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During the last 40 years, Monte Carlo calculations based upon Im-
portance Sampling have matured into the most widely employed method
for determining first principle results in QCD. Nevertheless, Importance
Sampling leads to spectacular failures in situations in which certain rare
configurations play a non-secondary role as it is the case for Yang–Mills the-
ories near a first order phase transition or quantum field theories at finite
matter density when studied with the re-weighting method. The density-
of-states method in its Linear Logarithmic Relaxation (LLR) formulation
has the potential to solve such overlap or sign problems by means of an ex-
ponential error suppression. We here introduce the LLR approach and its
generalisation to complex action systems. Applications include U(1), SU(2)
and SU(3) gauge theories as well as the Z3 spin model at finite densities
and heavy-dense QCD.
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1. Introduction

Recently, Monte Carlo sampling methods for determining density of
states have seen a surge of interest. An integral part of these novel density-
of-state methods is a re-weighting with the inverse density of states providing
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feedback for an iterative refinement of this quantity [1]. Deriving the density
of states in this way, within chosen action intervals, allows us to obtain this
observable for regions of actions that conventional Importance Sampling al-
gorithms would never visit in practical simulation times. For this reason,
the density-of-state approach solves overlap problems, which manifest when
large tunnelling times, generally growing exponentially with the size of the
system, separate regions of equally important statistical weight, henceforth
causing an asymptotic ergodicity problem in the latter algorithms. Methods
based on iterative refinements of the density of states fall into the class of
non-Markovian Random Walks. They extend outside the domain of Impor-
tance Sampling the observation that a random walk in configuration space
is not plagued by exponentially large tunnelling times [2]. In this paper,
we focus on the Linear Logarithmic Relaxation (LLR) algorithm [3], which
is particularly suited for theories with continuous degrees of freedom, and
in particular for gauge theories. We here summarise the foundations of the
LLR method and its applications to gauge theories (see [4] and [5]) and then
focus on recent successes of the LLR approach to quantum field theories at
finite densities [6, 7].

2. The density-of-states approach

2.1. The Logarithmic Linear Relaxation (LLR) algorithm

Our starting point is the partition function of an Euclidean quantum
field theory

Z(β) =

∫
Dφ eβS[φ] .

The density of states ρ(E) quantifies the amount of states if the config-
urations are constrained to the action hyper-plane E = S[φ]. Its precise
definition and relation to the partition function are

ρ(E) =

∫
Dφ δ

(
S[φ]− E

)
, Z(β) =

∫
dE ρ(E) eβE . (1)

Our goal will be to obtain ρ(E) with very high precision and to directly
calculate the partition function Z by performing the integral over E [3].
To this aim, we divide the action range into intervals of size δE. If the
action interval is small enough, we can approximate the density of states by
a Poisson-like distribution

ρ(E) ∝ eαkE for Ek −
δE

2
≤ E ≤ Ek +

δE

2
, αk =

d ln ρ

dE

∣∣∣
E=Ek

.

Our strategy is to calculate the LLR coefficients αk and to reconstruct ρ(E).
To this aim, we define the “double-bracket” Monte Carlo expectation value
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with a being an external parameter

〈〈W [φ]〉〉k (a) =
1

Nk

∫
Dφ Θ[Ek,δE](S[φ]) W [φ] e−aS[φ] , (2)

Nk =

∫
Dφ Θ[Ek,δE] e

−aS[φ] , (3)

where we have introduced the modified Heaviside function

Θ[Ek,δE](S) =

{
1 for Ek − δE/2 ≤ S ≤ Ek + δE/2 ,
0 otherwise .

The key observation is that for a = αk, the probability distribution for φ
over the action interval becomes flat since the re-weighting factor exp{−aS}
compensates the density-of-states exp{αkS}. Choosing W [φ] = S[φ] − Ek
as litmus paper for flatness, we observe

〈〈S[φ]− Ek〉〉k (a) = 0 for a = αk =
d ln ρ

dE

∣∣∣
E=Ek

. (4)

This equation is at the heart of the LLR approach: it allows to calculate
the log-derivative αk of the log derivative of ρ by solving the stochastic non-
linear equation 〈〈S[φ]− Ek〉〉k (a) = 0 for a. We stress that the expectation
values 〈〈. . .〉〉 are accessible by standard Monte Carlo simulations.

A simple procedure to find the root of a function is the iterative Newton–
Raphson method

an+1 = an +
〈〈S[φ]− Ek〉〉k (an)

〈〈(S − Ek)2〉〉k
≈ an +

12

δE2
〈〈S[φ]− Ek〉〉k (an) .

Note, however, that the statistical error from the Monte-Carlo estimate
for 〈〈S[φ]− Ek〉〉k interferes with the convergence of the Newton iteration.
The solution to the root-finding procedure for stochastic equations has been
found by Robinson and Monro. The iterative Robinson–Monro algorithm
has the form

an+1 = an−cn 〈〈S[φ]− Ek〉〉k (an) with

∞∑
n=0

cn =∞ and
∞∑
n=0

c2n <∞ .

Robinson–Monro proved that limn→∞ an = αk with an asymptotically nor-
mally distributed around αk. To minimise the variance of the result, one
chooses

cn =
12

δE2 (n+ 1)
.
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Once the LLR coefficients ak are obtained for the action range, the density
of states can be obtained by

ρ(E) = ρ0

k−1∏
i=1

ea(Ei)δE exp
(
a(Ek)(E − Ek)

)
, Ek ≤ E ≤ Ek+1 . (5)

The LLR method has some remarkable features [4] (up to a multiplicative
factor ρ0):

(i) Almost everywhere, we find that the LLR approximated result ρ(E) (5)
is related to the exact density of states by

ρ(E) eγ1 δE
2 ≤ ρexact(E) ≤ ρ(E) eγ2 δE

2
, γ1, γ2 = const .

The approach has exponential error suppression: the relative approxi-
mation error does not depend on the magnitude of ρ despite ρ might
span thousands of orders of magnitude.

(ii) The LLR approach can be generalised to calculate expectation value
of arbitrary observables (rather than the partition function only). The
systematic error is O(δE2). See [4] for details.

2.2. The generalised density of states

Quantum Field Theories at finite matter densities (or more precisely, at
non-vanishing chemical potential µ) are generically plagued by the so-called
sign problem. In this case, the partition function, which features a complex
action, can be written in the general form as

Z(β, µ) =

∫
Dφ exp

{
β SR[φ] + i µ SI[φ]

}
. (6)

The Gibbs factor looses the interpretation as probability density and Im-
portance Sampling is impossible. An early attempt to circumvent the sign
problem was to drop the phase factor when generating the lattice configu-
ration and to add the phase factor to the observable

〈A〉 =
〈A exp{i µ SI[φ]}〉PQ
〈exp{i µ SI[φ]}〉PQ

, ZPQ =

∫
Dφ exp

{
−β SR[φ]

}
.

In this phase quenched approach, we encounter an overlap problem. Follow-
ing [5, 6], we define the overlap between full and phase quenched theory by
the ratio of their partition functions, i.e.,

Q(µ) =
Z(µ)

ZPQ(µ)
= 〈exp{i µ SI[φ]}〉PQ . (7)
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Since the phase-quenched theory has a positive probabilistic measure, we
find by virtue of the triangular inequality that [5]

|Q(µ)| ≤
〈
| exp{i µ SI[φ]}|

〉
PQ

= 1 .

Note, however, that both theories generically differ in their free energies f ,
leading to exceptionally small overlaps at large volumes V

Q(µ) = exp
{
−∆f V

}
, ∆f ≥ 0 .

Since the LLR method generically solves overlap problems, we extend the
approach outlined in the previous subsection and define the generalised den-
sity of states by

ρβ(s) = N

∫
Dφ δ

(
s − SI[φ](µ)

)
eβ SR[φ](µ) , (8)

with N an unknown normalisation factor independent of s. The overlap
then appears as the Fourier transform of the generalised density

Q(µ) =

∫
ds ρβ(s) exp(is)∫

ds ρβ(s)
.

Note that the unknown normalisation N has dropped out.

3. Vacuum applications: U(1), SU(2), SU(3) Yang–Mills theories

In the following, we show the LLR method in action for pure gauge
theories in vacuum, i.e., without finite density matter and no-sign problem.
The degrees of freedom are the link fields Uµ(x) ∈ U(1), SU(2) or SU(3),
and the action is given by

S =
∑
ν>µ,x

1

Nc
Re tr

{
Uµ(x)Uν(x+ µ)U †µ(x+ ν)U †ν (x)

}
,

where Nc is the number of colours (Nc = 1 for U(1)), the ‘Re’ can be omitted
for SU(2), since the theory is real, and the trace ‘tr’ is absent for U(1). The
empty (perturbative) vacuum is attained with S = 6V , where V is the
volume, i.e., the number of lattice points.

For each of these theories, the probabilistic measure rises from the prod-
uct of the density of states and the Gibbs factor

P (E) = ρ(E) exp{βE} . (9)
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Generically, ρ(E) monotonically decreases with E, while the Gibbs factor
exponentially increases. Thus, P (E) settles for a sharp maximum (away
from first order criticality). The most likely value for the action can be
calculated from

dP (E)

dE
= ρ(E) exp{βE} [α(E) + β] = 0 . (10)

Away from criticality, this equation mostly have just one solution for each β.
This observation can be used to calculate ρ(E) for small E using the strong
coupling expansion [5]. For a first order phase transition at β = βc, P (E) ex-
hibits the typical double-peak structure. Hence, P (E) features two maxima
and one minimum meaning that (10) has three solutions. Let us illustrate
this for the U(1) gauge theory [4], for which our findings for the LLR coeffi-
cient are shown in Fig. 1. In accordance with the theory [4], a(E) becomes
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Fig. 1. The LLR coefficient a(E) (or α(E) = d ln ρ/dE) as a function of the action
E for a U(1) gauge theory for several lattice volumes.
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Fig. 2. Left: Probability distribution of the action for a U(1) gauge theory on a 204

lattice at criticality. Right: Specific heat as a function of the interval discretisation
length δE (results from [4]).
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volume-independent at large volumes. In the region between E/6V = 0.61
and E/6V = 0.66, we observe a non-monotonic behaviour that leads to three
solutions of equation (10) for a suitably chosen β. Our result for P (E) for
a lattice as large as 204 is shown in Fig. 2. We stress that our result is ob-
tained for an un-rivalled lattice and that we do not see a significant critical
slowing-down while increasing the lattice size. A more detailed analysis of
the volume scaling properties of our algorithm is left to future work. Using
the specific heat CV , we also studied the systematic errors induced by the
finite action interval size δE. Figure 2 shows CV as a function of δE for sev-
eral values δE. Our numerical results suggest a quadratic behaviour in δE,
which is in accordance with the theory [4].

We finally show the results for the SU(2) and SU(3) Yang–Mills theory
on a 104 lattice. Figure 3 shows a(E) = d ln ρ/dE as a function of the
action E. Also shown is the leading order analytical result at small E [5].
In the same figure, we also show the reconstructed density of states (5).
The error bars were obtained by a bootstrap analysis of 40 independent
results for a(E) for each E. Note the logarithmic vertical axis: for SU(3),
we obtain the density of states over 150, 000 orders of magnitude with an
almost constant statistical error bar over the whole action range.
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Fig. 3. Left: The LLR coefficient a(E) as a function of the action E on a 104 lattice
for a SU(2) and SU(3) Yang–Mills theory. Right: The corresponding density of
states. Results from [5].
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4. Applications to finite density quantum field theories

4.1. The Z3 theory as showcase

The Z3 theory in three dimensions is inspired by QCD if the Z3 degrees of
freedom on site are identified with the Polyakov line. The partition function
as well as the action of the system are given by

Z(µ) =
∑
{φ}

exp
(
S[φ]

)
, S[φ] = τ

∑
x,ν

φx φ
∗
x+ν +

∑
x

(
ηφx + η̄φ∗x

)
,(11)

with η = κ eµ and η̄ = κ e−µ. For non-vanishing chemical potential, we have
η 6= η̄∗ and the theory has a sign problem. Note, however, that this theory
has a real dual formulation [8–10], and can be efficiently simulated with the
flux algorithm [11]. The phase diagram can be readily calculated (see Fig. 4,
left panel, for our result) and bears a certain similarity of what we expect for
the QCD phase diagram. Here, it serves as an ideal benchmark for testing
the generalised LLR approach [6].

The probability distribution of the imaginary part ρβ(s) (see (8)) can
be obtained by generating lattice configurations with respect to the phase
quenched theory and by subjecting the imaginary part to a histogram. The
result is shown in the right panel of Fig. 4. Alternatively, we can calculate
ρβ(s) using the LLR formalism. The result is also shown in Fig. 4: a good
agreement of the LLR result with the histogram is observed. We point out
that the histogram method fails to produce an accurate estimate for ρβ(s)
at large imaginary parts since hardly any events are recorded in this case.
This is a manifestation of the overlap problem. The LLR method solves
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Fig. 4. Left: Phase diagram of the Z3 theory as a function of the chemical potential
µ and τ (say temperature). Right: The probability distribution of the imaginary
part of the action.
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this overlap problem and, by virtue of the exponential error suppression,
produces very good results over many orders of magnitude (see Fig. 5, left
panel).
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Fig. 5. Left: The same as Fig. 4, right panel, on a logarithmic scale (result from [5]).
Right: The LLR result for the overlap factor Q(µ) as a function of µ (result
from [6]).

In order to obtain the overlap Q(µ), a Fourier transform of the probabil-
ity distribution ρβ(s) must be carried out. Since the overlap exponentially
decreases with the volume, the result of the Fourier transform will generi-
cally produce a very small signal. Despite of the precision for ρβ(s) that can
be reached with the LLR method, compressing the numerical data into an
analytic model with few parameters has proven to be essential [5]

ln ρ(n) = lim
N→∞

N∑
k=1

ck fk(n) , (12)

where fk(n) are basis functions. The approximation arises from the trunca-
tion of the above sum. For the Z3 spin system, good results are obtained
by using powers of n: fk(n) = n2k. Here, we have exploited the symmetry
ρ(−n) = ρ(n), which eliminates odd powers of n from the basis. Figure 5,
left panel, shows a typical result for such a fit. We find that forN bigger than
some threshold Nth, the fits stabilise: the fit results agree within error bars
for N ≥ Nth. Usually, the error bars tend to increase for larger values of N .
Hence, we use the fit result for N = Nth (and the corresponding statistical
error bars from the bootstrap analysis). Figure 5, right panel, compares the
LLR result with the results from a simulation of the dual (real) theory. We
find an excellent agreement despite of the fact that the overlap becomes as
small as 10−16 for the largest lattice size.
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4.2. QCD at finite densities of heavy quarks

Our starting point is the QCD partition function

Z(µ) =

∫
DUµ exp{β SYM[U ]} DetM(µ) , (13)

from which the quarks have been integrated out leaving us with the quark
determinant. In the so-called heavy-dense limit for large quark mass m and
simultaneously large chemical potential µ, the quark determinant factorises
into [12–16]

DetM(µ) =
∏
~x

det2
(

1 + e(µ−m)/T P (~x )
)

det2
(

1 + h e−(µ+m)/T P †(~x )
)
,

where m is the mass of the heavy quark, T = 1/Nta is the temperature with
a the lattice spacing and Nt the number of lattice points in the temporal
direction. At small temperatures T � m, we can ignore the latter determi-
nant in the latter equation. The theory is then not only real at vanishing
chemical potential, but also at threshold µ = m (also called “half-filling”)
and the theory exhibits a particle-hole duality [7, 16]. Adopting a standard
re-weighting approach, we find for the overlap factor the result shown in
Fig. 6. At intermediate values for the chemical potential, we do encounter
a strong sign problem: the re-weighting method produces results that are
within statistical errors compatible with zero implying that we have lost the
signal in the noise.
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To tackle this problem, we again employed the LLR approach to get
high quality results for the probability distribution of the phase of the quark
determinant. We checked that our results agree with those from a straight-
forward histogram method (see Fig. 7). Based upon our experience with
the Z3 theory, we adopted the same method to obtain the density’s Fourier
transform (see (12) and discussions below). Our final result for the overlap
nicely agrees in regions of the chemical potential where re-weighting can
produce statistical significant results (see Fig. 6). Note, however, that the
LLR result has error bars that are five orders of magnitude smaller. Our
final high quality result for the overlap is shown in Fig. 7, left panel, and we
refer the reader to [7] for further discussions.
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Fig. 7. Left: Probability distribution of the imaginary part of the quark determi-
nant. Right: The LLR result for the log of the overlap factor (results from [7]).
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