground state and obtain an energy of 408 keV for the $1/2^-$ isomer and 933 keV for the $3/2^-$ level.

A weak peak is observed at 270.2(4) keV, shown in Fig. 1, that could be placed as the transition from the $5/2^+$ level at 1202.3 keV to the $3/2^-$ level at 933 keV that provides additional support for the 408 keV position of the $1/2^-$ isomer in ¹²⁷In.

Fig. 1. Portion of the spectrum of γ rays following the decay of ¹²⁷Cd to levels of ¹²⁷In. The upper spectrum was taken with the lasers on and the lower spectrum was taken with the lasers off.

O. ARNDT ET AL.

No γ rays for the decay of the 104(6) and 242(8) ms isomers of ¹²⁹Cd isomers to levels of ¹²⁹In have been previously reported [22]. However, Gausemel *et al.*, placed the positions of the $1/2^-$ and $23/2^- \beta$ decaying isomers at 369(46) keV, and 1630(56) keV, respectively, from Q_{β} measurements, and Scherillo *et al.*, reported a $17/2^- 8.5 \mu$ s isomer at 1633 keV that cascades to the ground state through the proposed $13/2^+$ and $11/2^+$ levels at 1395 and 995 keV, respectively [19]. Earlier, Fogelberg *et al.*, identified a $29/2^+$ isomer whose decay populated the $23/2^- \beta$ -decaying isomer [23].

The energies and relative intensities for the γ rays that were observed in this study for the decay of ¹²⁹Cd isomers to levels in ¹²⁹In are shown in Table I. These γ rays are assigned by comparing spectra taken with the lasers on with spectra taken with the lasers off. Portions of those spectra are shown in Figs. 2 and 3, and a partial decay scheme is shown in Fig. 4. Only limited coincidence data are available, and have been used to place the γ rays at 542, 1760, and 1796 keV. The strong γ rays at 632, 1423, and 1586 keV were placed as the $3/2^-$ to $1/2^-$, $5/2^+$ to $9/2^+$, and $9/2^+_2$ to $9/2^+$ transitions, respectively. No coincidence data were obtained for the other transitions. Only the γ rays at 400 and 440 keV could be placed as the $5/2^+$ to $3/2^-$ transition and keep the $1/2^-$ isomer within a 1σ range indicated by the beta decay data. As no basis exists for choosing which transition is correct, if either, we have shown the position of the $1/2^-$ isomer and the $3/2^-$ excited level as bars with a width of 40 keV. Both values for the position of the $1/2^-$ isomer are well within the uncertainty of the Q_{β} measurement.

Fig. 2. Portions of the spectrum of gamma rays following the decay of ¹²⁹Cd to levels of ¹²⁹In. The upper spectrum was taken with the lasers on and the lower spectrum was taken with the lasers off.

440

TABLE I

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Energy	Intensity	from	to	Energy	Intensity	from	to
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	333.5	13.0	1687	1354	1585.7	12.0	1586	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	338.2	6.0			1689.9	6.0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	358.8	50.0	1354	995	1755.3	4.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	400.5	7.0	1423	(1023)	1760.9	19.0	3184	1423
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	439.7	4.0	1423	(983)	1763.3	5.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	537.2	2.0			1770.9	3.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	541.8	11.0	1525	(983)	1796.1	32.0	3150.2	1354
	561.7	8.0			2087.9	5.5		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	589.1	5.2			2155.1	9.0	3150.1	995
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	618.3	4.3			2216.7	8.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	631.9	30.0	(983)	(351)	2330.9	5.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	731.1	8.5	2419	1687	2460.2	6.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	839.8	6.0			2628.5	4.0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	858.1	3.3			2838.4	2.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	863.1	5.5			2879.9	2.5		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	995.0	100.0	995	0	2918.5	1.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1020.3	8.5			2999.0	2.0		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1065.2	8.0	2419	1354	3184.1	3.0	3184	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1103.4	5.0			3348.0	4.0		
1422.6 20.0 1423 0 3701.9 6.0 1462.2 11.0 3150 1687 3888.2 2.0 1499.4 7.0 3914.7 3.0	1234.1	5.0			3388.9	2.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1354.1	21.0	1354	0	3487.8	1.0	4471	(983)
1499.4 7.0 3914.7 3.0	1422.6	20.0	1423	0	3701.9	6.0		
	1462.2	11.0	3150	1687	3888.2	2.0		
	1499.4	7.0				3.0		
	1554.8	5.0						
1557.9 5.0 4119.9 2.0 4471 (351)	1557.9	5.0			4119.9	2.0	4471	(351)
1561.5 5.0	1561.5	5.0						. /

Energies (in keV) and relative intensities for the γ rays in ¹²⁹Cd decay to levels of ¹²⁹In. Uncertainties in the energy values are ≈ 0.5 keV. Uncertainties in the intensity values are $\approx 10\%$ for the stronger peaks and $\approx 20\%$ for the weaker peaks.

Portions of the γ -ray spectrum observed in the decay of 68 ms ¹³¹Cd to levels of ¹³¹In are shown in Figs. 5 and 6 and the possible single-proton hole levels included in Fig. 7. The position of the $1/2^-$ isomer is taken from Q_β measurements reported by Fogelberg *et al.* [24]. Owing to the short half-life and low relative yield, the statistics are poor. These data were taken using a special UC_x target / RILIS system with a temperature-controlled quartz transfer line in between which served as thermochromatography column to chemically suppress the high In and Cs isobaric contaminations of ¹³¹Cd [25].

The absence of the main decay peak for ¹³¹In at 2434 keV in the spectrum taken with the lasers turned off is an indication of the success of this technology. That same peak's presence in the spectrum taken with the lasers-turned on is an indication that ¹³¹Cd was, indeed, successfully ionized.

O. ARNDT ET AL.

Fig. 3. Portions of the spectrum of γ rays following the decay of ¹²⁹Cd to levels of ¹²⁹In. The upper spectrum was taken with the lasers on and the lower spectrum was taken with the lasers off.

Fig. 4. Proposed partial level scheme for ¹²⁹In populated in the decay of ¹²⁹Cd isomers. The energies are in keV. The energy for the $1/2^{-}$ level is taken from the Q_{β} measurements reported by Gausemel *et al.* [20].

Seven rays can be assigned to the decay of ¹³¹Cd, with energies at 844, 988, 2428, 3556, 3866, 4403, and 6039 keV. As can be seen, any of the three lower-energy gamma rays could be attributed to statistical fluctuations in the data. The lines at 988 and 2428 are the most "durable" in all of the analyses and are placed as the transition between the $p_{3/2}$ and $p_{1/2}$, and $f_{5/2}$ and $p_{1/2}$ single proton hole levels, respectively. We cannot, however, rule out the possibility that the 844 keV transition is the $f_{5/2}$ to $p_{3/2}$ single proton transition, with the 2428 keV transition joining the other high-energy lines in decaying from levels arising from coupling to the 4 MeV ¹³²Sn core to the $g_{9/2}$ ground state, $p_{1/2}$ isomer or other levels. The positions of the rays at 3556, 3866, 4403, and 6039 keV likely represent decay from levels with configurations involving a broken ¹³²Sn core.

Fogelberg *et al.*, identified a proposed $21/2^+ \beta$ -decaying isomer in ¹³¹In at 3764 (88) keV [24] and Gorska *et al.*, have recently reported the presence of a proposed γ -decaying $17/2^+$ isomeric level at 3782(2) keV with a half-life of 630(60) ns [26]. If the ray observed in this study at 3556 keV populates the 1^- level at 332 keV, then it would originate from a level at 3888 keV, quite close to the previously reported isomers.

Fig. 5. Portion of the spectrum of γ rays near 1 MeV following the decay of ¹³¹Cd to levels of ¹³¹In. The upper spectrum was taken with the lasers turned off and the lower spectrum was taken with the lasers turned on. The asterisks (*) are shown over the rays at 844 and 988 keV that appear to disappear when the lasers are turned off.

Fig. 6. Portion of the spectrum of γ rays near 2.4 MeV following the decay of ¹³¹Cd to levels of ¹³¹In. The upper spectrum was taken with the lasers turned off and the lower spectrum was taken with the lasers turned on. The right side of the doublet seen in the lower spectrum taken with the lasers on lies at 2434 keV and is well known from the decay of the 9/2⁺ ground state of ¹³¹In to levels in ¹³¹Sn [24]. The less intense left hand side is the proposed 2428 keV transition arising from decay of ¹³¹Cd, as neither peak appears in the upper spectrum taken with the lasers turned off, and no peak at that energy was observed by Fogelberg *et al.*, in their study of the decay of ¹³¹In.

The levels of ⁵⁷Cu (inverted) are also included in Fig. 7 for comparison with the proposed levels for ¹³¹In. The spin-orbit splitting between the $3/2^$ and $1/2^-$ levels can be seen to have changed by only ≈ 125 keV, in spite of the large increase in the size of the nucleus. Likewise, the separation between the higher- $L 9/2^+$ and $5/2^-$ levels is also changed only of the order of ≈ 300 keV. The large change is the relative tighter binding of the two high-L orbitals relative to the L = 1 orbitals.

It can also be seen that the calculated levels for ¹²⁹In are in reasonable agreement with the observed levels, including the high-spin isomers. The calculated levels are quite consistent with the observed isomers. The calculated position of the $25/2^+$ level is seen to be well above the calculated

Fig. 7. Levels in the odd-mass In isotopes along with calculated levels for ¹²⁹In. The energies are in keV. The energies for the $1/2^{-}$ levels in ^{127,129}In shown below the levels are taken from the Q_{β} measurements reported by Gausemel *et al.* [20].

position of the $29/2^+$ isomer, the calculated position of the $19/2^-$ level is seen to be well above the calculated position of the $17/2^-$ beta-decaying isomer, and the calculated positions of the $13/2^{-}$ and $15/2^{-}$ levels are well above the calculated position of the $17/2^{-}$ isomer. However, the large drops of ≈ 400 keV in the positions of the $29/2^+$ and $23/2^-$ levels are somewhat surprising. It can also be noted that the calculated positions of the $11/2^+$ and $13/2^+$ levels for ¹²⁹In are closer to the observed positions of those two levels in ¹²⁷In than in ¹²⁹In. Indeed, it is not clear what curious feature of nuclear structure is revealed by the sudden widening of this splitting from 168 keV in ¹²⁷In to 359 keV ¹²⁹In. Taken together, it can be noted that reducing the neutron valence space from four neutrons to two neutrons seems to have a strong effect on the positions of the proton-hole core-coupled levels. Stated another way, as the neutron valence space shrinks from 8 holes in 123 In to 4 holes in 127 In, the movements of the levels appear to be quite systematic and predictable, whereas sudden rather large shifts appear with the reduction of the neutron valence space to only 2 neutron holes. Neither in ¹²⁹In itself, nor in the systematic movements of the levels is there a suggestion that the onset of intruder configurations could be taking place.

O. ARNDT ET AL.

The authors wish to express their appreciation to the ISOLDE Collaboration, the US DOE, the US NSF, Deutsche Froschungsgemeinschaft (DFG) KR 806/13-1, the Helmholtz Gemeinschaft under grant VH-VI-o61, and the Alexander von Humboldt Foundation for support of this work.

REFERENCES

- [1] T. Kautzsch, W.B. Walters, K.-L. Kratz, AIP Conf. Proc. 447, 183 (1998).
- [2] M. Hannawald et al., Phys. Rev. Lett. 82, 1391 (1999).
- [3] N. Hoteling et al., Phys. Rev. C74, 064313 (2006).
- [4] S. Lunardiet al., Phys. Rev. C76, 034303 (2007).
- [5] P. Adrich et al., Phys. Rev. C77, 054306 (2008).
- [6] D. Pauwels et al., Phys. Rev. C, in press.
- [7] N. Aoi et al., Nucl. Phys. A805, 400c (2008).
- [8] M.A. Stoyer et al., Nucl. Phys. A787, 455c, (2007).
- [9] B. Tomlin, P.F. Mantica, W.B. Walters, Eur. Phys. J. Special Topics 150, 183 (2007).
- [10] N. Hoteling et al., Phys. Rev. C76, 044324 (2007).
- [11] L. Caceres et al., Phys. Rev. C, in press.
- [12] A. Jungclaus et al., Phys. Rev. Lett. 99, 132501 (2007).
- [13] S. Juutinen et al., Phys. Lett. B386, 80 (1996).
- [14] R. Lucas et al., Eur. Phys. J. A15, 315 (2002).
- [15] Th. Kröll et al., AIP Conf. Proc. 1012, 84 (2008).
- [16] I. Dillmann et al., Phys. Rev. Lett. 91, 162503 (2003).
- [17] N. Erdmann et al., Appl. Phys. B66, 431 (1998).
- [18] P. Hoff et al., Nucl. Phys. A459, 35 (1986).
- [19] H. Huck et al., Phys. Rev. C39, 997 (1989).
- [20] A. Scherillo et al., Phys. Rev. C70, 054318 (2004).
- [21] H. Gausemel et al., Phys. Rev. C69, 054307 (2004).
- [22] O. Arndt, Diploma Thesis, University of Mainz, 2003.
- [23] B. Fogelberg et al., AIP Conf. Proc. 447, 191 (1998).
- [24] B. Fogelberg et al., Phys. Rev. C70, 034312 (2004).
- [25] C. Jost, Diploma Thesis, University of Mainz, 2005.
- [26] M. Górska *et al.*, *Phys. Lett.* B (2009) in press, doi:10.1016/j.physletb.2009.01.027.