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Special relativity is no longer a new revolutionary theory but a firmly
established cornerstone of modern physics. The teaching of special relativ-
ity, however, still follows its presentation as it unfolded historically, trying
to convince the audience of this teaching that Newtonian physics is natural
but incorrect and special relativity is its paradoxical but correct amend-
ment. I argue in this article in favor of logical instead of historical trend in
teaching of relativity and that special relativity is neither paradoxical nor
correct (in the absolute sense of the nineteenth century) but the most nat-
ural and expected description of the real space-time around us valid for all
practical purposes. This last circumstance constitutes a profound mystery
of modern physics better known as the cosmological constant problem.

PACS numbers: 03.30.+p

Preface

“To the few who love me and whom I love — to those who feel rather than
to those who think — to the dreamers and those who put faith in dreams as
in the only realities — I offer this Book of Truths, not in its character of
Truth-Teller, but for the Beauty that abounds in its Truth; constituting it
true. To these I present the composition as an Art-Product alone; let us say
as a Romance; or, if I be not urging too lofty a claim, as a Poem.

What I here propound is true: — therefore it cannot die: — or if by any
means it be now trodden down so that it die, it will rise again ‘to the Life
Everlasting’.

Nevertheless, it is a poem only that I wish this work to be judged after I
am dead” [1].

(811)
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1. Introduction

The emergence of special relativity constitutes one of the major rev-
olutions in physics. Since then this revolution is repeated over and over
in physics students’ minds. “Often the result is to destroy completely the
confidence of the student in perfectly sound and useful concepts already
acquired” [2]. What is the problem the students stumble upon?

Maybe the following passage from [3] might give you an insight: “At first,
relativity was considered shocking, anti-establishment and highly mysteri-
ous, and all presentations intended for the population at large were meant
to emphasize these shocking and mysterious aspects, which is hardly con-
ducive to easy teaching and good understanding. They tended to emphasize
the revolutionary aspects of the theory whereas, surely, it would be good
teaching to emphasize the continuity with earlier thought”.

The standard presentation of special relativity follows the royal way Ein-
stein laid down in his breakthrough paper [4] and is based on two postulates.
The first postulate is the Principle of Relativity that the laws of physics are
the same in all inertial reference frames. This is precisely what the students
are taught in their undergraduate mechanics course and should hardly cre-
ate any conceptual problems because the Principle of Relativity “appeals to
our common sense with irresistible force” [5].

There is a subtle difference in the formulations of the second postulate
as given by Einstein and as presented in modern textbooks [6]. In Einstein’s
paper [4] the postulate states that “any ray of light moves in the ‘station-
ary’ system of coordinates with the determined velocity ¢, whether the ray
be emitted by a stationary or by a moving body”. Taken separately, this
statement is also both orthodox and obvious in the context of the pre-1905
physics with luminiferous aether as its conceptual basis. Indeed, after a light
wave is launched in the sether it propagates with the speed which is com-
pletely independent of the state of motion of the light source, determined
solely by the elastic properties of the sether.

It is the combination of these two postulates, considered impossible in
the pre-1905 physics, that shattered the very foundations of contemporary
physics and changed forever our perspective of space-time.

Many modern textbooks make explicit what is so cunningly hidden in
Einstein’s seemingly harmless postulates. They state the second postulate as
follows: “(in vacuum) light travels rectilinearly at speed c in every direction
in every inertial frame” [7,8]. And here is buried the root of confusion
students experience while studying special relativity. Because for Newtonian
intuition “to take as a postulate that the speed of light is constant relative
to changes in reference frame is to assume an apparent absurdity. It goes
against common sense. No wonder, thinks a student, that we can derive
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other absurdities, such as time dilation and length contraction, from the
premises” [6].

Laying aside the question of culture shock students experience when
confronting the second postulate, there are several reasons, from the modern
perspective, not to base relativity on the second postulate.

First of all, it anchors special relativity in the realm of electromagnetism
while now we know that relativity embraces all natural phenomena. Strong
and weak interactions, unknown to Einstein in 1905, are also Lorentz invari-
ant.

The second postulate assumes light propagation in vacuum. But which
vacuum? Vacuum in modern physics is quite different from just empty space
and looks, in a sense, like an incarnation of sether, which “at present, renamed
and thinly disguised, dominates the accepted laws of physics” [9]. Of course
this new “sether”, being Lorentz invariant and quantum mechanical, has
nothing in common with the ssther of the nineteenth century. Anyway, in
some cases it reveals itself as an nontrivial medium capable to alter the
propagation properties of light.

For example, between conducting plates [10,11] or in a background grav-
itational field [12,13] light can propagate with speeds greater than c. Yet the
Lorentz invariance remains intact at a fundamental level [14]. Simply the
boundary conditions or the background field single out a preferred rest frame
and the ground state (quantum vacuum) becomes not Lorentz-invariant.
The presence of such not Lorentz-invariant “sether” can be detected in con-
trast to the situation in infinite space with no boundaries [14].

Whether light propagates with invariant velocity c is subject of photon
being massless. This masslessness of the photon by itself originates from the
particular pattern of the electroweak symmetry breaking. However, there
is no compelling theoretical reason for the photon to be strictly massless:
a tiny photon mass would not destroy the renormalizability of quantum
electrodynamics and hence the beautiful agreement between its predictions
and experiment [15]. Moreover, it was shown that the photon mass can
be generated by inflation [16]. As the current universe is entering another
phase of inflation, according to the supernovae results [17], the photon should
have a miniscule mass [16] of about 10742 GeV/c?, far below of the present
experimental limits. Anyway this miniscule mass makes the photon not the
best choice the special relativity to base on.

Surprisingly, it was known for a long time that in fact one does not need
the second postulate to develop the special relativity. The Relativity Prin-
ciple alone along with some “self-evident” premises such as the homogeneity
of space and time and the isotropy of space would suffice.
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To my knowledge, von Ignatowsky [18,19] was the first to discover this
remarkable fact as early as in 1910, followed by Frank and Rothe [20]. “How-
ever, like numerous others that followed these [papers| have gone largely
unnoticed” [21]. An impressive list of those largely neglected and forgotten
papers can be compiled from citations in [14,22,23].

The idea has got a better chance after it was rediscovered in the mod-
ern context [24-26]. At least, it attracts interest up to date [27-31]. “At
this point we can sharpen and somewhat displace some typical questions of
historical character: Why, although it was logically and epistemologically
perfectly possible, did not Einstein see the connection between his two pos-
tulates? Was his embarrassment a kind of a subconscious inkling of this
connection? Why such early papers as that of Ignatowsky did not catch
more the interest of physicists, historians and philosophers of science? Why
such a connection is rarely mentioned in pedagogical presentations of Rela-
tivity?” [32].

I think answers to these questions can be found partly in the concrete
historical circumstances of the emergence and development of relativity and
partly in the “intellectual inertia” [33] of society.

As was already mentioned, in Einstein’s original form the second pos-
tulate was not shocking at all for contemporary physicists. The focus was
displaced to the weird but logically inevitable consequences that followed
when the second postulate was combined with the Relativity Principle. The
one-postulate derivations of Ignatowsky et al. involved a somewhat higher
level of mathematics (group theory, more intricate and rather less familiar
analysis; See for example [25,26], or earlier considerations by Lalan [34]).
I suspect, this was considered as an unnecessary complication, making the
approach “unavailable for a general education physics course” [26].

The focus has shifted since then from reference frames and clock syn-
chronization to symmetries and space-time structure, and the situation is
different today. For contemporary students the luminiferous sether is just
an historical anachronism and can not serve as the epistemological basis
for the second postulate. Einstein’s brilliant magic when he, “having taken
from the idea of light waves in the sether the one aspect that he needed” [6],
declared later in his paper that “the introduction of a ‘luminiferous sether’
will prove to be superfluous” [4], does not work any more. Therefore Ig-
natowsky’s approach is much more appealing today than it was in 1910,
because it leads to Lorentz transformations, which are at the heart of spe-
cial relativity, “without ever having to face the distracting sense of paradox
that bedevils more conventional attempts from the very first steps” [26].

Below I will try to show that, combining ideas from [24-26, 35|, it is
possible to make the one-postulate derivation of Lorentz transformations
mathematically as simple as was Finstein’s original presentation.
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In fact, much richer algebraic and geometric structures are lurking be-
hind special relativity [36]. Some of them will be considered in subsequent
chapters.

2. Relativity without light

Let an inertial frame of reference S’ move along the x-axis with velocity
V relative to the “stationary” frame S.

A simple glance at Fig. 1 is sufficient to write down the Galilean trans-
formation that relates the z-coordinates of some event (for example, an
explosion) in the frames S and 5,

r=Vit+a. (1)

Vt X

A A
\ 4
A
x
: :

xY
xVY

z z
Fig. 1. Two frames of reference in relative motion.

But in (1) we have implicitly assumed that meter sticks do not change
their lengths when gently set in uniform motion. Although intuitively ap-
pealing, this is not quite obvious. For example, according to Maxwell’s
equations, charges at rest interact only through the Coulomb field while
in motion they experience also the magnetic interaction. Besides, when a
source moves very fast its electric field is no longer spherically symmetrical.
It is therefore not unreasonable to expect that a meter stick set in rapid
motion will change shape in so far as electromagnetic forces are important
in ensuring the internal equilibrium of matter [2]. Anyway we just admit
this more general possibility and change (1) to

r=Vt+k(VH)a, (2)

where the scale factor k(V?2) accounts for the possible change in the length
of the meter stick.
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The Relativity Principle and the isotropy of space are implicit in (2)
because we assumed that the scale factor depends only on the magnitude of
the relative velocity V.

Equation (2) allows us to express the primed coordinates through the
unprimed ones

1
¥ =—(x—-Vt). 3
s v 3)
Then the Relativity Principle tells us that the same relation holds if un-
primed coordinates are expressed through the primed ones, with V replaced
by —V, because the velocity of S with respect to S’ is —V. Therefore,

xr =

(' +Vt') = 1 [L (x—Vit)+ Vt’] .

k(V?) k(V2) [k(V?)

Solving for t', we get

R [t—l_kQ(VQ)x]. (4)

k(V2) Vv

We see immediately that time is not absolute if the scale factor k(V?2) is not
identically one.
From (3) and (4) we can infer the velocity addition rule
, da! dx — Vdt vy —V

vV, = — = =
Todt g -1 1- 152,

In what follows it will be convenient to write down the velocity addition rule
with unprimed velocity expressed through the primed one,
v+ V

= m F(v,,V). (5)

Vg

T

If we change the signs of both velocities v/, and V' it is obvious that the sign
of the resulting velocity v, will also change. Therefore F' must be an odd
function of its arguments

F-z,—y) = =F(z,y) . (6)

Consider now three bodies A, B and C in relative motion. Let V45 denote
the velocity of A with respect to B. Then

Vea=—Vyp. (7)

This is the reciprocity principle already used above. I think it is obvious
enough to require no proof in an introductory course of special relativity.
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However, in fact it can be deduced from the Relativity Principle, space-time
homogeneity and space isotropy [23,37|. Some subtleties of such proof are
discussed in [38].

Now, using (6) and (7), we get [26]

F(Ver,VBa) = Voa=—Vac
=—F(Vap,Vec) = —F(=Vpa,—Vep) = F(Vea,Vep) -

Therefore F' is a symmetric function of its arguments. Then F(v},V) =
F(V,v) immediately yields, according to (5),

LRV 1R
\% T v’

xT

=

or
1—k2(V?) 1—k2(v.2)
V2 V)2

K, (8)

where at the last step we made explicit that the only way to satisfy equa-
tion (8) for all values of V' and v/, is to assume that its left- and right-hand
sides are equal to some constant K. Then the velocity addition rule will
take the form .
vy = 1%;‘/ . 9)
+ KoV

If K = 0, one recovers the Galilean transformations and velocity addition
rule vy = v, + V.

If K < 0, one can take K = — c% and introduce a dimensionless parameter
6= % Then

1
P = (z— V),

V1+ 52
1 v
= ————(t+ =2, (10)
V14 32 c?
while the velocity addition rule takes the form
v+ V

c2

If v}, =V = £, then (11) gives v, = %c. Therefore velocities greater than ¢
are easily obtained in this case. But if v, =V = %c, then




818 7Z.K. SILAGADZE

Therefore two positive velocities can sum up into a negative velocity! This
is not the only oddity of the case K < 0. For example, if v/ V = ¢?, then v/,
and V will sum up into an infinite velocity.

If we perform two successive transformations (z,t) — (2/,t') — (2”,¢"),
according to (10) with 5 = 4/3, we end up with

p_ T
7 = —ge® — oect

This can not be expressed as the result of a transformation (z,t) — (2”,t")
of type (10) because the coefficient 1/4/1 + 82 of x in (10) is always positive.
Hence the breakdown of the group law.

However, the real reason why we should discard the case K < 0 is the

absence of causal structure. The transformations (10) can be recast in the
form

x(, = cosfxg+sinfz,
7' =cosfx —sinfxg, (12)

where g = ¢t and cos 6 = L__ This is the usual rotation and hence the
0 V1+82

only invariant quantity related to the event is 3 + 2. This Euclidean norm
does not allow us to define an invariant time order between events, much
like of the ordinary three-dimensional space where one can not say which
points precede a given one.

Finally, if K = C% > (), one gets the Lorentz transformations

t’zﬁ(t—%m), (13)

(14)

Now c is an invariant velocity, as (14) shows. However, in the above deriva-
tion nothing as yet indicates that ¢ is the velocity of light. Only when we
invoke the Maxwell equations it becomes clear that the velocity of electro-
magnetic waves implied by these equations must coincide with ¢ if we want
the Maxwell equations to be invariant under Lorentz transformations (13).
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The choice between the Galilean (K = 0) and Lorentzian (K > 0) cases
is not only an experimental choice. Some arguments can be given supporting
the idea that this choice can be made even on logical grounds.

First of all, special relativity is more friendly to determinism than the
classical Newtonian mechanics [39]. An example of indeterministic behavior
of a seemingly benign Newtonian system is given by Xia’s five-body super-
task [40,41].

Two symmetrical highly eccentric gravitationally bound binaries are
placed at a large distance from each other, while a fifth body of much
smaller mass oscillates between the planes of these binaries (see Fig. 2).
It can be shown [40] that there exists a set of initial conditions under which
the binaries from this construction will escape to spatial infinity in a finite
time, while the fifth body will oscillate back and forth with ever increasing
velocity.

M
el = =
M
T ..l i
M

il > >
M

Fig. 2. Xia’s five-body supertask.

The time reverse of Xia’s supertask is an example of “space invaders” [39]
— particles appearing from spatial infinity without any causal reason. This
indeterminacy of idealized Newtonian world is immediately killed by special
relativity because without unbounded velocities there are no space invaders.

That causality and Lorentz symmetry are tightly bound is a remarkable
fact. Another less known royal way to relativity can be traced back to Alfred
Robb’s synthetic approach [42] which emphasizes the primary role of causal
order relation in determining the space-time geometry. Later this line of
reasoning was further developed by Reichenbach [43] from the side of phi-
losophy and Alexandrov [44] and Zeeman [45] from the side of mathematics.
The famous Alexandrov—Zeeman theorem states that, in a sense, causality
implies Lorentz symmetry.
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Group theory provides another argument to prefer the Lorentzian world
over the Galilean one [46] because mathematically the Lorentz group G.
has much simpler and elegant structure than its singular limit G, which
is the symmetry group of the Galilean world. This argument goes back to
Minkowski. In his own words, cited in [46], from his famous Cologne lecture
Raum und Zeit:

“Since G, is mathematically more intelligible than G, it looks as though
the thought might have struck some mathematician, fancy free, that after
all, as a matter of fact, natural phenomena do not possess an invariance with
the group G, but rather with the group G, c being finite and determinate,
but in ordinary units of measure extremely great. Such a premonition would
have been an extraordinary triumph for pure mathematics. Well, mathemat-
ics, though it can now display only staircase-wit, has the satisfaction of being
wise after the event, and is able, thanks to its happy antecedents, with its
senses sharpened by an unhampered outlook to far horizons, to grasp forth-
with the far-reaching consequences of such a metamorphosis of our concept
of nature”.

3. Relativistic energy and momentum

Although Minkowski’s contribution and his notion of space-time is the
most crucial event placing relativity in the modern context, students re-
luctantly swallow the four-vector formalism due to their Newtonian back-
ground. Therefore, some elementary derivation of the relativistic expressions
for energy and momentum, stressing not the radical break but continuity
with concepts already acquired by students [2|, is desirable in a general
education physics course.

Usually that is done by using the concept of relativistic mass — another
unfortunate historical heritage stemming from an inappropriate generaliza-
tion of the Newtonian relationship between momentum and mass p = mv
to the relativistic domain.

Crystal-clear arguments were given [47,48] against the use of relativistic
mass as a concept foreign to the logic of special relativity. However, the
“Intellectual inertia” still prevails, the most famous (wrong!) formula associ-
ated to special relativity for the general public is still E = mc?, and students
are still exposed to the outmoded notion of velocity dependent mass (un-
fortunately, this is maybe the only concept of special relativity they absorb
with ease because of its Newtonian roots).

In fact, even to ensure continuity with Newtonian concepts there is no
need to preserve historical artifacts in teaching special relativity a hun-
dred years after its creation. Below a modification of Davidon’s derivation
[22,49] of relativistic energy and momentum is presented which quite gently
harmonizes with students’ Newtonian background.
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Suppose a ball cools down by emitting photons isotropically in its rest
frame S’. Let the total energy emitted during some time be £’. Because of
isotropy, the total momentum carried away by radiation is zero and the ball
will stay motionless. The Principle of Relativity then implies that in every
other inertial frame the velocity of the ball is also unchanged.

Let us see how things look in the reference frame S in which the ball
moves with velocity V along the x-axis. A bunch of photons emitted within
the solid angle df2’ = 27 sin 6'd#’ around the polar angle ¢’ in the frame S’
has total energy d&' = &’ ‘14—2/ in this frame. Due to the Doppler effect, the
corresponding energy in the frame S will be

d€ = ydE' (14 Beost) = —E L (1 + Beost')dcos b .

(Note that the Doppler formula for the photon frequency shift follows from

the Lorentz transformations quite easily [7]. We have also assumed the

relation E = fw for the photon energy from elementary quantum theory.)
Therefore, the total energy emitted in the frame S is

™
1
E=—¢& 3 /(1 + Bcos)dcosd =~E".
0
In the frame S, the radiation is no longer isotropic and therefore it takes
away some momentum. Let us calculate how much. The emission angle of

the bunch of light in the frame S can be found from the aberration formula
(which follows from the velocity addition rule (14))

cosb' + 3

= —v——.
€08 1+ Bcost/

But each photon of energy hw carries the momentum Aw/c (another ele-
mentary fact from the quantum theory). Therefore the z-component of the
momentum of the light-bunch is

v

APy = g(:089 = ———(cos0' + B)dcost'.
c c

Integrating, we get the total momentum taken away by radiation in the
z-direction

!
:——/ (cos @' + f3) alcosH'—fyﬂé

Therefore, for the energy and momentum of the ball in the frame S we
should have

AE =&, Ap=-—0 —. (15)
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It is natural to assume that the momentum and velocity of the ball are
parallel to each other,
pP=NW)V, (16)

where N (V) is some unknown function (let us call it the inertia of the
ball [22,49]). Then

Ap =VAN,
because AV = 0 as explained above. But (15) implies that Ap = BATE.
Therefore, B %E = VAN and

AE = AN . (17)

Although this result was obtained in the particular circumstances, we now
assume that it is universally valid. That is, we assume that every change in
the energy of a body implies the corresponding change in its inertia according
to (17). If the body is subject to a force F' then

dE = - - df =~ [=dN av ,dN N dV?2
T _F.V=V-ZE=V. AN =yl
di V=V V<th+ dt) Vo T2
Using (17) we get
dN dN N dV?
204Y — 2747 ey
“a Vo tya
or
aN v
N 2(2-V?)’
Integrating, we get
N,
N=_-9 (18)

V1-p52
where Nj is an integration constant. Therefore,
N()V‘ _ mV
Vi-p2 J1-p

because by considering the nonrelativistic limit § < 1 we conclude that Ny
is just the mass of the body. It follows from (17) and (18) that

p= (19)

m02

E=N’= —x (20)

Ny
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up to irrelevant overall constant. This derivation of relativistic energy and
momentum clarifies the real meaning of the notorious E = mc?. It is the
inertia of the body, defined as the coefficient of the velocity in the expression
of the momentum = N 17, to which the energy of the body is proportional,
while the mass of the body is an invariant, frame-independent quantity —

much like the Newtonian concept of mass.

4. Relativity without reference frames

You say that relativity without reference frames does not make even a
linguistic sense? Yes, of course, if the words are understood literally. But
“the name ‘theory of relativity’ is an unfortunate choice. Its essence is not
the relativity of space and time but rather the independence of the laws of
nature from the point of view of the observer” [50]. Of course, I do not
advocate changing the name, so celebrated, of the theory. But it should be
instructive to bear in mind the conventionality of the name and the shift
of focus from the length contraction and time dilation (which are rather
obvious effects in Minkowski’s four-dimensional geometric formulation) to
space-time structure and symmetries.

Above we have discarded the K < 0 possibility as unphysical. But should
we really? The main argument was that the corresponding Euclidean space-
time does not support causal structure and, therefore, it is in fact some kind
of a timeless nirvana. The real turbulent universe around us is certainly
not of this type. But we cannot exclude that it may contain inclusions of
Euclidean domains, maybe formed at the centers of black holes as a result of
quantum signature change during gravitational collapse [51]. Moreover, the
Hartle-Hawking’s ‘No Boundary Proposal’ in quantum cosmology assumes
that Euclidean configurations play an important role in the initial wavefunc-
tion of the Universe [52|. Loosely speaking, it is suggested that the whole
Universe was initially Euclidean and then by quantum tunneling a transition
to the usual Lorentzian space-time occurred.

But once we accept the Euclidean space-time as physically viable we
have to change the principal accents of the formalism, depriving reference
frames of their central role, because in timeless Euclidean nirvana there are
no observers and hence no reference frames. The Principle of Relativity
then should be replaced by the more general concept of symmetry trans-
formations which leave the space-time structure invariant. In doing so, a
question naturally arises as to what is the concept of space-time geometry
which embraces even space-times inhospitable to intelligent life. And at this
point it is a good thing to acquaint students with the Erlangen program of
Felix Klein.
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5. What is geometry?

The word geometry is derived from Greek and means earth measurement.
It is not surprising, therefore, that beginning from Gauss and Riemann the
length concept is considered to be central in geometry. The distance between
two infinitesimally close points in Riemannian geometry is given by some
positive definite, or at least non-degenerate, quadratic differential form

ds? = Z () da'dx? .
ij=1

Other geometric concepts like the angle between two intersecting curves can
be defined in terms of the metric g;;.

The main feature of the Riemannian geometry is that it is local and
well suited for field theory in physics [53], general relativity being the most
notable example. However, some interesting and important questions are
left outside the scope of Riemannian geometry.

For example, there are two basic geometric measurements: the deter-
mination of the distance between two points and the determination of the
angle between two intersecting lines. The corresponding measures are sub-
stantially different [54]. The distance between two points is an algebraic
function of their coordinates and therefore it is uniquely defined (up to a
sign). In contrast, the angle between two intersecting lines is determined
as a transcendental (trigonometric) function of coordinates and is defined
only up to 27n, for an arbitrary integer n. As a result, every interval can
easily be divided into an arbitrary number of equal parts, while the division
of an arbitrary angle into three equal angles by using only a compass and a
straightedge is an ancient problem proved impossible by Wantzel in 1836.

This difference between length and angle measurements is just implied in
Riemannian geometry without any explanation and hardly disturbs our intu-
ition until we recognize its Euclidean roots. The existence of non-Euclidean
geometries when calls for a more careful examination of the question how
the corresponding measures arise. For this purpose we should take another
road to geometry, the Kleinian road where the equality of figures is a basic
geometrical concept [55].

In Euclidean geometry the equality of two figures means that they can
be superimposed with an appropriate rigid motion. The axiom that if A
equals B and B equals C, then A equals C, in fact indicates [55] that rigid
motions form a group. A far-reaching generalization of this almost trivial
observation was given by Felix Klein in his famous inaugural lecture [56]
that he prepared as professor at Erlangen in 1872 but never actually gave.
In this lecture Klein outlined his view of geometry which later became known
as the Erlangen program. Actually the Erlangen program is just the basic
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principle of Galois theory applied to geometry [57]. According this principle
discovered by Galois around 1832 one can classify the ways a little thing
(a point or figure) can sit in a bigger thing (space) by keeping track of the
symmetries of the bigger thing that leave the little thing unchanged [57].

Every particular geometry determines the group of transformations (mo-
tions) which preserve this geometry. Klein calls this group the principal
group and for him the geometry is just the study of invariants of the prin-
cipal group because genuine geometric properties of a figure are only those
which remain unchanged under transformations belonging to the principal
group.

The converse is also true: a group G acting on a space X determines some
geometry [58]. In classical geometries all points of X look alike (the space
is homogeneous). In the group-theoretical language this means that G acts
on X transitively; that is, for every pair of points « and y of X there exists
a symmetry transformation (motion) g € G which takes x into y: y = g(x).
Let H be the stabilizer of a point x — the set of all transformations in GG
which leave x invariant. Then X can be identified in fact with the coset
space G/H. Indeed, we have a one-to-one map of X onto G/H which takes
each point g(z) € X to the equivalence class [g] € G/H. The symmetries
x — s(x), s € G of the space X are then represented by the transformations
[g] — [sg] of the coset space G/H.

Hence, interestingly, the Erlangen program provides a very Kantian view
of what space (space-time) is. Kant in his Critique of Pure Reason denies the
objective reality of space and time, which for him are only forms in which
objects appear to us due to the hardwired features of our consciousness
(intuition) and not the properties of objects themselves.

The Kantian character of relativity theory was advocated by Kurt Godel
[59,60]. In Godel’s view the relativity of simultaneity deprives time of its
objective meaning and “In short, it seems that one obtains an unequivocal
proof for the view of those philosophers who, like Parmenides, Kant, and
the modern idealists, deny the objectivity of change and consider change as
an illusion or an appearance due to our special mode of perception” [60].

One can argue that the Minkowski space-time represents a kind of reality
that comes for the change to the Newtonian absolute time. In Minkowski’s
own words: “Henceforth space by itself, and time by itself are doomed to fade
away into mere shadows, and only a kind of union of the two will preserve
an independent reality” [61].

However, the Erlangen program, if pushed to its logical extreme, indi-
cates that the Minkowski space-time is just a useful parameterization of the
coset space G/H. The symmetry group G (the Poincaré group) and its sub-
group H (the Lorentz group) as the stabilizer of “points” (space-time events)
are all that really does matter.
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However, a too abstract group-theoretical approach is not always in-
structive because even if space and time are really illusions they proved to
be very useful concepts “due to our special mode of perception”. Therefore
we leave the interesting question of the reality of space-time to philosophers;
below we follow Klein’s more classical presentation [54] because it empha-
sizes not the radical break but continuity with concepts already acquired by
students [2].

6. Projective metrics

Our special mode of perception, especially vision, determines our implicit
belief that everything is made of points as the most basic structural elements.
For a blind man, however, who examines things by touching them, the most
basic geometric elements are, perhaps, planes [62]. This duality between
various basic geometrical elements is most naturally incorporated into pro-
jective geometry [63,64], which makes it a good starting point for studying
of different kinds of linear and angular measures [54,65]. For simplicity we
will consider only plane projective geometry to demonstrate basic principles,
a generalization to higher dimensional spaces being rather straightforward.

Imagine a Euclidean plane R? embedded into the three dimensional Eu-
clidean space R? equipped with a Cartesian coordinate system. The coor-
dinate system can be chosen in such a way that the equation of the plane
becomes z = a # 0. Then every point in the plane R? together with the
origin (0,0,0) of the coordinate system determines a line in R3. Therefore
points in the plane R? can be considered as the remnants in this plane of
the corresponding lines and can be uniquely determined by the coordinates
(z,y,2) of any point on these lines except (0,0,0). Two sets (x1,y1,21)
and (z2,y2,22) of coordinates represent the same point of R? if and only
if % = Z—; = j—; Therefore the points of R? are in fact the equivalence
classes of triples [z] = (Ax1, Axg, Az3) of real numbers with A # 0. If we now
define the projective plane P? as the set of all such equivalence classes ex-
cept [0] = (0,0,0), then P? will not be just the Euclidean plane R? because
it will contain points (Ax1, Azs,0) corresponding to the lines in R? which
are parallel to the plane R? in the Euclidean sense. These points are, of
course, points at infinity from the Euclidean perspective, lying on the circle
of the infinite radius. Alternatively we can consider this circle as the line
at infinity in P2. Other lines in P? can be identified with remnants of the
planes in R3 incident to the origin. Such planes are uniquely determined
by their normal vectors (u1,uz,us), or more precisely by equivalence classes
[u] = (Au1, Aug, Adug), A # 0. Therefore, we can consider (ui,ug,us) as the
(projective) coordinates of a line in P2
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Now we can forget the Euclidean scaffolding of our model of the projec-
tive plane P2. Then all points as well as all lines in P? will look alike. Every
pair of points x and y are incident to a unique line x X y, and every pair
of lines £ and 7 are incident to the unique point £ x 7 of their intersection.
Here we assume that points and lines are given by their three projective co-
ordinates and X denotes the usual vector product of 3-dimensional vectors.

It is important to note that projective geometry, and the projective co-
ordinates of points and lines in it, can be defined synthetically by a small
set of axioms without any reference to the Cartesian coordinates and the
Euclidean concept of length [66,67]. At that, every four points Pj, P, P3
and E such that no three of them are collinear uniquely determine a pro-
jective coordinate system [64]. In this coordinate system the basic points
Py, Py, P35, EE have coordinates

P, =(1,0,0), P,=(0,1,0), P;=(0,0,1) and E = (1,1,1).

The projective coordinates of a given point in two different coordinate sys-
tems are related by a projective transformation

3
1‘; = Z Aijl‘j s det (AZ]) 75 0. (21)
=1

Projective transformations form a group and projective geometry studies
invariants of this group. In particular, incidence relations are invariant under
projective transformations and constitute the most basic geometric notion
in projective geometry.

A point z is incident to a line £ if and only if the scalar product x - £ is
equal to zero. Remarkable symmetry of this condition reflects the duality
property of the projective plane: the notions ‘line’ and ‘point’ can be used
interchangeably in the plane projective geometry. Every figure in P? can
be considered on equal footing as made from points or as made from lines.
This duality between points and lines is surprising. Our intuition does not
grasp it, as our geometric terminology witnesses [64].

Another important projective invariant is the cross-ratio of four collinear
points. If points x,y, 2,2’ are collinear, so that 2 = Az + uy and 2’ =
Nz + 'y, then the cross-ratio of these points equals

_ X

R(xayazaz/) - )\/.L/ .

(22)

The notions ‘angle’ and ‘distance’ are not projective geometry notions
because angles and distances are not invariant under projective transforma-
tions. Therefore, to define these notions we should select a subgroup of the
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projective group that will leave invariant appropriately defined angles and
distances. Selecting different subgroups, we get different geometries. In the
spirit of the Erlangen program all these geometries are equally feasible. It
remains to find a “natural” definition of angles and distances for a given
subgroup, not wildly different from what we intuitively expect from these
kinds of measurements.

Both measurements, be it the measurement of an angle or distance, share
common features [54]. An unknown distance is compared to some standard
length regarded as the unit length. This comparison in fact involves trans-
lations of the unit length. That is, it is assumed that (Euclidean) length is
translation invariant. The same is true for angular measurements, but now
we have rotations instead of translations. And here comes the difference
between angular and linear measurements. From the projective perspective
translations along a line are projective transformations with one fixed point
— a point at infinity, while rotations in a flat pencil of lines have no fixed
lines.

This observation opens a way for a generalization [54]. To define a projec-
tive metric on a line, first of all we should select a projective transformation
A which will play the role of the unit translation. If x is some point on
a projective line then z, A(x), A%(x), A3(x) ... will give mark-points of the
distance scale. Therefore, we will have as many different measures of the
distance on a projective line as there are substantially different projective
transformations of this line. The Euclidean example suggests that we can
classify projective transformations by the number of their fixed points.

On the projective line P! every three distinct points define the unique
coordinate system in which the basic points have coordinates (1,0), (0,1)
and (1,1). Any other point is given by an equivalence class [x] = (A\x1, Az2),
A\ # 0, of two real numbers z, z9. Projective transformations of the line P!
have the form

/
T, = AllfL’l + A12:L’2

x’2:A21x1+A22m2 s det (AZ]) 750 (23)

If (x1,x2) is a fixed point of this transformation, then we should have

Az = Apxy + Az,
Axy = A1 + Aoz, (24)

for some A # 0. The point (z1,z2) is uniquely determined by the ratio
z = % (the non-homogeneous coordinate of this point), for which we get
from (24)

A1z + (Agg — Ap1)z — A1p =0, (25)
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or in the homogeneous form
2(z,z) =0, (26)

where we have introduced the quadratic form

2
ij=1
with

Agg — A
11 = Ag, 912:9212%, (299 = —Aj2.

If A= (A22 — A11)2 + 4A19A9 = 4(9122 — 911922) > 0, then (25) has two
different real solutions and the transformation A is called hyperbolic. If
A =0, two different solutions degenerate into a single real solution and A
is called parabolic. At last, if A < 0, then (25) has no real solutions at all
and the transformation A is called elliptic.

Therefore, we have three different measures of the distance on the projec-
tive line P': hyperbolic, parabolic and elliptic. By duality the same is true
for a flat pencil of lines for which we have three different types of angular
measure.

Let us consider first the hyperbolic measure. Then the corresponding
projective transformation A has two fixed points pg and ps,. Let these points
be the basic points of the projective coordinate system such that pg = (0, 1)
and poo = (1,0). Substituting these points into (24), we get Aj9 = Ay =0
and, therefore, the projective transformation A takes the simple form

/
Ty = Anzy,

/
Ty = A22 T2

in this coordinate system. Introducing again the non-homogeneous coordi-
nate z = ;—;, we can represent the transformation A in the form 2z’ = Az,
where A\ = All/AQQ.

If we take some point z = z; as the beginning of the distance scale then
the mark-points of this scale will be z1, Az1, A221, A321, ... and the distance
between points A"z; and z; is equal to n.

To measure distances that constitute fractions of the unit distance, one
should subdivide the unit intervals [A\"2z, \"*121] into N equal parts. This
can be achieved by means of the projective transformation 2z’ = pz, leaving
the basic points pg (2 = 0) and pso (2 = 00) invariant, such that p™Vz; = Az,
or p = A¥. Then the points z1, uz1, u2z1, ..., N 21 = Az constitute the
desired subdivision of the unit interval [z1, Az;1] into N equal parts. Now the

distance from the point z; to the point A"t ¥ z; is equal to n + 5
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Repeating subdivisions infinitely, we come to the conclusion [54] that
the distance from z; to a point z equals to the real number « such that
z = A*z1. Therefore, in our particular coordinate system the hyperbolic
distance is given by the formula

1 z
d(z,21) = mlnz—l

As the distance on the line should be additive, d(x,y) = d(z, z1) + d(z1,y),
we get the general formula [54] for the hyperbolic distance between points
r = (z1,72) and y = (y1, y2)

Z1Y2

d(z,y) = Cln %2 27
@y =Cm 2 (27)

where C' = ﬁ is some constant and the freedom to choose C reflects the
freedom to choose different units of the length measurement.
However, as pgp = (0,1) and ps = (1,0), we have = x9py + Z1Poo,
Y = Y2pP0 + Y1Poo and
1y

= R(p(])poovxvy)
T2Y1

is the cross-ratio formed by the points x and y with the fixed points py and
Poo Of the projective transformation A. Therefore we get the coordinate-
independent form

d(x,y) = Cln R(po, oo, T, Y) (28)

of the hyperbolic distance formula. Now we use this formula to express
the hyperbolic distance in terms of homogeneous coordinates in a general
coordinate system.

As the projective coordinates of a point are determined only up to a
scale factor, we can write

Po=XT+Y,  Poo=Nol+Y, (29)

for some A\g and As. Then, using [64] R(po, oo, x,y) = R(2,y, o, Peo), We
get

Aso

Ao

But 2(po,po) = 2(Pso,Pso) = 0 and (29) shows that both A\g and A are
solutions of the quadratic equation

R(po, pocs T, Y) =

N Q(z,x) + 202(x, y) + 2(y,y) = 0. (30)
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Therefore,

2z, y) + /22(@,y) — 2z, 2) 2y, y)
Qz,y) — /22(x,y) — 2z, 2) 2y, y

and the hyperbolic distance is

R(p(]vpoovxvy) =

9

~—

2z, y) + /22(@,y) — 2(x,2) 2y, y)

x, =Cln ’
d( y) I Q(x’y)_\/[22(1'7:1/)—0(1',1')0(3/73/)

(31)

We have not mentioned one subtlety [54]. The fixed points pg and p, divide
the projective line P! into two intervals according to the sign of the cross-
ratio R(po, Poo, x,y). Above we have assumed that z and y are from the
interval which corresponds to the positive sign of this cross-ratio. Therefore
(31) gives the distance only between points of this interval. As this formula
implies, pg and ps are both at logarithmically infinite distance from every
point of the interval under consideration. Therefore these points, to say
nothing of the points beyond them, are unreachable for the inhabitants of
the one-dimensional hyperbolic world, for whom the question of existence of
the other interval is a metaphysical question.
The analytic continuation of (31) by means of the formula

1
Inx = 2iarccos Tt

2z

can be used to get the distance in the elliptic case, when (30) does not have
real solutions, and, therefore, 22(x,y) — 2(x,2)2(y,y) < 0 for all points x
and y. This gives

2(z,y)

V2, 2)2(y,y)

Note that in the elliptic case there are no infinite points, all distances being
finite and defined only up to 27n, n € Z. This is precisely the situation
characteristic of the Euclidean angles. If we take 2(z,z) = 2% + 23, so that
2;; = d;, then (32) gives for the distance (angle) between lines (u1,us) and
(v1,v9)

d(x,y) = 2iC arccos (32)

U1V1 + UV
V(Ui +u3) (0] +v3)

Obviously this is the usual Euclidean formula for the angle between two lines
with normals (u1,us) and (v1,v2) provided that C' = —i/2.

d(u,v) = 2iC arccos
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It remains to consider the parabolic case, when 22(x,y) — 2(z,z)2(y, y)
is identically zero for all z,y, and, therefore, (31) gives zero distance be-
tween every pair of points. Nevertheless it is possible to define a nontrivial
parabolic distance if one considers how (31) approaches zero [54].

Noting that

2 _A
Q(I‘,I’)Q(y,y) -2 (xvy) = (51312/2 - y1$2)T )
where A = 4(!2%2 — (N18%9) is the discriminant of the quadratic form 2, we
can rewrite (31) for small A as follows:

. [ 2(z,7)2(y,y) — 22(2,y)
d(z,y) = QZC’arcsm\/ 20, 2) 200 y)

~ Z.Cm T1Y2 — Y122

V2(z,2)2(y,y)

However, we can assume that the arbitrary constant C' goes to infinity as
A — 0 so that i{Cv/—A = k remains finite and non zero. In the parabolic

limit we have 2(z,z) = (p1w1 + p2w2)?, where p1 = /(211 and py = /{ho.
Therefore, we get the following formula for the parabolic distance:

_ T1Y2 — Y122 _ Q) Q)
d@,y) = k(plml + pax2)(p1y1 + p2y2)  P(z)  Ply)’ (33)

where P(z) = p1x1 + pexe = \/2(x,x) and Q(x) is an arbitrary linear form

not proportional to P(x) (that is, ¢g1p2 — g2p1 = k # 0). In particular, if

P(z) = z9 and Q(z) = x1, we get the usual Euclidean expression for the

distance between points x and y whose non-homogeneous coordinates are
1 x1 75— ~

f=andg=2rdzy) =L -L =57

Y2 T2 Y2

7. Nine Cayley—Klein geometries

A point on the projective plane P? is determined by three real coordi-
nates x1,xe,rs. Therefore, a natural generalization of equation (26), which
defines the fundamental points of the linear measure, is the equation of a
conic section

3
Q(l‘,l‘) = Z Qz'jl‘il‘j =0. (34)
7,7=1

The conic section (34) will be called the fundamental conic, or the Absolute
in Cayley’s terminology. Every line incident to an interior point of this conic
section intersects it at two points, which can be used as the fundamental
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points of a linear metric on the line. This allows us to define a projective
metric for interior points of the Absolute. For a pair x and y of such points
the line [ = x X y intersects the Absolute at some points pg and pe,. As
in the one-dimensional case we can write pg = Az + vy, poo = Nz + y and
applying the same reasoning we will end up with the same formula (31) for
the hyperbolic distance between interior points of the Absolute lying on the
line [. Of course, the arbitrary constant C' occurring in this formula must
be the same for all lines on which (31) defines a metric.

Analogously, to define the angular measure, we can consider the Absolute
as made from (tangential) lines

3
f?(u,u) = Z @ijuiuj = O, (35)

where ({2;;) is the matrix of cofactors [64] of the matrix ({2;;). Then for
every flat pencil of lines at every interior point of the Absolute we can choose
two lines tangent to the Absolute (belonging to the Absolute considered as
made from lines) as the fundamental lines to define the cross-ratio and the
associated hyperbolic angular measure. If two fundamental lines degenerate
into one line, we will have a parabolic angular measure and if the Absolute
is such that the given pencil of lines does not contain (real) tangents to the
Absolute, the angular measure will be elliptic. The arbitrary constant C’
which will appear in the projective angular measure must be the same for
all pencils of lines but can be different from the constant C' which appears
in the projective linear measure.

Therefore, we have nine different combinations of types of the linear and
angular measures on the plane, and hence, nine different plane geometries.
These geometries are nowadays called Cayley—Klein geometries and they are
listed in the Table I.

TABLE I

The nine two-dimensional Cayley—Klein geometries.

Measure of Measure of lengths
angles Hyperbolic Parabolic Elliptic
Hyperbolic || Doubly hyperbolic Minkowski co-Hyperbolic
(de-Sitter) (anti de-Sitter)
Parabolic co-Minkowski Galilean co-Euclidean
Elliptic Hyperbolic Euclidean Elliptic

(Lobachevsky) (Riemann)
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Let us take a closer look at these geometries and at relations among them.
First of all, some geometries are related by duality. The points of geometry
X are the lines of its dual, or co-geometry X, and the lines of geometry X
are the points of X. What was the distance between points in geometry X,
in the dual geometry X we should call the angle between lines, and what
was called the angle between lines in X, becomes in X the distance between
points. Elliptic, Galilean and doubly hyperbolic geometries are self-dual,
while all other geometries differ from their duals.

There exists [64] a projective coordinate system in which the equation
of the conic {2 takes the simple form

3 3 2
u?
Z biz? =0, or in the tangential form Z —+ =0.
; — b
i=1 i=1
The homogeneous coordinates are determined only up to a scale factor.

Therefore, we can assume without loss of generality the following equation
[68] for the conic §2:

Qz,z) = ereas —exd + 23 =0, (36)
with some constants €1, €3, or in the tangential form,
Q) =18 —el3 + 1603 =0. (37)
Let us introduce the following non-homogeneous coordinates (in the Eu-
clidean case they will turn out to be the usual Cartesian coordinates)

t (38)

1 x2
2= — = —
V02(z, x) + x5 V2(x,z) + 3
If the quadratic form {2 is not positive definite, we will assume that only
those points for which £2(z,x2) > 0 are the points of the corresponding

geometry. however, if 2(z,x) > 0 then we can choose an arbitrary scale
factor of the homogeneous coordinates so that

2(z,z)=1 (39)

for the scaled homogeneous coordinates. From (38) and (39) we get expres-
sions of the corresponding values of the homogeneous coordinates in terms
of z and t:

2z 2t 1+ et —ez2?)

Tl a(2 -2’ T €1(t? — e322) BT €1(t2 — ex22)
(40)

x1
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Taking C' = k/(2+/€1), we get for the distance between points xo(to, z0) and
x(t,z) from (32)

cosh [% d(a;o,a:)} = 2(xg,x),
which by using sinh? (/2) = (coshz — 1)/2 can be transformed into

sinh? <\/ad(l’0, :L’)> — e [1 (t — t0)2 — 62(z — 20)2 (41)
-

2k (12 — €222)][1 — e1(t — e228)]

It is well known that the points of the Euclidean plane can be repre-
sented by complex numbers. Remarkably, the points of all nine Cayley—
Klein geometries also can be represented by suitably generalized complex
numbers [69, 70].

Complex numbers a + ib are obtained by adding a special element ¢ to
the real numbers. This special element is characterized by the property
that it is a solution of the quadratic equation 2 = —1. However, there
is nothing special to this quadratic equation. On equal footing we can as-
sume a special element e to be a solution of the general quadratic equation
Ae?+Be+C = 0. In fact this construction gives three different types of gen-
eralized complex numbers a+ eb depending on the value of the discriminant:
A=DB?—-4AC <0, A=0, or A> 0. In the first case we get the ordinary
complex numbers a + ib and one can assume without loss of generality that
i> = —1. If the discriminant is zero, we get the so called dual numbers
a + b and one can assume that €2 = 0. At last, for a positive discriminant
we get the double numbers a + eb with €2 = 1. Note that, for example, in
the double numbers e is a special unit different from 1 or —1. That is, the
equation z2 = 1 has four different solutions in double numbers. All that is
explained in detail in Yaglom’s book Complex Numbers in Geometry [69].

Now let us introduce a special element e such that €2 = ey and the
corresponding generalized complex numbers z = t+ex. Then (41) yields for
the distance between points zg = tg + exy and z

. Verd(zo,2)\ (z — 20)(Z — Z0)
sink” <T> - 1 - elzzﬁ[l — 612020] ’ 42)

where the conjugation operation is defined as usual: Z =t — ex and 2z =
12 — 232 =12 — 623:2.

Analogous considerations apply to the angular measure based on the
tangential conic (37) and we get similar formulas for the angle between two
lines, with the roles of €; and e interchanged.

In fact for €; there are only three possibilities: €1 =1, € =0 or g = —1.

All other cases can be reduced to these three by changing the unit of the
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linear measure. The same is true for the parameter €5 also: by changing the
unit of the angular measure this parameter can be brought to 1 or —1, if
different from zero.

If ¢, = 1, then (41) shows that the linear measure is hyperbolic, the
points of the corresponding Cayley—Klein geometry are represented by dou-
ble numbers if o = 1 (hyperbolic angular measure, the de Sitter geometry),
by dual numbers if e = 0 (parabolic angular measure, the co-Minkowski
geometry), and by complex numbers if e = —1 (elliptic angular measure,
the Lobachevsky geometry). The corresponding distance formula is

ginp? 220:2) _ (2= 20)(— 20)
2k [1— 2z][1 — z0Zo]
If e, = —1 then we have elliptic linear measure and the distance formula is

sin? d(zo,2) _ (z —20)(Z — 20)
2k 1+ 22][1 + 2020]

At that, the points of the anti de-Sitter geometry are represented by double
numbers, points of the co-Euclidean geometry — by dual numbers, and
points of the Elliptic geometry — by complex numbers. For ¢; = £1, the
choice k = 1 corresponds to the usual definition of length in the Lobachevsky
and Elliptic (Riemann) geometries |70].

At last, taking the limit e; — 0, we get the distance in the parabolic
case

d*(z0,2)
4k?2

In the case of the elliptic angular measure, z and zy are complex numbers,
and the last formula gives the usual Euclidean distance if we take k =
1/2. The points of the Galilean geometry (parabolic angular measure) are
represented by dual numbers and the points of the Minkowski geometry
(hyperbolic angular measure) — by double numbers [70].

We can make contact with Riemannian geometry by noting that for
infinitesimally close z and 2y, and for the unit scale factor k = 1, (41) takes
the form

= (2 —20)(z — 20) -

4(dt? — exdax?)
[1—€1(t? — e22?)]?

Let us define the generalized cosine and sine functions as follows |71, 72|

ds® =

(43)

cos (v/—ex), if e <0 L\/\/_—?x)a if e<0
Cz;e) =14 1, if e=0 , S(z;e)=< =, if e=0
cosh (yex) if €>0 %\/@7 if €>0

(44)
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Then

C?(z;¢) — eS*(x3¢) = 1, % =eS(x;¢€), dSEla;; 2 = C(x;€). (45)

If we define the “polar” coordinates (r, ¢) (for points with 0<t?—ep? < é)
through relations

t=rC(die), z=rS(¢;e),
then, by using identities (45), we obtain from (43)

4(dr? — egr?dg?)

0 = M) it G, 49
where 4 o2
E(r) = oy and G(r) = ﬁ : (47)

However, for the Riemannian metric (46) the corresponding Gaussian cur-
vature K satisfies the equation [54]

dG\? _dEdG G
AE’G?’K = E | — —— —2FG—.
G <dr> +Gdr dr Gdr2
Substituting (47), we get
K = —€71.

This clarifies the geometric meaning of the parameters e; and (by duality)
€9: the corresponding Cayley—Klein geometry has the constant curvature
—e1 and its dual geometry, the constant curvature —es.

More details about the Cayley—Klein geometries can be found in [70], or
from more abstract group-theoretical point of view, in [71-74]. We will not
follow this abstract trend here, but for the sake of future use give below the
derivation of the Lie algebras of the Cayley—Klein symmetry groups.

Rigid motions (symmetries) of the Cayley—Klein geometry are those
projective transformations of P? which leave the fundamental conic (36)
invariant. Let S = e*“ be such a transformation with G as its genera-
tor (an element of the Lie algebra of the Cayley—Klein geometry symmetry
group). Writing (36) in the matrix form z7 2z = 0, for rigid motions we
get ()T 02a" = 2702z, where 2/ = Sz. Therefore, the invariance of the
Absolute 2 under the symmetry transformation S implies that ST 2 S = f2.
For the infinitesimal parameter « this condition reduces to

GT'N+0G=0.
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Taking in this equation

Q

Il
o2
oo
Do
o(Lo

=
= o O

we get (in the general case e1€9 # 0)
G11 = G = G33 =0, Go1 = €2G12, G31 = —e162G13, G32 = €1Gag.

Therefore, the Lie algebra of the symmetry group of the Cayley—Klein ge-
ometry has three linearly independent generators [68]

0 O 0 0 0 1
Gy = 0 O -1 1, Gy = 0 0 0 |,
0 —e 0 —e1e2 0 0
0 1 0
G3 = e2 0 0 . (48)
0 0 O
Now it is not difficult to find the commutators
[G1,Ga] = e1G3, G3,G1] = —Ga, [G2,G3] = €G- (49)

In fact all relevant information is encoded in these commutation relations.
Let us consider, for example, the Minkowski geometry with e¢; = 0, e = 1
and obtain the Lorentz transformations from its Lie algebra.

For the Minkowski geometry, the commuting generators G; = H and
G2 = P can be considered as the generators of time and space translations,
while G3 = K will play the role of the Lorentz transformation generator.
From (49) we read the commutation relations

[H,P]=0, |[K,H=-P, |[KPl=-H. (50)

among these generators. This defines the Lie algebra of the two-dimensional
Poincaré group P. The two-dimensional Lorentz group L is generated by
K and consists of the transformations of the form e¥X, where 1 is the
relevant group parameter. As we stated above, the Minkowski space-time
can be identified with the coset space M = P/L. Every element of M
has the form [g] = gL, where g = e®0H P = e2oH+2P is the element of P
characterized by two real parameters x( and z, which we identify with the
time and space coordinates of the “point” [g]. The Lorentz transformation
s = %K acts on the point [g] in the following way

[g] = [sg] = [sgs™'] ,
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where the last equality follows from the fact that s~ € £, and therefore,
s71L = L. Now we need to calculate

ewKe:coH—i-zPe—wK )

First of all, note that (48) implies that H? = P? = HP = 0, and therefore,
eoH+eP — 1 4 o H + 2P
To proceed, recall the Baker-Campbell-Hausdorff formula |75]

(e}

B
Ap —A m
e’ Be " = E_O ol (51)

where By, is defined recursively by B, = [A, B;,—1] and By = B. Taking
A=9yK, B=ux¢H + zP, we get from (50)

By = [A,B] = —¢(xoP + xH), By = [A, By] = ¢*(zoH + xP) = *B.

Therefore,
Boj1 = = (zo P + 2 H), By, = ¢* (20H + aP)
and
0 Bm 0 2k ka—i—l
—_— = H P —(xoP H);.
mz::om’ kz{(%) (@ +2P) - Gry (P 2 )}

Or, after summing up the infinite series,

Z —n: (cosh ) xg — sinh ) x)H + (cosh ¢ x — sinh ) zy) P

m=

Hence, if we write sgs™! = etoll o' P — =1+a(H+2 P that is, if we represent
the point [sg] by the transformed coordinates (), 2/, we get

x( = cosh ) zg — sinh ) z,
z' = cosh )  — sinh ) z¢, (52)

which is nothing but the Lorentz transformation (13) provided ¢ is the
rapidity defined by tanh = 8, and xg = ct.

This derivation of Lorentz transformations demonstrates clearly that the
natural (canonical) parameter associated with Lorentz transformations is
rapidity, not velocity [76-78|. Therefore, to follow the intrinsic instead of
historical logic, we should “introduce rapidity as soon as possible in the
teaching of relativity, namely, at the start. There is no need to go through the
expressions of Lorentz transformations using velocity, and then to ‘discover’
the elegant properties of rapidity as if they resulted from some happy and
unpredictable circumstance” [76].
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8. Possible kinematics

As we see, special relativity has its geometric roots in the Cayley—Klein
geometries. However, special relativity is not a geometric theory, but a
physical one. This means that it includes concepts like causality, reference
frames, inertial motion, relativity principle, which, being basic physical con-
cepts, are foreign to geometry. We showed in the first chapters that if we
stick to these concepts then the Minkowski geometry and its singular ¢ — oo
Galilean cousin remain as the only possibilities.

But what about the other Cayley—Klein geometries? Do they also have
physical meanings? To answer this question affirmatively we have to alter or
modify the physical premises of special relativity and, as the preceding brief
discussion of relativity without reference frames indicates, we should first
of all generalize the Relativity Principle, getting rid of the too restrictive
framework of inertial reference frames, whose existence in general space-
times is neither obvious nor guaranteed.

The symmetry group of special relativity is the ten-parameter Poincaré
group. Ten basis elements of its Lie algebra are the following: the generator
H of time translations; three generators P; of space translations along the
i-axis; three generators .J; of spatial rotations; and three generators K; of
pure Lorentz transformations, which can be considered as the inertial trans-
formations (boosts) along the i-axis. The commutation relations involving
J; have the form

Ji, H =0, [Ji,J;] = €judi, [Ji» Pj) = €juPr, [Ji, Kj] = €Ky,
(53)
and they just tell us that H is a scalar and P;, J;, K; are vectors. These
commutation relations can not be altered without spoiling the isotropy of
space if we still want to regard H as a scalar and P;,J;, K; as vectors.
However, other commutation relations

(54)
are less rigid as they depend on the interpretation of inertial transformations
which we want to change.

Besides the continuous symmetries of the Poincaré group there are some
discrete symmetries such as the space inversion (parity) and the time-rever-
sal, which play important roles in physics. Under the time-reversal

H——H, P—P (55)

and the commutation relations (53) and (54) indicate that (55) can be ex-
tended up to the involutive automorphism

7 H—-H, P—P, J—J, K—-K (56)
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of the Poincaré Lie Algebra. Analogously, the space inversion is represented
by the involutive automorphism

. H—H, P—-P, J—J, K—-K. (57)

We will assume [79] that the generalized Lie algebra we are looking for
also possesses the automorphisms 7 and w. From the physical point of
view we are assuming that the observed P- and T-asymmetries of the weak
interactions have no geometric origin and the space-time itself is mirror
symmetric. Of course, it is tempting then to expect the world of elementary
particles to be also mirror symmetric and the less known fact is that this
mirror symmetry can be indeed ensured by introducing hypothetical mirror
matter counterparts of the ordinary elementary particles [80].

After deforming the commutation relations (54), the Poincaré group is re-
placed by the so called kinematical group — the generalized relativity group
of nature. In a remarkable paper [79] Bacry and Lévy—Leblond showed that
under very general assumptions there are only eleven possible kinematics.
The assumptions they used are:

e The infinitesimal generators H, P;, J;, K; transform correctly under ro-
tations as required by the space isotropy. This leads to the commuta-
tion relations (53).

e the parity m and the time-reversal 7 are automorphisms of the kine-
matical group.

e Inertial transformations in any given direction form a noncompact sub-
group. Otherwise, a sufficiently large boost would be no boost at all,
like 47 rotations [81], contrary to the physical meaning we ascribe
to boosts. The role of this condition is to exclude space-times with
no causal order, that is, timeless universes like the Euclidean one. Al-
though, as was mentioned earlier, the real space-time quite might have
such inclusions, but as there is no time in these regions and hence no
motion, it is logical that the corresponding symmetry groups are not
called kinematical.

If we demand the parity and time-reversal invariance, the only possible
deformations of the commutation relations (54) will have the form

[H,P] = e K;, [H K;]=\P, |[P;,P]=aeji,

(K, K] = BeijiJ [P, Kj] = €265 H . (58)
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Now we have to ensure the Jacobi identities

[P, [Py, Ki]| + [Pj, [Ky, B]] + [Ky, [P, Pj]] = 0
and
(B, K, Ki]] + (K5, [Ky, Bil] + [Ky, [P, K;]] = 0

which are satisfied only if

a—e€e =0 (59)
and
B+ Xeg = 0. (60)

It turns out [79] (this can be checked by explicit calculations) that all other
Jacobi identities are also satisfied if (59) and (60) hold.

As we see, the structure of the generalized Lie algebra is completely
determined by three real parameters €1, €2 and A. Note that the overall sign
of the structure constants is irrelevant as the sign change of all structure
constants can be achieved simply by multiplying each infinitesimal generator
by —1. Therefore we can assume A > 0 without loss of generality and by a
scale change it can be brought either to A =1 or A = 0.

If A =1, the commutation relations are

[H,P;] = e1K;, [H,K;]| = F;, [P, Pj] = e1€2 €555

(K, K] = —ez €ijJi [P, Kj] = e20;;H (61)

and comparing with (49) we see that every three-dimensional subalgebra
(H, P, K,), (H, Py, Ky) and (H, P, K3) realizes the Cayley—Klein geometry
of the type (e1,€2) if the identifications G1 = H, Gy = P;, G3 = K; are
made.

Let us note that G% = 62E12 and GgEu = ElgGg = Gg, where

1 0 0
FEiy = 0 1 0
0 0 O
Therefore,
P PP P
VK — 14 <¢+562+ﬁe§+ﬁe§... K

v’ Pt P
+<§62+z€%+a€§+ E12
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and recalling the definition of the generalized sine and cosine functions (44)
we get
eV = (1= Ba) + S(v3 €2) K + C(5 €2) Eno (62)

As we see, e?K is periodic if €5 < 0; that is, in this case the inertial transfor-
mations form a compact group and the corresponding Cayley—Klein geome-
tries with elliptic angular measure (Lobachevsky, Euclidean and Elliptic) do
not lead to kinematical groups.

The remaining six cases include: the de Sitter kinematics (DS) with
doubly-hyperbolic geometry e; > 0, e > 0, the anti de Sitter kinemat-
ics (ADS) with the co-hyperbolic geometry €; < 0, e > 0, the Poincaré
kinematics (P) with the Minkowski geometry € = 0, €3 > 0, the Newton—
Hook kinematics (N H) with the co-Minkowski geometry e¢; > 0, e = 0,
the anti Newton-Hook kinematics (ANH) with the co-Euclidean geome-
try €1 < 0, e = 0 and the Galilean kinematics (G) €1 = 0, e = 0 whose
geometry is described in detail in |70].

At last, if A =0, the commutation relations are

[H,P] = e K;, [H,K;]=0, [P;, Pj] = e1€2 €51 Jk;
[K;, K] =0, [P, Kj] = e20;;H . (63)
Suppose that €; # 0, and introduce another basis in the Lie algebra (63):
P =¢K;, K/ =P, H =H, Jr=J;.
The commutation relations in the new bases take the form
H.P)=0. [H.K]=P. [P.P]=0.

[KZ,,K]/] — €1€2 Eijkjllg, [.PZ/,K]/] = —€1€2 (5in,.

However, this is the same Lie algebra as (61) for the Cayley—Klein parame-
ters €} = 0 and €}, = —eje9. Nevertheless, the physics corresponding to the
isomorphic algebras (63) and (61) are completely different because we pre-
scribe to the generators H, P, K a well-defined concrete physical meaning
and they cannot be transformed arbitrarily, except by scale changes [79].
Anyway, all these new possibilities also realize Cayley—Klein geometries.
At that, K; = G2/¢; and by using G3 = 0 (for €] = 0) we get e¥%i = 14+ K;;
that is, the subgroup generated by K; is always non-compact in this case.
However, (—e1, —€2) and (€1, €2) give the same Lie algebra as the first case
just corresponds to the change of basis: H — —H, P— —P, K — —K, J —
J. Therefore, one is left with three possibilities: the anti para-Poincaré
kinematics (AP’) e; = 1, e = 1 with Euclidean geometry €} = 0, €, = —1,
the para-Poincaré kinematics (P’) ¢ = —1, e = 1 with the Minkowski
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geometry €) =0, €, = 1, and the para-Galilei kinematics (G') €¢; =1, e =0
with Galilean geometry €] =0, €, = 0.

The case A = 0, ¢ = 0 adds two more possibilities: the Carroll kine-
matics (C') with eo = £1, first discovered in [82], and the static kinematics
(S) with e = 0 for which all commutators between H, P, K vanish.

In the case of the Carroll kinematics, the Galilean geometry is realized
in each (H, P;, K;) subspaces with G1 = P;, Go = H, G3 = K;. As we see,
compared to the Galilean kinematics, the roles of time and space translations
are interchanged in the Carroll kinematics. This leads to the exotic situation
of absolute space but relative time. That is, an event has the same spatial
coordinates irrespective of the applied inertial transformation (change of the
reference frame) [82,83|. There are no interactions between spatially sep-
arated events, no true motion, and practically no causality. The evolution
of isolated and immobile physical objects corresponds to the ultralocal ap-
proximation of strong gravity [84]. The name of this strange kinematics is
after Lewis Carroll’s tale Through the Looking-Glass, and What Alice Found
There (1871), where the Red Queen points out to Alice: “A slow sort of
country! Now, here, you see, it takes all the running you can do, to keep in
the same place. If you want to get somewhere else, you must run at least
twice as fast as that!”

It is remarkable that under very general assumptions all possible kine-
matics, except the static one, have Cayley—Klein geometries at their back-
ground [85,86|. By deforming the Absolute of the doubly-hyperbolic geom-
etry (by changing parameters €; and e3) one can get all other Cayley—Klein
geometries. It is not surprising, therefore, that all eleven possible kinematics
are in fact limiting cases of the de Sitter or anti de Sitter kinematics [79]
which are the most general relativity groups. As a result, there exists es-
sentially only one way to generalize special relativity, namely, by endowing
space-time with some constant curvature [79)].

9. Group contractions

There is a subtlety in considering various limiting cases of the kinemat-
ical groups introduced in the previous chapter. We demonstrate this by
considering the non-relativistic limit of the Poincaré group. It is common-
place that the Lorentz transformations (13), written for the space and time
intervals Az and At,

Az’ = ! (Ax — VAY),
1— (32
At = 1 (At—%Am),
V1-p? ¢
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in the non-relativistic limit 8 — 0 reduce to the Galilei transformations

Ax' = Ax — VAL,
At = At. (64)
But to reach this conclusion, besides 8 < 1, we have implicitly assumed

that
cAt

5— < 1, 5_N1
or
cAt Az
B < Ar’ Al ~ k1

which is not necessarily true if Az > cAt.

Therefore the Galilei transformations are not the non-relativistic limit
of the Lorentz transformations but only one non-relativistic limit, which
corresponds to the situation when space intervals are much smaller than time
intervals [82] (in units where ¢ = 1). There exists another non-relativistic
limit

cAt Ax
— 1, —~1
ﬁ < cAt ’
or
Ax cAt
=4 = 1
f < cAt’  Ax RS

and in this limit the Lorentz transformations reduce to the Carroll transfor-
mations [82,83]

Az’ = Az,
, \%4

The Carroll kinematics corresponds to the situation when space intervals
are much larger than time intervals, hence no causal relationship between
events are possible; events are isolated.

A systematic way to correctly treat limiting cases of symmetry groups
was given by Inonu and Wigner [87] and is called “group contraction”. A sym-
metry group GG can be contracted towards its continuous subgroup S, which
remain intact under the contraction process. Denote by J; the generators of
the subgroup S and the remaining generators of G, by I;. Therefore the Lie
algebra of the group G looks like

i, Jj] = fZ]ka:, i, Jj] = f”ka:+gmz;Ik, (i, 1;] = fZ]kaJrgw;)cIk (66)
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Under the change of basis
J = J Il=¢l;, (67)

7

the commutation relations transform to
LT = £, L) = eS0T+ gk, 1) = Ef5) T+ eg T
(68)
When € — 0, the base change (67) becomes singular but the commutation
relations (68) still have a well-defined limit as € — 0:
1o (1) 7o (2) !

[Ji’Jj] _fz'jk‘]kv [Iw*]j] _gz‘jklkv [Iivlj] =0. (69)
In general, the Lie algebra (69) is not isomorphic to the initial Lie algebra
(66) and defines another symmetry group G’, which is said to be the result
of the contraction of the group G towards its continuous subgroup S. The
contracted generators I/ form an Abelian invariant subgroup in G’, as (69)
shows.

The contraction has a clear meaning in the group parameter space. If
I’ = eI, then the corresponding group parameters should satisfy o = eo’ if
we want e® and !’ to represent the same point (transformation) of the
group. Therefore, when ¢ — 0 the parameter o becomes infinitesimal. From
the point of view of G, its contracted form G’ covers only infinitesimally
small neighborhood of the subgroup S. This explains why the operation is
called contraction.

Let us return to kinematical groups. We do not want to spoil the space
isotropy by contraction. Therefore, S should be a rotation-invariant sub-
group of G. Looking at the commutation relations (53) and (58), we find
only four rotation-invariant subalgebras, generated respectively by (J;, H),
(Ji, Py), (Ji, K;) and (J;), which are common to all kinematical Lie alge-
bras. Therefore, we can consider four types of physical contractions of the
kinematical groups [79]:

e Contraction with respect to the rotation and time-translation sub-
groups generated by (J;, H). Under this contraction

PZ'—>6PZ', KZ'—>6KZ‘, (70)
and as € — 0 the contracted algebra is obtained by the substitutions
€1 — €1, )\—>)\, 62—>0. (71)

As (70) indicates, the corresponding limiting case is characterized by
small speeds (parameters of the inertial transformations) and small
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space intervals. So this contraction can be called Speed-Space (sl)
contraction [79]. According to (71), the Speed-Space contraction de-
scribes a transition from the relative-time groups to the absolute-time
groups:

DS - NH, ADS— ANH, P—G@G,

AP — &', P - d, C—S.

Contraction with respect to the three-dimensional Euclidean group
generated by (J;, P;), which is the motion group of the three-dimensio-
nal Euclidean space. Under this contraction

H— EH, Kz - EKZ',
and the limit € — 0 produces the changes
€1 — €1, A—0, €9 — €9.

The physical meaning of this contraction is the limit when speeds are
small and time intervals are small; hence the name “Speed-Time (st)
contraction”. The speed-Time contraction leads to the absolute-space
groups with essentially no causal relations between events, and hence,
of reduced physical significance:

DS — AP, ADS - P, P—-C,
NH — &, ANH - G, G—S.

The absolute space groups themselves remain intact under the Speed-
Time contraction.

Contraction with respect to the Lorentz group generated by (J;, K;).
This is the Space-Time (It) contraction because under this contraction

H—eH, P, —¢€ePF;

and we get the limiting case of small space and time intervals. The
contracted groups are obtained by the changes

61—>0 A— A €9 — €9
) )

and we get transitions from the global (cosmological) groups to the
local groups:

DS - P, ADS— P, NH-—-G, ANH -G,

AP — C, P - C, G — 8.
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e Contraction with respect to the rotation subgroup generated by J;.
Under this Speed-Space-Time (slt) contraction

H—eH, P,—¢eP, K;—eK;,
which leads in the limit € — 0 to
e1—0, A—=0, e—0.
That is, all kinematical groups are contracted into the static group.

Schematically the relations between various kinematical groups are shown
in Fig. 3. All these groups are limiting cases of the de Sitter or anti de Sitter
groups.

DS (It P ADS (3 P

'
s~NH : G NANH G

(st) (st)’

Fig. 3. The eleven kinematical groups and relations between them.

As we have seen above, the natural parameter of the inertial transfor-
mations in the Poincaré group is the rapidity, which is dimensionless. One
can ask the similar question about the natural dimension of speeds in other
kinematical groups also. Note that the term speeds, as opposed to veloci-
ties, will be used to denote natural parameters of inertial transformations in
general.

It is natural to choose group parameters for which the Lie algebra struc-
ture constants are dimensionless [88]. At that, as the Lie algebra generators
have dimensions inverse to those of the corresponding group parameters,
every non-zero commutation relation between H, P; and K; will induce a
non-trivial relation between their dimensions [H], [P;] and [Kj].

In the case of static kinematics, all commutation relations vanish. There-
fore, there are no non-trivial dimensional relations, and the dimensions of
time translations, space translations and speeds, which we denote respec-
tively by T, L and S (so that [H] = T, [P] = L™, [K;] = S71), are all
independent.
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For the de Sitter and anti de Sitter groups, all structure constants are
non-zero, which implies the following dimensional relations (note that angles,
and hence J;, are dimensionless)

Tlp =571 77l =17, L7?2=1, §2=1, L7'st=T""1.

This is possible only if L = T = S = 1. Therefore the natural group
parameters for de Sitter and anti de Sitter kinematics are dimensionless.
“From our ‘Galilean’ viewpoint, we could say that in the de Sitter universe
there is a ‘characteristic’ length, a ‘characteristic’ time and a ‘characteristic’
speed which may be used as natural units, and then lengths, times and
speeds are dimensionless” [88|.

In Poincaré kinematics we have three non-trivial dimensional relations

TlsTt=r7t, s =1,  LT'STh=T7,

which imply that speeds are dimensionless and L = T'. That is, space and
time are unified in one dimensional quantity while speeds are natural to
measure in terms of a characteristic speed c.

In Galilei kinematics 7-'S~1 = L' and we get S = LT~!, which is
the usual velocity. Space and time in this case are independent dimensional
quantities.

Dimensional structures of other kinematical groups are more exotic [88].
In para-Poincaré and anti para-Poincaré case L = 1 and S = T. That
is, there is a characteristic length while time and speeds are unified in one
dimensional quantity. In Carroll case S = TL~! and space and time are
independent dimensional quantities. Newton—Hook and anti Newton—Hook
space-times are characterized by T' = 1 and S = L; that is, there is a
characteristic time while length and speeds are unified. At last, in para-
Galilei case space and time are independent dimensional quantities but S =
LT.

Remarkably, all kinematical groups admit a four-dimensional space-time
which can be identified with the homogeneous space of the group, namely,
with its quotient by the six-dimensional subgroup generated by the rotations
J; and the inertial transformations K;. At that, for the kinematical groups
with vanishing commutators [K;, H|] = 0 and [Kj;, P;] = 0, that is, for the
para-Galilei and static groups, inertial transformations do not act on the
space-time. For other groups the space-time transforms non-trivially under
inertial transformations. Let us find the corresponding transformations for
Newton—Hook groups, for example, in the case of (1+1)-dimensional space-
time to avoid unnecessary technical details.

A space-time point (xg,x) is the equivalence class of the group element
e®oHerP  After the inertial transformation e¥¥ | we get a new point (zf, 2'),
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which, on the other hand, is the equivalence class of the group element
eV K erol ool o=V K For Newton-Hook groups ez = 0 and, as (48) implies,
the generators H = G, P = G, K = G3 satisfy

H? = By, EosH=H, P>=0, K?=0, E»xK=0,

EyxP =0, HP=0, HK=0, PK=0 (72)
with
0 0 O
Eos = 0 1 0
0 0 1

Using the first two of these relations, we get
e =14 [C(zo;€1) — 1] Eaz + S(zo;e1)H ,

and after applying the Baker—-Campbell-Hausdorff formula (51), along with
the commutation relations (61), one easily obtains

VB eroHe=vE — 1 1 [C(x0;€1) — 1] Foz + S(xo; €1) H
U [C(zos 1) — 1 K — S (wo; 1) P
Because of the relations (72), the right-hand-side is the same as

eone—wS(:co;el)Pew[C(:co;el)—l}K )

But e?Ke?Pe %K = P a5 P and K do commute, and therefore,
VK paoH oP o—yK _ WK jxoH ,—¢K YK ,aP ,—¢K
— eroHe[r—wS(xo;el)}Pew[C(ro;el)—l}K

which has the same equivalence class as e*0f elt=¥S@o:el)]P  Therefore, the
transformation law is

.TO = X,
¥ = x—19S(xo;er). (73)
For ¢; = 0, we get Galilean transformations with xg = t and ¢ = V,

which are the natural choice of group parameter dimensions for the Galilei
kinematics.

For Newton—Hook kinematics we have a characteristic time 7 and under
the natural choice of group parameters ¢; = 1, xy = t/7, v = V7 the
transformation law (73) takes the form

/
Ty = Zo,

¥ = 2 —Vrsinh L, (74)
T
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In contrast to the Poincaré or Galilean case, a particle at rest x = 0 experi-
ences exponentially accelerated inertial motion

!

[ .
' = —V 7 sinh —
i

if subjected to a pure inertial transformation. Therefore, Newton—Hook
kinematics corresponds to expanding universe [79)].

In the case of anti Newton—Hook kinematics, e, = —1 and we have
oscillating universe with inertial transformations

Iy = Zo,

t
¥ = x—Vrsin-. (75)
T

Would Minkowski follow the logic of his staircase-wit from the “ Raum
und Zeit” to the end, he would reveal that the Poincaré group is mathe-
matically less intelligible than the de Sitter or anti de Sitter groups, whose
limiting cases it is. Therefore, he missed an opportunity to predict the
expanding universe already in 1908 [46].

However, as the existence of the Newton—Hook groups indicate, the New-
tonian (e2 = 0) relativity is sufficient to predict the expanding universe
and it is not well-known that the expanding universe was indeed proposed
by Edgar Allan Poe in 1848, many years before Friedmann and Lemaitre!
Poe’s Fureka, from which we borrowed the preface, is an extended version
of the lecture Poe gave at the Society Library of New York. The lecture was
entitled “On the Cosmogony of the Universe’, and despite its quite naive
and metaphysical premises this bizarre mixture of metaphysics, philosophy,
poetry, and science contains several brilliant ideas central in modern-day
cosmology, including a version of the Big Bang and evolving universe with
inflation of the primordial atom at the start, resolution of the Olbers’ para-
dox (why sky is dark at night), an application of the Anthropic Cosmological
Principle to explain why the universe is so immensely large, a suggestion of
the multiverse with many causally disjoint universes, each with its own set
of physical laws [89-91|. Although this is quite fascinating, it seems Poe was
driven mainly by his poetic aesthetics in producing these ideas rather than
by scientific logic [92]. As a result, these ideas, being far ahead of the time,
remained obscure for contemporaries and have not played any significant
role in the historical development of cosmology. Curiously, as witnessed by
his biographers, Poe was Friedmann’s favorite writer. “Did Friedmann read
FEureka? It would be not serious to push this game too far” [89].



852 7Z.K. SILAGADZE

10. Once more about mass

It seems worthwhile to return to “the virus of relativistic mass” [93| and
inspect the concept of mass from the different viewpoint provided by the
quantum theory. After all, the creation of quantum mechanics was another
and more profound conceptual revolution in physics. Unfortunately, the
corresponding dramatic change of our perspective of reality is usually ignored
in teaching relativity.

The states of a quantum-mechanical system are described by vectors in
a Hilbert space. At that, vectors which differ only in phase represent the
same state. That is, the quantum-mechanical state is represented by a ray

ey, (76)

where « is an arbitrary phase, rather than by a single vector | ¥). This gauge
freedom has some interesting consequences for a discussion of symmetries in
quantum case.

Symmetries of a quantum system are represented by unitary (or anti-
unitary, if time reversal is involved) operators in the Hilbert space. Because
of the gauge freedom (76), these unitary operators are also defined only up
to phase factors. Let us take a closer look at these things assuming that
under the symmetry transformation g € G the space-time point = = (¢, %)
transforms into 2’ = (¢,Z’). For the short-hand notation we will write
' = g(x). Let |z )= |Z,t) be the basis vectors of the z-representation, that
is, of the representation where the coordinate operator is diagonal. The
symmetry g is represented in the Hilbert space by a unitary operator U(g)
and, obviously, |#') and U(g)|z) should represent the same state, that is,
they can differ only by a phase factor:

o) = @BV (gz) . (x|U(g) =B (g7 (@) (77)

Here the second identity follows from the first one when we take into account
that operators Ut (g) = U~!(g) and U(g~!) can differ from each other
only by a phase factor. For an arbitrary state vector |¥) we have the
transformation law

|v)=U(g)|¥) .

Using (77), one has for the wave function
W/(If, t) — <IL’| wl> — <IL’|U(g)‘ W> — eia1(50§g) <IL'”"¢> — eiOél(ﬁQ) W(f",t”),
where 2" = g~!(z). Therefore,

V() = 159w (g7 (). (78)
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Now let us compare (z|U(g1)U(g2)|¥) and (z|U (g1 - g2)| ¥) [94]. Using (77),
we get

(@U(g1)U (g2)| W) = 159 (1|U (go)| W) = 1@ efon(nion) (o) 0)
where 1 = g; ' (z) and 215 = (g1 - g2) (). On the other hand,
(@|U(g1 - g2)| W) = 1 (9092) (15| W)
Therefore,
(@|U(91)U (g2)| &) = €2(59092) (U (g1 - g2)| @) (79)
for all space-time points = and for all state vectors |¥ ). Here

as(z;g1,92) = ai(gy ()i g2) — 1 (w391 - 92) + cu(z;g1)
= (0a1)(w;91,92) - (80)

It will be useful to use elementary cohomology terminology [95], although
we will not go into any depth in this high-brow theory. Any real function
an (591,92, - -, gn) Will be called a cochain. The action of the coboundary
operator 0 on this cochain is determined as follows:

(6on) (391,925 - -+ Gny Gnr1) =

on (971 (2); 92,93, - - -+ Gns Gt 1) — (X391 - 92,93, - - -, I Gnt1)

+an (391,92 93,94, - -+ Gns Gn+1) — An (591,92, 93 * 94,955 - - - s G, Gnt1)

ot (=) (@91, 92, -2 0 Gng) + (1) (@5 91,92, gn) -
(81)

The coboundary operator has the following fundamental property
62 =0. (82)

A cochain with zero coboundary is called a cocycle. Because of (82), every
coboundary «, = da,_1 is a cocycle. However, not all cocycles can be
represented as coboundaries. Such cocycles will be called nontrivial.

Low dimensional cocycles play an important role in the theory of rep-
resentations of the symmetry group G [95]. For example, if ai(x;g) is a
cocycle, so that as(x;g1,92) vanishes, then (79) indicates that

U(g1 - g2) = U(g1)U(g2) (83)

and the unitary operators U(g) realize a representation of the group G.
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However, because of the gauge freedom related to the phase ambiguity, it
is not mandatory that the unitary operators U(g) satisfy the representation
property (83). It will be sufficient to have a projective (or ray) representation
[96]

U(gy - g2) = e 99U (g1)U (g2) (84)

The so-called local exponent (g1, g2) can not be quite arbitrary. In partic-
ular, the associativity property (g1 - g2) - g3 = g1 - (92 - g3) implies that

£(91,92) +&(91 - 92,93) = £(92,93) +&(91,92 - 93) 5 (85)

and, therefore, £(g1, g2) is a global (not-dependent on the space-time point x)
cocycle:

(6€) (91,92, 93) = £(92,93) — &(91 - 92, 93) + E(91,92 - 93) — E(g1,92) = 0.

If the cocycle (80) does not depend on z, one can identify

£(91,92) = x2(x3 91, 92) -

At that ag(z;g1,92) is a trivial local cocycle, as (80) indicates, but globally
it is not necessarily trivial, that is, representable as the coboundary of a
global cochain.

If unitary operators U(g) constitute a projective representation of the
symmetry group G, then the correspondence (6, g) — €U(g), where 6 is
a real number and g € G, gives an ordinary representation of the slightly
enlarged group G consisting of all pairs (6,g). A group structure on G is
given by the multiplication law

(01,91) - (02,92) = (01 + 02+ &(91,92) 5 91-92)- (86)

Indeed, the cocycle condition (85) ensures that the multiplication law (86)
is associative. If we assume, as is usually done, that U(e) = 1, where e is
the unit element of the group G, then (84) indicates that £(e,e) = 0. By
setting, respectively, o = g3 =e, g1 =gp =eand g1 = g3 =g, go = g "
in (85), we get

g(evg) = E(g’ 6) =0, g(gag_l) = g(g_l’g)’ (87)

for every element g € G. However, it is evident then that (0,e) constitutes
the unit element of the extended group G and the inverse element of (6, g)
is given by

0,97 = (-0 —-¢(g.97Y), g7Y) .
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Elements of the form (6,e) commute with all elements of G, that is, they
belong to the center of G, and respectively G is called a central extension
of G.

The structure of the group G and the functional relation (85) greatly
constrain the possible forms of admissible two-cocycles (g1, g2) [96,97]. We
will not reproduce here the relevant mathematics with somewhat involved
technical details, but instead clarify the physical meaning behind this math-
ematical construction [94,96,98,99|.

Let ¥ (Z,t) be a wave function of a free non-relativistic particle of mass
m. Then ¥ (Z,t) satisfies the Schrodinger equation

U 1)
T = _ZA vU(Zt), (88)

where p = m/h.

The Galilean invariance ensures that ¥'(#,t) is also a solution of the
same Schrodinger equation (88), because ¥’ is just the same wave function
in another inertial reference frame. But according to (78)

V(Z,t) = exp [—ion (7', ¢ 9)] ¥'(&",1),
where 2’ = g(x), or
z; = Rijjzj—Vit+a;,
t' = t+b, (89)
R being the spatial rotation matrix: RRT = RTR = 1. From (89) we get

o o & ar, & 9

- = - - = — . /
o otor o ow o VY
and i
xj 0 / /
i = A=A
Vi G0 57 = Vi

Therefore the Schrodinger equation (88) can be rewritten as follows (we
have dropped the primes except in ¥')

(% Vv iA) { exp [—icn (%, £ 9)] w'(f,t)} ~0. (90

But

S

ot ot
V(e gy = ¢t [—2 (Vay) W'—I—VW] ,

/
(e—ioq W,) — e—iOtl |:_ 804]_ Lp/ aw:| ’
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and
Ale™™ W) = e [ (Aan) W' — (Vay)* W' — 2i (Vay) - (V') + AP] .

Therefore, (90) takes the form

8041 — ) 1

[ el S . v o 2

v |:8t \%4 VOél QuAal ZM(Val)]

- z’g+iA v 17'+1Va1 V¥ =0.
at  2u 1

As ¥’ satisfies the Schrodinger equation (88), we are left with two more
conditions on the a7 cochain:

L1
V+ ;Val =0 (91)

and 5 ) )
al — 1 2
—1l_v. - — Aoy — — =0. 2
8t Vv Vozl 2,u (05} Qu(Voq) 0 (9 )

From (91), we get

and (92) takes the form

a1 _,

Yy ouv?=o.
TR

Therefore,
1
f@t) = _E“VQt + Gy,

where Cy is an integration constant that can depend on g, that is, on
(b,@,V,R). A convenient choice [99] is
]. 2 4 —
Cy= §,uV b+ uV -a.
Then a4 (7, t; g) cochain takes the form

—
—

ai(f,t;g) = —pV - (& — @) — pV3(t ~b). (93)

N

Substituting (93) into (80), one can check that £(g1,g2) = ao(x;g1,92) is
indeed a global cocycle (does not depend on x):

1 — o
£(91,92) = §MV12 by — V1 - (Rida), (94)
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where V; - (Ryds) = (Rflvl) - dy = Vi;Ryi5a25. Note that (94) differs from
the Bargmann’s result [96] by a coboundary C,, — Cy,.4, + Cy, (note the
overall sign difference in a1, as, as well as the sign difference of the veloc-
ity term in (89) from the conventions of [96]). Cocycles which differ by a
coboundary should be considered as equivalent because unitary operators
U(g) are determined only up to a phase. If we change representatives of the
projective representation rays as follows

Ulg) — “@U(g),

the two-cocycle £(g1,¢g2) will be changed by a coboundary

§(91,92) — &§(91,92) + ¢(g2) — d(g1 - 92) + B(g1) -

In particular, different choices of the integration constant Cj; produce equiv-
alent cocycles.

The Bargmann cocycle (94) is nontrivial. This can be shown as follows
[96,99]. The multiplication table of the Galilei group is given by

(bl)al)vlaRl) : (b2)a2)‘727R2)
= (by + by, @ + Riday — boVi, Vi + RiVa, RiRy),
(b,a@,V,R)™" = (=b, -R'@— bRV, —-R"'V, R, (95)

where Rd denotes the action of the rotation R on the vector @, that is
(Ra); = Rijaj. We have already used (95) while deriving (94).

It follows from this multiplication table that elements of the form
(0,a, v, 1) (space translations and boosts) form an Abelian subgroup:

(0)617‘71)1)'(07627%)1) = (0,51 +627‘71+‘7é)1)7
(0,d@,Vi,1)7 = (0,—a,—V,1).

every trivial cocycle, having the form ¢(g2) — #(g1-g2) + ¢(g1), is necessarily
symmetric in g1, go on Abelian subgroups. However, the Bargmann cocy-
cle remains asymmetric on the Abelian subgroup of space translations and
boosts:

6(91792) = —Hvl . 627 g1 = (07517‘717 ]-)7 g2 = (07627‘727 1) .

Therefore, it cannot be a trivial cocycle.

The presence of a nontrivial two-cocycle in quantum field theory usually
signifies the existence of anomalous Schwinger terms in current commutators
[100,101]. Remarkably, in Galilean quantum mechanics mass plays the role
of the Schwinger term, as we demonstrate below [94].
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Let us take g1 = (0,6,17, 1) and g2 = (0, d, 0, 1). Then &(g1,92) = —,uV-d'
and £(g2,91) = 0. Therefore,
U(g)U(g2) = e VU (g1 - go) = e VU (g2)U (1) - (96)

In terms of the (anti-Hermitian) generators K; and P; of the Galilean group,
we have

Ulg) ="V, Ulga) = "7,
and (96) takes the form
KV P, KV ~Pd_ —ipVad (97)

Expanding up to second-order terms in the infinitesimals V and a, we get
from (97)

[K-V,P-ad = —iuV-a,
or
[P, K] = ipdij. (98)

The commutator (98) is anomalous because space translations and boosts
commute on the group level while their generators in the representation U(g)
do not.

The analogous commutator in the Poincaré group Lie algebra
[P, K;] =0;; H (99)

is not anomalous, as the following argument shows [94]. Let g; be a pure
Lorentz transformation

v VE
cz |’

. 2 V.z .
7= F Vit ——
1+v ¢
and g9, a space translation
t =t,
7 = F+a.

Then for infinitesimal V and @ we get that g1 - g2 - g1 L. 9y 1is a pure time
translation:
t t—ny L8 £
(91-92-97" - 95") = ) = :
z+ 11—“/ =V z

8|
<t
S

c
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up to second-order terms. However, this is exactly what is expected from
(99). For infinitesimal V', the Lorentz transformation g; is represented by
the unitary operator

1o (1 57) e (B9,

where 1 &~ tanhy = 3. Therefore,

U(g1)U(g2)U 1 (g1)U (g2) = 1+

While the time translation (100) is represented by

eAroH _ oy (_V-aH> ~1—V'“H,
C

where g = ct.

The above argument indicates that the Poincaré group does not admit
nontrivial cocycles. This can be confirmed by the following observation.
Instead of the Schrodinger equation (88), in the relativistic case we will
have the Klein—Gordon equation

(O 4y (x) =0,

where O = 0,0" = O is now invariant under the action of the symmetry
(Poincaré) group and, therefore, we will have, instead of (90), the following
equation

0 +‘M202)[e—io¢1 W]
_ i {(D )W — 2i(0y00)(OF W) — [(Opa1) (0 a) + i0a] W} =0.

It follows then that
8“a1 = O,

which implies the independence of a7 from the space-time point x,
aq ($7 g) = C1g )

and therefore (g1, g2) = (1) (g1, g2) is a globally trivial two-cocycle.
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It is an interesting question how the nontrivial cocycle of the Galilei
group arises in the process of the Poincaré group contraction. This can be
clarified as follows [102]. The general Poincaré transformations have the

form [103]

= 7<t—v'2R$>+b,

c
2 Y7 —

" L v V-R¥ 5

x’:Rm—’th+1+7 2 V+d. (101)
Let us take

Cg:—,uc2b,

so that aj(g) = C, diverges as ¢ — oco. Nevertheless, its coboundary

€(91,92) = (0a1)(g1,92) does have a well defined limit under the Poincaré
group contraction. Indeed, it follows from (101) that

Vi Rid
b(g1 - 92) Zbl-i-’Ylbz—’Yl%-

Therefore,

(601) (g1, 92) = a1(g2) — a1(gr - g2) + a1(g1) = pc? (71 — )by — py1 Vi - Ryda

and this expression converges to the Bargmann cocycle (94) as ¢? — oo:

. . 1 . B
pc? (v — 1)bg — pmi Vi - Rida — §,uV12bz — Vi - Rids .

These considerations indicate that mass plays somewhat different con-
ceptual roles in relativistic and non-relativistic quantum theories. In Galilei
invariant theory mass has a cohomological origin and appears as a Schwinger
term (central extension parameter). Both in relativistic and non-relativistic
quantum theories, mass plays the role of a label (together with spin) dis-
tinguishing different irreducible representations of the symmetry group and,
therefore, different elementary quantum systems. Of course, this new quan-
tum facets of mass are a far cry from what is usually assumed in the Newto-
nian concept of mass (a measure of inertia and a source of gravity). Never-
theless, I believe they are more profound and fundamental, while the Newto-
nian facets of mass are just emerging concepts valid only in a restricted class
of circumstances (in non-relativistic situations and in the classical limit).

Considering mass as a Schwinger term has an important physical conse-
quence because it leads to the mass superselection rule [96,98]. Let us return
to (97) which indicates that the identity transformation g;-g2-g; L. 9o ! of the
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Galilei group is represented by the phase factor e *V"@ in the Hilbert space.
This is fine, except for coherent superpositions of different mass states for
which (97) leads to an immediate trouble. For example, if |¥;) and |¥s)
are two states with different masses my # mo, then

U(g1)U(g2)U " (g1)U (g2) (191) + |¥2))
= e—imVﬁ (| 7 )+ ei(m—uz)v'ﬁ | ¢2>)

which is physically different from |¥;) + |Ws).

Therefore, quantum states with different masses should belong to differ-
ent superselection sectors and can not be coherently superposed. In particu-
lar, there are no neutrino oscillations in Galilei invariant theory [104]. In the
relativistic case we have no such prohibition of coherent superpositions of
different energy states which must often also be considered as superpositions
of different mass states. Experimental observation of neutrino oscillations,
therefore, directly indicates that we do not live in a Galilei invariant world.

Besides, we see once again that the Galilei group is a rather singular and
subtle limit of the Poincaré group, and not always correctly describes the
non-relativistic limit of the Poincaré invariant quantum theory. There are
real physical phenomena (like neutrino oscillations), persistent in the non-
relativistic limit, which Galilei invariant quantum theory fails to describe
[105]. One may expect, therefore, that the inverse road from Galilean world
to the relativistic one can have some pitfalls (like relativistic mass). It is
correct that historically just this adventurous road was used to reach the
relativistic land. “This was so because Einstein was going from a Galilean
universe to an as yet unknown one. So, he had to use Galilean concepts
in his approach to a new theory” [88]. However, after a hundred years of
persistent investigation of this new land maybe it will be wiser not to use
the Newtonian road to the relativistic world any more and avoid pitfalls by
embarking on safer pathways.

11. The return of sether?

A by-product of special relativity was that sether became a banished word
in physics, given on worry to crackpots. However, the concept of sther has
too venerable a history [106] and after a century of banishment we may ask
whether it is reasonable to give up the term. After all we are still using the
word ‘atom’ without attaching to it the same meaning as given initially by
ancient Greeks.

It was Einstein himself who tried to resurrect sether as the general rel-
ativistic space-time in his 1920 inaugural lecture at the University of Lei-
den [107]:
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“Recapitulating: we may say that according to the general theory of rela-
tivity space is endowed with physical qualities; in this sense, therefore, there
exists aether. According to the general theory of relativity space without
ather is unthinkable; for in such space there not only would be no propaga-
tion of light, but also no possibility of existence for standards of measuring
rods and clocks, nor therefore any space-time intervals in the physical sense.
But this sether may not be thought of as endowed with the quality charac-
teristic of ponderable media, as consisting of parts which may be tracked
through time. The idea of motion may not be applied to it.”

However, Einstein was more successful in eliminating sether than in giv-
ing it new life later. Actually all classical sether theories had got a death
blow and became doomed after special relativity. But quantum mechanics
added a new twist in the story. This was first realized (to my knowledge)
by another great physicist Paul Dirac [108|. His argument goes as follows.

Usually it is supposed that eether is inconsistent with special relativity
because it defines a preferred inertial reference frame — where the aether is
at rest. In other reference frames the sether moves with some velocity and
this velocity vector provides a preferred direction in space-time which should
show itself in suitably designed experiments.

But in quantum mechanics the velocity of the sether is subject to uncer-
tainty relations and usually it is not a well-defined quantity but distributed
over a range of possible values according to the probabilities dictated by
aether’s wave function. One can envisage a wave function (although not nor-
malizable and hence describing an idealized state which can be approached
indefinitely close but never actually realized) which makes all values of the
ather’s velocity equally probable.

“We can now see that we may very well have an sether, subject to quan-
tum mechanics and conforming to relativity, provided we are willing to con-
sider the perfect vacuum as an idealized state, not attainable in practice.
From the experimental point of view, there does not seem to be any ob-
jection to this. We must take some profound alterations in our theoretical
ideas of the vacuum. It is no longer a trivial state, but needs elaborate
mathematics for its description” [108].

The subsequent development of quantum field theory completely con-
firmed Dirac’s prophecy about the quantum vacuum. According to our mod-
ern perspective, the quantum vacuum is seething with activity of creating
and destroying virtual quanta of various fields if probed locally. Therefore, it
is much more like sether than empty space. Nevertheless, this new quantum
aether is Lorentz invariant: it looks alike from all inertial reference frames.
How is this possible? The following example of quasiclassical quantum sether
of the electromagnetic field demonstrates the main points [109].
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In the quasiclassical approximation the electromagnetic quantum sether
can be viewed as space filled with a fluctuating electromagnetic field which
by itself can be represented as a superposition of the transverse plane waves

B(3,t) = i/d%f(w) cos (wt —F -7~ 6(F,0)) €(F. ),
=1

2 — -
B(#,1) = Z/d/?f(w) cos (wt—E-f—H(E, )\)) ’”ETM (102)
A=1

where A labels different polarizations, the frequency w and wave vector k
are related by the relation w = ck, k = |k|, and €(k, \) are unit polarization
vectors:

kN k=0, @k A)-E(k Aa) = O, -
The fluctuating character of the electromagnetic field is indicated by intro-
ducing the uniformly distributed random phase 6(k, A) for which the follow-
ing averages hold

<COS 9(%1,)\1) COS 0(/22,)\2)> = 5(];:1 — EQ) 5)\1)\2 s

<sin9(El,A1) sin 9(%2,)\2)> = 5(];:1 - zg) 5)\1)\2 5

S IR N| -

<COSH(E1,A1) sine(Eg,A2)> - (103)

For quantum aether to be Lorentz invariant, the weight-function f(w) must
have a special form which we will now find.
The electric and magnetic fields contribute equally to the energy density

= ()

Substituting (102) and using (103) along with the decomposition

_ L opey
u—87r<E +B?) =

cos (wt — k-2 —0(k,\)

= cos (wt —k- 5:') cos 0(k, \) + sin (wt —k- f) sin0(k, \),

we obtain
o0

dF f2(w) = / plw) dw,

0

1

U:E
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where the spectral energy-density function is

w2

o) = 5 7(w).
Under a Lorentz transformation along the x axis, the E and B fields mix
up. In particular,
E,=E.,, E,=y(E,~fB.), E.=v(E.+pB,).  (104)

At that, transverse plane waves go into transverse plane waves with trans-
formed frequencies and wave vectors

2
El@ ) =Y / R f()cos (W1 — I -2~ 0(FN) & (F.N). (105)
A=1
where
W=y (w—Vky), K, Z’Y<kz—cK2w> , k;:ky, k., =k,. (106)

Taking into account (102) and (104), we get for the primed polarization
vectors

€, =€z, e&z’y(@—%(/;xg)z), E’Z:’y<ez+§(gx€)y>, (107)

or in the vector form

. k . .
€'(k:,)\):'y€’<1—ﬁf>+7ﬁ%k‘—|—(1—7)exi. (108)
It is not evident that the primed polarization vectors are transverse but this
can be checked by an explicit calculation:

/-6‘2

- . k2 ke
EkA) -k = yEk—Be |k—=t— 2| =B
Kz

. (eyky + €:k2)

k
= 7€(E,>\)-IZ<1—BZ> =0.

It follows from (108) that

2
N N = (1 55

e |84 (L) 28755 (1= ) 291 - ) (1 - 5%)} |



Relativity without Tears 865

However,
VB + (1 =) +29(1 =) =0,
and we get

2
ETA) (R N) = A2 <1 _3 %) . (109)

It follows then that the energy density of the zero-point field in the primed
frame is

u’=<E’2>=$/dl¥v2 (1—ﬁk—]:>2 fw). (110)

But from (106)
. ko\ - k. /
dE =~ (1% ak, ~A(1-p2)=%,
k k w

and (110) can be rewritten as follows
1 -, W
!/ —— dkl - 2 .
o= [ @ P
The Lorentz invariance demands that
1 bd 1 bud
I, 2 — p20 0
u—u—ém/dkf(w) 47r/dkf(w),

where the last equation follows from the dummy character of the integration
variable. Therefore,

where « is some constant.
As we see, the Lorentz invariant quantum ether is ensured by the fol-
lowing spectral energy-density function

p(w):ac—g.

The constant « is not fixed by the Lorentz invariance alone but it can be
determined from the elementary quantum theory which predicts %hw Z€ero-
point energy per normal mode. The number of normal modes of the elec-
tromagnetic field with two independent transverse polarizations is Qﬁ

per momentum interval dk = 477“’1# and, therefore, the quantum theory

predicts the spectral energy density of the quantum vacuum

drw? 2 1 hw3

plw) = = o

3 @2rE2 " i (111)
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which fixes o at

_h
T o

The above derivation of the spectral energy density (111) of the Lorentz
invariant quantum sether emphasizes the wave character of the electromag-
netic field [109,110]. Alternatively one can emphasize the photonic picture
by considering the quantum electromagnetic asether as consisting of photons
of all frequencies moving in all directions [111]. The result is the same: for
radiation to be Lorentz invariant its intensity at every frequency must be
proportional to the cube of that frequency.

It is instructive to show by explicit calculations that the Lorentz in-
variant zero-point sether does not lead to any drag force for bodies moving
through it. We will demonstrate this in the framework of the Einstein—Hopf
model. FEinstein and Hopf showed in 1910 that in general there is a drag
force slowing down a particle moving through stochastic electromagnetic
background [112].

Let us consider a particle of mass m and charge e harmonically attached
to another particle of mass M > m and opposite charge —e. We assume
following Einstein and Hopf that this dipole oscillator is immersed in a fluc-
tuating electromagnetic field of the form (102), moves in the z-direction with
velocity V' < ¢, and is oriented so that oscillations are possible only along
the z-axis.

In the rest frame of the oscillator, the equation of motion of mass m
looks like

- 9 e . e -
2 =T 2"+ w z’:EEZ'(m',t')%EEZ’(O,t’), (112)
where we have assumed that the mass M is located at the origin and the

oscillation amplitude is small. In (112) the Abraham—Lorentz radiation reac-
tion force is included with the well-known radiation damping constant [113]

_2 e2
 3me3’

The electric field E’ (Z',t') in the primed frame is given by (105), and there-
fore, the steady-state solution of (112) should have the form

2
() = Z/d,g [a(w/)ei(w/t’—e(k,)\)) bt (w')e T 0EMN] ().
A=1
(113)
Substituting (113) in (112), we get

e flw) 1

m 2 wi?4ilw3—w'2’

afw') = (114)
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In the z-direction the electromagnetic field exerts ponderomotive force on

the dipole
OE! e -

r / /
E =ez 82’9’6 - z'B,, (115)
here %f“,é and ng are evaluated at the origin Z’ = 0 thanks to the assumed
smallness of the oscillation amplitude.

Now it is straightforward, although rather lengthy, to calculate the av-
erage value of (115) by using

<ew(i§1,>\1) ez‘@(i;’g,,\g)> _ <e—z'0(131,/\1) e—z‘e(Eg,Az)> —0,
<ei9(E1,A1) e—iG(EQ,A2)> _ <€—ie(El,A1) eie(Ez,A2)> = Oxong 0(K1 — K2)

which follow from (103). As a result, we get

/
<€Z

The polarization sum can be performed with the help of

Z eil(kv)‘) egl'(k> )‘) = <U> <5Z] - k—/2]> ’

A=1

which follows from (106), (107), and

OEIN o~ [ o ef @) oo st
7)) = dk el(k,\) en(k, N ki [a(w') —a*(w')] .
0z > ;/ 2 [ ]

A=1
Besides,
N oap € rw's
ifa(w') —a*(w )]—mf(w) (o ’2)2+F2w’67
and we get

ez,&Egg :/dE6—2f2(w) W' 2 _sz2]€:{: T'w’3
0z’ 2m w k'?2 (w62_w/2)2+p2w/6'

However,
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and, therefore,
o 0E,\ _ /d“’ 3 Sw’ (@) kP ky r2cw’s
0z’ 4 w3 k'? (w62_w/2)2+F2w/6

In order to change p(w)/w? over to a function of w’, we expand up to the
first order in 5 [109]:

Op(w’) K 0pw’)
plw) = pw') + =5 == (w—-w) mpWw) + 0T w'=5 ==,
1 1 1 1 k!

Hence, up to the first order in 3,

3 3 23,3
< > /klw— 12 /2)2 2,76

: o 9pw’) k2k? Kk
X |:p(w,)+ﬁp Ow’ 3ﬁ klg - k/Q .

Analogously, we get

k' x e
<_f z"B;> = i/dlg %(M)w’ez'%,)y ila(w') —a* (W],

c

because B, = (B, + BE.), and one can check the identity

(E x g)y (k' *')y |

After performing the polarization sum, we are left with the expression
3¢ 263,53
- Z/B 3 ) km, c ('; s
4 w (w62_w/2) 4 216

or up to the first order in :

<_E ZZ/B/> = /d]};"%c_g 2w’
4w’ (w62—w’2)2+F2w’6

/ ! 12
for st ) )




Relativity without Tears 869

Angular integrations, assumed in the decomposition dk! = % df2’, are
straightforward if the change to the polar coordinates is made and give

k.2 kl2k!%2 Kklk!? 167
/<ké_3ﬁ?+3ﬁ k'3 k2 >d9/:_Tﬁk,,
kl2 kl2k/2 klk/2 k! 167
/ X X Z Tz X / /
/(’“w‘?’ﬁ?”’ﬁ RERNE >pd” =
Therefore,
12 r r2w't 1 !
(F) :__ﬂvc/ w2 [p(w’)——w'@p(w,) dw'.
5 J (w2 — w'2)” 4+ 2w’s 3 Ow
(116)
We assume that 'wj; < 1. But in the limit I'wj; — 0 one has
Tw' Twit
—

(w62 _ w/2)2 + 2,6 (w62 o w/2)2 + F2w66
and

/13
L' — 7w (w'2 — w62)
(%2 _ w’2)2 + [’2w66

m

= 5 [6(w" = wg) + 0w + wp)] -
This makes the integration in (116) trivial, and if we drop primes in the
result, because we are interested only in the lowest order terms, we finally
get the expression [109,112]

_ 6r? 1 9p(wo)
<Fx> = —?VCF p(wo) — gu}o 8w0 s

(117)

for the Einstein—Hopf drag force in the laboratory frame. As expected, this
drag force disappears for the Lorentz invariant sether due to the cubic depen-
dence of its spectral energy density on the frequency (111). Alternatively one
can consider the above calculations as yet another derivation of the spectral
energy density which ensures the Lorentz invariance.

Interestingly, the Einstein—Hopf drag force does not vanish for the cosmic
microwave background radiation with its black body spectrum

hw? 1
plw,T) = 7203 ohw/kT _ 1
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Therefore, one has a curious situation that formally the Aristotelian view of
motion is realized instead of Newtonian one: a body begins to slow down
with respect to a reference frame linked to the isotropic microwave back-
ground radiation if no force is applied to it [114]. This example shows
clearly that it is futile to ascribe absolute truth to physical laws. Any valid
physical theory is just some idealization of reality based on concepts which
are completely sound and useful within the realm of their applicability but
which can go completely astray if pushed outside of this domain.

Quantum theory inevitably leads to fluctuating quantum vacuum which
can be considered as a Lorentz invariant sether. The Lorentz invariance en-
sures that this sether does not define a preferred inertial frame and therefore
the Principle of Relativity is not violated. Nevertheless, this quantum sether
is completely real as it leads to experimentally observable physical effects
such as mass and charge renormalizations, Casimir effect, Lamb shift, Van
der Waals forces and fundamental linewidth of a laser [115]. A coherent de-
scription of these effects is provided by quantum electrodynamics. However,
many aspects can qualitatively be understood even at the classical level if
the existence of Lorentz invariant fluctuating sether is postulated. Probably
it will come as a surprise for many physicists that the resulting classical the-
ory, the so-called stochastic electrodynamics pioneered by Marshall [110,116]
and Boyer [109,117], provides a classical foundation for key quantum con-
cepts [118]. Of course stochastic electrodynamics can not be considered as
a full-fledged substitute for the quantum theory, but it is truly remarkable
that the introduction of Lorentz invariant fluctuating sether is sufficient to
grasp the essence of many concepts thought to be completely quantum. The
stochastic electrodynamics offers a new and useful viewpoint narrowing a
gap between quantum weirdness and our classical intuition.

The electromagnetic field in the quantum eether is bound to fluctuate
around the zero mean value in order to preserve the Lorentz invariance.
There is no such constraint for scalar fields (elementary or composite) and
they can develop non-zero vacuum expectation values. The correspond-
ing vacuum condensates represent another example of quantum mechanical
ather. These sether states play an important role in modern elementary
particle theory as they lead to the phenomena of spontaneous symmetry
breaking and generation of mass via the Higgs mechanism [119].

In 1993, the UK Science Minister, William Waldegrave, challenged physi-
cists to produce a one-page answer to the question ‘What is the Higgs boson,
and why do we want to find it?” David Miller from University College Lon-
don won a bottle of champagne for a very picturesque description of the
Higgs mechanism [120] reproduced with slight modifications in [121].
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Imagine a conference hall crowded by physicists. The physicists repre-
sent a non-trivial medium (aether) permeating the space. A gorgeous woman
enters the hall and tries to find her way through the crowd. A cluster of her
admirers is immediately formed around her slowing her scientific progress.
At the same time the cluster gives her more momentum for the same speed of
movement across the room and once moving she is harder to stop. Therefore
this ephemeral creature acquires much greater effective mass. This is the
Higgs mechanism. When the woman leaves the hall, a gossip about her prop-
agates in the opposite direction bringing an excitement in the crowd. This
excitement of the medium also propagates in the form of a scandalmongers
cluster. This is the Higgs boson which will be hunted at LHC [121].

According to Matvei Bronstein, each epoch in the history of physics has
its own specific cether [122]. “The @ther of the 21-st century is the quantum
vacuum. The quantum sether is a new form of matter. This substance has
very peculiar properties strikingly different from the other forms of matter
(solids, liquids, gases, plasmas, Bose condensates, radiation, etc.) and from
all the old sethers” [122].

However, there is a serious problem with the Lorentz invariant quasiclas-
sical sether with the spectral energy density (111) because the integral

u= /p(w) dw (118)
0

severely diverges. This problem is not cured by the full machinery of quan-
tum field theory. It just hides this and some other infinities in several phe-
nomenological constants, if the theory is renormalizable (like quantum elec-
trodynamics).

The problem is possibly caused by our ignorance of the true physics at
very small scales (or, what is the same, at very high energies). A natural
ultraviolet cut-off in (118) is provided by the Planck frequency

mp02 he
A A e

G being the Newtonian gravitational constant. Ignoring the factors of 2w and
the like, the particle Compton wavelength hc/E, becomes equal to its grav-
itational radius G/E,c! at the Planck energy E, = hw, ~ 1.22 x 1019 GeV.
Hence the particle becomes trapped in its own gravitational field and cardi-
nal alteration of our notions of space-time is expected [123,124].

If we accept the Planck frequency as the ultraviolet cut-off in (118),
the vacuum energy density becomes (ignoring again some numerical factors
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which are not relevant for the following)

By 7
e e vk (119)
And now we have a big problem: (119) implies the cosmological constant
which is fantastically too large (123 orders of magnitude!) compared to the
experimental value inferred from the cosmological observations [122,125].

Of course one can remember Dirac’s negative energy sea of the fermionic
quantum fields and try to compensate (119). We could even succeed in
this, thanks to supersymmetry. However, the supersymmetry, if it exists at
all, is badly broken in our low energy world. Therefore it can reduce (119)
somewhat but not by 123 orders of magnitude. Anyway it is much harder to
naturally explain so small non-zero vacuum energy density than to make it
exactly zero. This is the notorious cosmological constant problem. Among
suggested solutions of this problem [126] the most interesting, in my opinion,
is the one based on the analogy with condensed matter physics [125].

“Is it really surprising in our century that semiconductors and cosmology
have something in common? Not at all, the gap between these two subjects
practically disappeared. The same quantum field theory describes our Uni-
verse with its quantum vacuum and the many-body system of electrons in
semiconductors. The difference between the two systems is quantitative,
rather than qualitative: the Universe is bigger in size, and has an extremely
low temperature when compared to the corresponding characteristic energy
scale” [122].

The temperature that corresponds to the Planck energy is indeed very
high in ordinary units T, = E,/kp ~ 1.4 x 1032 K. The natural question
is then why all degrees of freedom are not frozen out at the temperature
T = 300 K at which we live [122]. Be the Universe like ordinary semi-
conductors or insulators, the expected equilibrium density of excitations
(elementary particles) at our living temperature 7" would be suppressed by
the extremely large factor e’»/T = 19" That we survive such a freezer as
our Universe indicates that the Universe is more like metals with a Fermi
surface and gapless electron spectra, or, to be more precise, is like special
condensed matter systems with topologically-protected Fermi points [122].
There are only a very few such systems like superfluid phases of liquid 3He
and semiconductors of a special type which can be used to model cosmo-
logical phenomena [127,128]. At that, in the condensed matter system the
role of the Planck scale is played by the atomic scale. At energies much
lower than the atomic scale, all condensed matter systems of Fermi point
universality class exhibit a universal generic behavior and such ingredients
of the Standard Model as relativistic Weyl fermions, gauge fields and ef-
fective gravity naturally emerge [127,128]. Amusingly, if the Fermi point
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topology is the main reason why the elementary particles are not frozen out
at temperatures 1" < T}, then we owe our own existence to the hairy ball
theorem of algebraic topology which says that one cannot comb the hair on
a ball smooth, because Fermi point is the hedgehog in momentum space and
its stability is ensured by just that theorem [122].

Therefore, if the condensed matter analogy is really telltaling, we are
left with the exciting possibility that physics probably does not end even
at the Planck scale and we have every reason to restore the word ’sether’
in the physics vocabulary. At the present moment we can not even guess
what the physics of this trans-Planckian sether is like because our familiar
physical laws, as emergent low energy phenomena, do not depend much
on the fine details of the trans-Planckian world, being determined only by
the universality class, which the whole system belongs to. “The smaller
is our energy, the thinner is our memory on the underlying high-energy
trans-Planckian world of the quantum sether where we all originated from.
However, earlier or later we shall try to refresh our memory and concentrate
our efforts on the investigation of this form of matter” [122].

12. Concluding remarks

Although the idea of a four-vector can be traced down to Poincaré [129],
it was Minkowski who gave the formulation of special relativity as a four-
dimensional non-Euclidean geometry of space-time. Very few physicists were
well trained in pure mathematics in general, and in non-Euclidean geometry
in particular, at that time. Minkowski himself was partly motivated in his re-
finement of Einstein’s work, which led him to now standard four-dimensional
formalism, by his doubts in Einstein’s skills in mathematics [129]. When
Minkowski presented his mathematical elaboration of special relativity at a
session of the Gottingen Mathematical Society, he praised the greatness of
Einstein’s scientific achievement, but added that “the mathematical educa-
tion of the young physicist was not very solid which I am in a good position
to evaluate since he obtained it from me in Zurich some time ago” [130].

In light of Minkowski’s assessment of Einstein’s skills in mathematics, it
is fair to say that “in the broader context of education in German-speaking
Europe at the end of the nineteenth century FEinstein received excellent
preparation for his future career” [131]. Neither was he dull in mathematics
as a secondary school pupil. For example, at the final examination at Aarau
trade-school Einstein gave a very original solution of the suggested geomet-
rical problem by using a general identity for the three angles of a triangle
(which T am not sure is known to every physicist)

sin2%+sin2§+sin2%+281n% sing sin%zl
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and by solving a cubic equation which he got from this equality by substitu-
tions. “Although it depended on instant recall of complicated mathematical
formulas, Einstein’s solution was the very opposite of one based on brute-
force calculations. He was careful to arrive at numerical values only after
having made general observations on, among other things, the rationality of
the roots of the cubic equation and on the geometrical requirements that a
solution would have to satisfy” [131].

Anyway, after Minkowski’s sudden death from appendicitis at age 44,
shortly after his seminal Cologne lecture, neither Einstein nor any other
physicist at that time was in a position to duly appreciate the non-Euclidean
readings of special relativity. Although the space-time formalism, energet-
ically promoted by Sommerfeld, quickly became a standard tool in special
relativity, its non-Euclidean facets remained virtually unnoticed, with just
one exception.

Inspired by Sommerfeld’s interpretation of the relativistic velocity addi-
tion as a trigonometry on an imaginary sphere, the Croatian mathematician
Vladimir Varic¢ak established that relativistic velocity space possessed a nat-
ural hyperbolic (Lobachevsky) geometry [132,133].

One can check the hyperbolic character of metric in the relativistic ve-
locity space as follows. The natural distance between two (dimensionless)

velocities #; and 35 in the velocity space is the relative velocity [134,135]

L o\2 L o\2
(ﬁ1 - ﬁz) - (ﬁ1 X ﬁz)
1- 61 B ‘
Taking 31 = 5 and 32 = 5 + dﬁ, one gets for the line element in the velocity

space [134,135]
ds® = Gﬂﬂ?__O§ng)2 (120)
(1-p%)? ’
To make contact with previous formulas, we will assume two-dimensional
velocity space and change to the new coordinates [136]

ﬁrel =

2z 2y
b=t P TreaE
Then
2z - 2y - - -

L+a2+y?  1+22+y

g = gm+g@ h»@m+@@.ﬁ
ox oy x Y
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and substituting this into (120), we get after some algebra

ds? — 4(dx? + dy?) .

(1— a2 —y2)2
However, this is nothing but the line element of the hyperbolic geometry
from (43), with e; =1, ea = —1.

The non-Euclidean style in relativity was pursued mainly by mathemati-
cians and led to very limited physical insights, if any, in the relativity main-
stream [132]. In a sense, non-Euclidean readings of relativity were ahead of
time as illustrated by the unrecognized discovery of the Thomas precession
in 1913 by the famous French mathematician Emile Borel, a former doctoral
student of Poincaré.

In Borel’s non-Euclidean explanation, the Thomas precession, which is
usually regarded as an obscure relativistic effect, gets a very transparent
meaning. If a vector is transported parallel to itself along a closed path on
the surface of a sphere, then its orientation undergoes a change proportional
to the enclosed area. The Lobachevsky space is a space of constant negative
curvature and, as Borel remarked, the similar phenomenon should take place:
if a velocity vector circumscribes a closed path under parallel transport in the
kinematical space, it will undergo precession with magnitude proportional
to the enclosed area. Borel “was careful to point out that the effect is a
direct consequence of the structure of the Lorentz transformations” [132].
This remarkable discovery of Borel, however, was of limited historical value
because its physical significance was not recognized (I doubt it could have
been done before the advent of quantum mechanics).

The hyperbolic geometry of the relativistic velocity space is an interest-
ing but only a particular aspect of special relativity. A more important and
really non-Euclidean reading of Minkowski identifies the Minkowski geome-
try itself as a kind of non-Euclidean geometry, as just one representative of
the whole family of non-Euclidean Cayley—Klein geometries. Placing special
relativity in such a broader context, we see instantly (see Fig. 3) that it is not
a fundamental theory but a limiting case of more general theory. A slight
generalization of the Relativity Principle (in the sense of Bacry and Lévy-
Leblond [79]) leads to eleven different relativity theories which all are various
limiting cases of the two really fundamental homogeneous space-times —
de Sitter and anti de Sitter spaces.

It is not surprising, therefore, that astrophysical data indicate the non-
zero cosmological constant, which means that the correct asymptotic (vac-
uum) space-time in our Universe is the de Sitter space-time, not Minkowski.
What is surprising is the incredible smallness of the cosmological constant
which makes the special relativity valid for all practical purposes.
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As yet we do not know the resolution of the cosmological constant prob-
lem. Maybe this enigma leads to a trans-Planckian sether with yet unknown
physics, as the condensed matter analogy [122] indicates. Anyway Einstein
was lucky enough to be born in the Universe with nearly vanishing cosmo-
logical constant and nowadays we formulate all our theories of fundamental
interactions in the Minkowskian background space-time.

The case of gravity needs some comment because it is usually assumed
that special relativity is no longer correct in the presence of gravity, and
should be replaced by general relativity. However, the interpretation of
gravity as a pseudo-Riemannian metric of curved space-time is not the only
possible interpretation, nor is it always the best one, because this interpreta-
tion sets gravity apart from other interactions — ... too great an emphasis
on geometry can only obscure the deep connections between gravitation and
the rest of physics” [137].

Is it possible to develop a theory of gravity as a quantum theory of mass-
less spin-two field in the flat Minkowski space-time by analogy with other
interactions? It seems Robert Kraichnan, the only post-doctoral student
that Einstein ever had, was the first who initiated the study of this ques-
tion. “He recalls that, though he received some encouragement from Bryce
DeWitt, very few of his colleagues supported his efforts. This certainly in-
cluded Einstein himself, who was appalled by an approach to gravitation
that rejected Einstein’s own hard-won geometrical insights” [138]. Maybe
just because of this lack of support, Kraichnan left the Institute of Advanced
Study (Princeton) and the field of gravitation in 1950, to establish himself
in years that followed as one of the world’s leading turbulence theorists.

Kraichnan published his work [139] only in 1955, after Gupta’s pa-
per [140] on the similar subject appeared. Since then the approach was
developed in a number of publications by various authors. It turned out
that the flat Minkowski metric is actually unobservable and the geometrical
interpretation of gravity as a curved and dynamical effective metric arises at
the end all the same. “The fact is that a spin-two field has this geometrical
interpretation: this is not something readily explainable — it is just mar-
velous. The geometrical interpretation is not really necessary or essential
to physics. It might be that the whole coincidence might be understood as
representing some kind of invariance” [141].

Although the field theory approach to gravity has an obvious pedagogical
advantages [141,142], especially for high-energy physics students, we can not
expect from it the same success as from quantum electrodynamics, because
the theory is non-renormalizable. Besides the condensed matter analogy
shows [122,143] that gravity might be really somewhat different from other
interactions, and in a sense more classical, because in such interpretation
gravity is a kind of elasticity of quantum vacuum (trans-Planckian aether)
— the idea that dates back to Sakharov [144].
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An interesting hint that gravity might be an emergent macroscopic phe-
nomenon with some underlying microscopic quantum theory is the fact that
general relativity allows the existence of space-time horizons with well de-
fined notions of temperature and entropy which leads to an intriguing anal-
ogy between the gravitational dynamics of the horizons and thermodynam-
ics. It is even possible to obtain the Einstein equations from the proportion-
ality of entropy to the horizon area together with the fundamental thermo-
dynamical relation between heat, entropy, and temperature. “Viewed in this
way, the Einstein equation is an equation of state” [145]. This perspective
has important consequences for quantization of gravity: “it may be no more
appropriate to canonically quantize the Einstein equation than it would be
to quantize the wave equation for sound in air” [145].

All these considerations indicate that Einstein was essentially right and
the Riemannian trend in geometry, which at first sight appears entirely
different from Klein’s Erlangen program, is crucial for describing gravity,
although this geometry might be a kind of low energy macroscopic emergent
illusion and not the fundamental property of trans-Planckian aether.

Anyway, it seems reasonable to explore also another way to unify gravity
with other interactions: the geometrization of these interactions. From the
beginning we have to overcome a crucial obstacle on this way: for interac-
tions other than gravity the Kleinian geometry seems to be of much more
importance than the Riemannian geometry of curved space-time. “There
is hardly any doubt that for physics special relativity theory is of much
greater consequence than the general theory. The reverse situation prevails
with respect to mathematics: there special relativity theory had compara-
tively little, general relativity theory very considerable, influence, above all
upon the development of a general scheme for differential geometry” [146].

Just this development of mathematics, spurred by general relativity, led
finally to the resolution of the dilemma we are facing in our attempts to find
a common geometrical foundation for all interactions. This dilemma was
formulated by Cartan as follows [55,147]:

“The principle of general relativity brought into physics and philoso-
phy the antagonism between the two leading principles of geometry due to
Riemann and Klein respectively. The space-time manifold of classical me-
chanics and of the principle of special relativity is of the Klein type, and
the one associated with the principle of general relativity is Riemannian.
The fact that almost all phenomena studied by science for many centuries
could be equally well explained from either viewpoint was very significant
and persistently called for a synthesis that would unify the two antagonistic
principles”.
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The crucial observation which enables the synthesis is that “most prop-
erties of Riemannian geometry derive from its Levi-Civita parallelism” [53].
Let us imagine a surface in Euclidean space. A tangent vector at some point
of the surface can be transferred to the nearby surface point by parallel dis-
placement in the ambient Euclidean space, but at that, in general, it will
cease to be tangent to the surface. However, we can split the new vector
into its tangential and (infinitesimal) normal components and throw away
the latter. This process defines the Levi-Civita connection which may be
viewed as a rule for parallel transport of tangent vectors on the surface [146].

There is a more picturesque way to explain how Levi—Civita parallel
transport reveals the intrinsic geometry of the surface [148]. Imagine a
hamster closed inside a “hamster ball”. When hamster moves inside the ball,
the latter rolls on a lumpy surface. We can say that the hamster studies the
intrinsic geometry of the lumpy surface by rolling more simple model surface
(the sphere) on it. Rolling the ball without slipping or twisting along two
different paths connecting given points on the surface will give, in general,
results differing by some SO(3) rotation, an element of the principal group of
the model geometry, which encodes information about the intrinsic geometry
of the surface. An infinitesimal SO(3) rotation of the hamster ball, as it
begins to move along some path, breaks up into a part which describes the
SO(2) rotation of the sphere around the axis through the point of tangency
and into a part which describes an infinitesimal translation of the point of
tangency. The SO(3) connection (the analog of the Levi-Civita connection
for this example) interrelates these two parts and thus defines a method of
rolling the tangent sphere along the surface [148|.

The far reaching generalization due to Elie Cartan is now obvious: we can
take any homogeneous Klein space as a model geometry and try to roll it on
the space the geometry of which we would like to study. Information about
the geometry of the space under study will then be encoded in the Cartan
connection which gives a method of the rolling. Figure 4 (from [148]) shows
how the Cartan geometry unifies both Kleinian and Riemannian trends in
geometry.

There is no conceptual difference between gravity and other physical
interactions as far as the geometry is involved because the Cartan geome-
try provides the fully satisfying way in which gauge theories can be truly
regarded as geometry [149].

Therefore, we see that special relativity and principles it rests upon are
really fundamental, at the base of modern physics with its gauge theories
and curved space-times. I believe its teaching should include all the beauty
and richness behind it which was revealed by modern physics, and avoid
historical artifacts like the second postulate and relativistic mass. I hope
this article shows that such a presentation requires some quite elementary
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Fig. 4. The unification of Riemannian and Klein geometries into the Cartan geom-
etry [148].

knowledge of basic facts of modern mathematics and quantum theory. “The
presentation of scientific notions as they unfolded historically is not the only
one, nor even the best one. Alternative arguments and novel derivations
should be pursued and developed, not necessarily to replace, but at least to
supplement the standard ones” [22].

The game of abstraction outlined above is not over. For example, one
hardly questions our a priory assumption that physical quantities are real-
valued. But why? Maybe the root of this belief lies in the pre-digital age
assumption that physical quantities are defined operationally in terms of
measurements with classical rulers and pointers that exist in the classical
continuum physical space [150]. But quantum mechanics teaches us that
the Schrodinger’s cat is most likely object-oriented [151]. That suggests
somewhat Platonic view of reality that physics is a concrete realization, in
the realm of some Topos, of abstract logical relations among elements of
reality. “Topos” is a concept proposed by Alexander Grothendieck, one of
the most brilliant mathematicians of the twentieth century, as the ultimate
generalization of the concept of space. Our notion of a smooth space-time
manifold, upon which the real-valuedness of the physical quantities rests,
is, most likely, an emergent low energy concept and we do not know what
kind of abstractions will be required when we begin “to refresh our memory”
about primordial trans-Planckian sether [150,152].

Grothendieck abruptly ended his academic career at the age of 42 and
“withdrew more and more into his own tent”. If his last time visitors can be
believed, “he is obsessed with the Devil, whom he sees at work everywhere
in the world, destroying the divine harmony and replacing 300,000 km/sec
by 299,887 km/sec as the speed of light!” [153]. T am afraid a rather radical
break of the traditional teaching tradition of special relativity is required to
restore its full glory and divine harmony.
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