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We study light baryons using a simple relativistic but non-covariant
Coulomb Gauge QCD-inspired model. A variational basis is employed to
compute the energies and wave functions of the baryon states, for different
values of angular momentum and parity. Results are obtained for both
the N and the ∆ excitations. A special look is given to the high angular
momentum states going up to J = 13/2. In this limit, we test the effect of
chiral symmetry restoration on the baryonic spectrum.
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1. Introduction

Dynamical chiral symmetry breaking (χSB) is a fundamental aspect of
low-energy QCD. It has been proposed, however, that for higher energies
the effects of chiral symmetry breaking are no longer relevant, an effect
called “insensitivity to chiral symmetry breaking” (IChSB). Indeed, when
theoretically studying light–light and static–light mesons in the high-energy
limit [1–3], we find that mesons of opposite parity become degenerate, a
prediction consistent with that insensitivity. Baryons, it has been argued,
would also display such degeneracy [4–7].

∗ Presented at “Excited QCD 2016”, Costa da Caparica, Lisbon, Portugal, March 6–12,
2016.

(543)



544 M. Cardoso et al.

In a previous paper [8], we argued that, when considering the space of
highly excited light baryon states, the chiral charge operator

Qα5 =

∫
d3xΨ †(x)γ5

τα

2
Ψ(x) (1)

becomes an asymptotic symmetry 〈n1|[Qα5 , H]|n2〉 → 0, producing a degen-
eracy in the baryonic spectrum E(σP1 ) = E(σ−P2 ) with

Qα5
∣∣σP1 〉 ∝ ∣∣∣σ−P2

〉
and Qα5

∣∣∣σ−P2

〉
∝
∣∣σP1 〉 . (2)

The energy splitting |M− −M+| for high energy between the two states in
a parity quartet we found in [8] to behave as

|M− −M+| ∝
m(k)

k
(3)

for 3-quark baryons, and so in the chiral limit m(k) = 0 (which happens for
〈k〉 → ∞), they become degenerate very fast.

Experimentally, there are few results for the splittings of the parity dou-
blets, which we show in Fig. 1. These results for the I = 1/2 are consistent
with IChSB, but not so much are those for I = 3/2 as can be seen in Fig. 1,
which are roughly inconclusive.
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Fig. 1. Experimental data for the mass splittings |M− −M+| as a function of J .

2. Chiral model

We study the light baryon spectrum using a simple Coulomb Gauge QCD
model

Ĥ =

∫
d3x Ψ(x)†(−iα · ∇+ βm)Ψ(x) (4)

−1

2

∫
d3x d3y Ψ(x)†

λa

2
Ψ(x)V (|x− y|)Ψ(y)†λ

a

2
Ψ(y) .
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The interaction here is chiral invariant, with the only term explicitly
breaking chiral symmetry being the mass term. This theory has a non-
trivial vacuum where quarks acquire a dynamical mass m(k) [9], thereby
breaking chiral symmetry and lifting the degeneracy of Eq. (3) for the light
spectrum.

3. Baryons

To describe a baryon state |B〉, we use the simple variational Ansatz

|B〉 =
∑
csf

εc1c2c3√
6

∫ ∏
i

d3p

(2π)3
F sfB (p1,p2,p3)B

†
1B
†
2B
†
3|Ω〉 . (5)

To calculate the eigenstates of the Hamiltonian, we first expand F sf in
a basis of states |Φi〉, then calculate the matrix elements 〈Φi|Ĥ|Φj〉, and
diagonalize the resulting matrix. This matrix elements are computed by
performing a nine-dimensional integral.

3.1. Building the qqq variational basis

We use Jacobi variables pρ =
p1−p2√

2
and pλ = p1+p2−2p3√

6
to describe the

momenta of the three quarks on the CM frame p1 + p2 + p3 = 0.
We start with the initial basis

|φi〉 = CJMLMlSMS
CLMl
lρmρlλmλ

|ϕαnρlρmρ〉|ϕ
α
nλlλmλ

〉|SS12MS〉|II12Iz〉 , (6)

which, although orthonormal, has functions that are not symmetric under
quark/antiquark exchange. To construct an orthonormal basis containing
only states |Φi〉 with the correct symmetry, we want that, for all the exchange
operators Pij , the states should obey Pij |Φ〉 = |Φ〉. Since all Pij can be
written as a function of P12 and P23, we just need to find the common
eigenstates of both operators with eigenvalue +1. For P12 this is easy, just
note that P12|φi〉 = (−1)lρ+S12+I12 |φi〉. For P23, we construct the matrix
elements of this operator and diagonalize it. This is done by blocks of
constant L, S and N = 2nρ + lρ + 2nλ + lλ. At the end, we construct a
orthonormal basis with the correct exchange symmetries.

3.2. Extrapolation

We truncate our basis by considering only states with N ≤ Nmax. We
discover that, going until Nmax = 11 or Nmax = 12, the results are not
quite converged yet. But given that the number of states increase with
N4

max and, with more complex states, we also need to increase the numerical
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integration precision, we cannot improve this situation much further given
our time and hardware constraints. To solve this, we extrapolate the energies
E(Nmax) = E∞ + a

Nmax
and take the resulting E∞ as the final value.

4. Results

We compare our model predicted baryon masses with the experimental
ones in Fig. 2. As can be seen there, while we get a behavior roughly similar
to the experimental, the results do not accurately describe experiment. This
is not surprising, given the simplicity of our model. Anyway, we want to
tackle the question of whether or not the high energy spectrum is insensitive
to χSB, and this model should suffice for that.
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Fig. 2. Comparison of the model results to the experimental ones.

Looking at the left-hand side of Fig. 3, we see the energy splittings
|M− −M+| for the first ten radial states of the ∆ (I = J = 3/2). There,
we see that the effects of spontaneous χSB do not vanish for high radial
excitations, but the identification of partners is problematic.
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Fig. 3. Left: Splittings for the first radial states of the ∆, J = 3/2 case. Right:
Parity splittings for different angular N and ∆ states.
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More interesting is to look at the right-hand side of Fig. 3, where we plot
the splittings of the radial ground states as a function of the energy. For
the N states, there is a trend of decreasing splittings with increasing energy.
For the ∆ sector, the behavior is more complex, with some states having a
similar behavior to I = 1/2, while for others, this clearly does not happen.
The anomalous behavior happens for J = 1/2 + 2n.

Looking at Fig. 4, where the momentum probability density for the I =
3/2 states is shown, we can start to see what is happening to the anomalous
∆ states. We see there that for states with J = 3/2 + 2n, the momentum
probability densities for the opposite parity states seem to follow a similar
trend, while for J = 1/2 + 2n, this does not happen, with the densities for
the negative parities states vanishing for k → 0, while the positive parity
states have the maximum at k = 0, and are thus sensitive to a larger quark
mass.

This state of affairs is confirmed by Fig. 5. There we see the probability
density for pρ and pλ. As can be seen, when J = 11/2, all the four combina-
tions of parity and isospin have a similar behavior, while for J = 13/2, the
case with I = 3/2 and P = − has a behavior that is distinct from the other
three, with larger pρ than pλ.
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Fig. 4. Logarithm of the momentum space probability density.

5. Conclusions

We have constructed a numerical method to calculate baryonic states
using a relativistic and chiral quantum field model, and calculated several
states. Our model needs to be improved in order to give a more precise
description of the light baryon spectrum. Nevertheless, it has given some
interesting results for the IChSB. For angular excitations of nucleons, we
have observed a behavior that is mostly consistent with it. For the ∆ sector
however, this was only observed for those states with J = 3/2 + 2n.
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Fig. 5. Density probability for J = 11/2 and J = 13/2 (all isospin-parity combina-
tions).
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