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WAVES ALONG FRACTAL COASTLINES: FROM
FRACTAL ARITHMETIC TO WAVE EQUATIONS
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Beginning with addition and multiplication intrinsic to a Koch-type
curve, we formulate and solve wave equation describing wave propagation
along a fractal coastline. As opposed to examples known from the liter-
ature, we do not replace the fractal by the continuum in which it is em-
bedded. This seems to be the first example of a truly intrinsic description
of wave propagation along a fractal curve. The theory is relativistically
covariant under an appropriately defined Lorentz group.
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1. Non-Newtonian calculus

Consider two sets X and Y whose cardinality is continuum, and a function
A : X→ Y. There exist bijections fX, fY, gX, gY, such that the diagram

R B̃−→ R
gX

x xgY
X A−→ Y

fX

y yfY
R Ã−→ R

is commutative. The functions Ã and B̃ are defined by the diagram. It is
natural to think of X and Y in terms of one-dimensional manifolds whose
global charts are defined by the bijections.

In differential topology and geometry, a derivative of A : X → Y would
be a function A′ : X→ Y defined by Ã′(r) = dÃ(r)/dr. Of course, since

Ã = fY ◦ g−1Y ◦ B̃ ◦ gX ◦ f
−1
X = ϕ−1Y ◦ B̃ ◦ ϕX ,

(813)
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a derivative of A can be equivalently defined in terms of B̃, provided ϕX and
ϕ−1Y are at least C1. A transition between the two forms is determined by
the chain rule for derivatives.

In the arithmetic approach to differentiation [1–9], one starts from a
different perspective. In the first step, one employs the bijections to turn
X and Y into fields isomorphic to R. Explicitly, one defines the arithmetic
operations in X (addition, subtraction, multiplication, division) by

x⊕X y = f−1X (fX(x) + fX(y)) , (1)
x	X y = f−1X (fX(x)− fX(y)) , (2)
x�X y = f−1X (fX(x)fX(y)) , (3)
x�X y = f−1X (fX(x)/fX(y)) , (4)

and analogously in Y. This type of arithmetic is a special case of a general
non-Diophantine arithmetic discussed by Burgin [10–13]. The case of a
linear f was extensively studied in [14–16] with emphasis on distinguishing
between numbers, treated abstractly, and their representations and values.

The topologies of X and Y are induced by the bijections from the topology
of R. Let the limit x→ x0 ∈ X be defined by the formula

lim
x→x0

A(x) = f−1Y

(
lim

r→fX(x0)
Ã(r)

)
. (5)

The derivative of A can be expressed in terms of limits in three equivalent
ways

DA(x)

Dx
= lim

h→0

(
A(x⊕X f

−1
X (h))	Y A(x)

)
�Y f

−1
Y (h)

= lim
h→0

(
A(x⊕X hX)	Y A(x)

)
�Y hY

= lim
h→0X

(
A(x⊕X h)	Y A(x)

)
�Y f(h) , (6)

where f = f−1Y ◦ fX. Here, 0X is the neutral element of addition in X. This
type of derivative was investigated in a systematic way for the first time in [1],
for the case where X and Y were subsets of R, while fY and fX were contin-
uous in the metric topology of R. The derivative was rediscovered by myself
in a fractal context [4]. The main difference between the formalism from [1]
and my approach is that now the derivative is applicable to all sets whose
cardinality is continuum, such as Sierpiński-type fractals [7], which obviously
do not have to be subsets of R, and in typical examples, the bijections are
discontinuous in metric topologies of X and Y. This counterintuitive pos-
sibility opened by the non-Newtonian calculus is especially useful in fractal
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applications. Just to give one example, a construction of Fourier transforms
on arbitrary Cantor sets is in the non-Newtonian framework basically triv-
ial [6], simultaneously circumventing various impossibility theorems known
from the more traditional approach [17, 18]. The arithmetic perspective is
simultaneously applicable to all the other aspects of mathematical model-
ing, including algebraic or probabilistic methods. The freedom of choice of
arithmetic plays a role of a universal symmetry of any mathematical model.

An equivalent and very convenient form of the derivative is

DA(x)

Dx
= f−1Y

(
dÃ(fX(x))

dfX(x)

)
. (7)

The derivative is Newtonian if X and Y are subsets of R, and fX(x) = x,
fY(y) = y are the identity maps. If the bijections are less trivial, one speaks
of non-Newtonian derivatives.

Of particular interest is the non-Newtonian version of the chain rule.
Consider the diagram

X A−→ Y B−→ Z
fX

y fY

y fZ

y
R Ã−→ R B̃−→ R

,

then

D(B ◦A)(x)

Dx
= f−1Z

[
fZ

(
DB(A(x))

DA(x)

)
fY

(
DA(x)

Dx

)]
. (8)

For a composition of three functions,

W A−→ X B−→ Y C−→ Z , (9)

one finds
DC ◦B ◦A(x)

Dx
=

f−1Z

[
fZ

(
DC[B(A(x))]

DB(A(x))

)
fY

(
DB(A(x))

DA(x)

)
fX

(
DA(x)

Dx

)]
. (10)

The latter case is important since it allows us to better understand the
structure of the non-Newtonian derivative. Indeed, let the three functions
be the ones occurring in the definition of X A−→ Y, i.e.

X fX−→ R Ã−→ R
f−1
Y−→ Y . (11)
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Now, directly from the definition, one checks that

DfX(x)

Dx
= 1 ,

DfY(x)

Dx
= 1 ,

Df−1X (x)

Dx
= 1X ,

Df−1Y (x)

Dx
= 1Y . (12)

The chain rule implies

DA(x)

Dx
=

D
(
f−1Y ◦ Ã ◦ fX

)
(x)

Dx

= f−1Y

fY
Df−1Y

[
Ã(fX(x)

]
DÃ(fX(x))

 fR

(
DÃ(fX(x))

DfX(x)

)
fR

(
DfX(x)

Dx

) .
The arithmetic in R is Diophantine, fR(x) = x, and thus

DÃ(fX(x))

DfX(x)
=

dÃ(fX(x))

dfX(x)

is Newtonian. Derivatives (12) imply

DA(x)

Dx
= f−1Y

(
dÃ(fX(x))

dfX(x)

)
,

and we reconstruct our definition of the derivative. One concludes that the
bijections behave as identity maps with respect to non-Newtonian derivatives
they define, no matter how weird the bijections themselves actually are.

The integral is defined in a way guaranteeing the fundamental laws of
calculus, relating derivatives and integrals

X∫
Y

A(x)Dx = f−1Y

 fX(X)∫
fX(Y )

Ã(x)dx

 , (13)

where
∫
Ã(x)dx is the usual (say, Lebesgue) integral of a function Ã : R→ R.

One proves that

D

DX

X∫
Y

A(x)Dx = A(X) , (14)

X∫
Y

DA(x)

Dx
Dx = A(X)	Y A(Y ) . (15)
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Let us now see how it works in the simple but instructive case of f(x)=x3.
The manifold in question is X = R. Let the two (global) charts be given
by f(x) = x3 and g(x) = x. Their composition g ◦ f−1 is not a diffeomor-
phism if the differentiation is understood in the Newtonian way. Apparently,
f(x) = x3 does not define a differentiable structure on R. In the standard
Newtonian formalism, the only structure we have at our disposal is C0.

The arithmetic approach begins with arithmetic operations intrinsic to X

x⊕ y = f−1(f(x) + f(y)) = 3
√
x3 + y3 , (16)

x	 y = f−1(f(x)− f(y)) = 3
√
x3 − y3 , (17)

x� y = f−1(f(x)f(y)) = 3
√
x3y3 = xy , (18)

x� y = f−1(f(x)/f(y)) = 3
√
x3/y3 = x/y . (19)

Let us stress again that f is, by construction, a field isomorphism of (R,+, ·)
and (R,⊕,�). Therefore, ⊕ and � are commutative and associative, and �
is distributive with respect to ⊕. The neutral elements of ⊕ and �, 0′ and 1′,
are the standard ones: 0′ = f−1(0) = 3

√
0 = 0, 1′ = f−1(1) = 3

√
1 = 1. Al-

though multiplication is unchanged, the link between addition and multipli-
cation is a subtle one, as can be seen in the following example:

x⊕ . . .⊕ x =
3
√
x3 + . . .+ x3 (n times)

= 3
√
nx = f−1(n)x . (20)

The inverse bijection f−1(x) = 3
√
x is continuous but not Newtonian differ-

entiable at x = 0, hence the loss of the Newtonian diffeomorphism property.
Still, the derivative of a function A : X→ X,

DA(x)

Dx
= lim

h→0

(
A(x⊕ h)	A(x)

)
� h , (21)

is well defined. The non-Newtonian D/Dx satisfies all the basic rules of
differentiation, of course with respect to the new arithmetic:
(a) The Leibniz rule.

DA(x)B(x)

Dx
= lim

h→0

(
A(x⊕ h)B(x⊕ h)	A(x)B(x)

)
� h

=
3

√(
DA(x)

Dx
B(x)

)3

+

(
A(x)

DB(x)

Dx

)3

=
DA(x)

Dx
B(x)⊕A(x)

DB(x)

Dx
. (22)



818 M. Czachor

(b) Linearity.

DA(x)⊕B(x)

Dx
= lim

h→0

(
A(x⊕ h)⊕B(x⊕ h)	 (A(x)⊕B(x))

)
� h

=
3

√(
DA(x)

Dx

)3

+

(
DB(x)

Dx

)3

=
DA(x)

Dx
⊕ DB(x)

Dx
. (23)

(c) The chain rule. Denoting

H = B(x⊕ h)	B(x) , (24)

we obtain

DA(B(x))

Dx
= lim

h→0

3

√√√√(A(B(x)⊕H)
)3
−
(
A(B(x))

)3
h3

= lim
H→0

A(B(x)⊕H)	A(B(x))

H
lim
h→0

B(x⊕ h)	B(x)

h

=
DA(B(x))

DB(x)

DB(x)

Dx
. (25)

The non-Newtonian derivate has interesting implications for differential
equations. For example, the unique solution of

DA(x)

Dx
= A(x) , A(0) = 1 (26)

is

A(x) = ex
3/3 = f−1

(
ef(x)

)
, (27)

as one can verify directly from definition (21). The exponent satisfies the
usual law

A(x1 ⊕ x2) = e(x
3
1+x

3
2)/3 = A(x1)�A(x2) . (28)

One can similarly verify that

Sin x = 3
√

sin(x3) , (29)

Cos x = 3
√

cos(x3) (30)
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satisfy

DSin x
Dx

= Cos x , (31)

DCos x
Dx

= 	Sin x = −Sin x , (32)

where 	x = 0	 x = 3
√
−x3 = −x, and

Sin2x⊕ Cos2x = 3

√
sin2 (x3) + cos2 (x3) = 1 . (33)

Sin x and Cos x are essentially the chirp signals known from signal analysis
(Fig. 1 and Fig. 2).

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Fig. 1. The circle x 7→ (Cos x,Sin x), 0 ≤ x < (2π)1/3, with trigonometric functions
given by (29)–(30).

It is instructive to compare (31) with the Newtonian derivative

dSin x
dx

=
x2 cos

(
x3
)

sin
2
3 (x3)

, (34)

defined with respect to the ‘standard’ arithmetic (Fig. 2).
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-3 -2 -1 1 2 3

-2

-1

1

2

Fig. 2. The non-Newtonian derivative DSin x/Dx = Cos x (full, Eq. (31)), as
compared to the standard Newtonian dSin x/dx (dashed, Eq. (34)). The singu-
lar behavior of the dashed curve follows from Newtonian non-differentiability of
f−1(x) = 3

√
x at x = 0. In contrast, the non-Newtonian derivative is non-singular

since f and f−1 get differentiated in a non-Newtonian way, yielding trivial deriva-
tives.

Even more intriguing examples occur if one considers derivatives of func-
tions A : X → Y where the domain and the image of A involve different
arithmetics. Let X = R+, Y = R, fX(x) = lnx, fY(x) = x3. The arithmetic
operations in X read explicitly

x1 ⊕X x2 = f−1X (fX(x1) + fX(x2)) = elnx1+lnx2 = x1x2 , (35)

x1 	X x2 = f−1X (fX(x1)− fX(x2)) = elnx1−lnx2 = x1/x2 , (36)

x1 �X x2 = f−1X (fX(x1)fX(x2)) = elnx1 lnx2 = xlnx21 = xlnx12 , (37)

x1 �X x2 = f−1X (fX(x1)/fX(x2)) = elnx1/ lnx2 = x
1/ lnx2
1 . (38)

Neutral elements in X are given by

1X = f−1X (1) = e1 = e , (39)
0X = f−1X (0) = e0 = 1 . (40)

A negative of x ∈ X is defined as

	Xx = 0X 	X x = f−1X (− fX(x)) = e− lnx = 1/x ∈ R+ . (41)

As we can see, numbers negative with respect to the arithmetic from X are
positive if treated in the usual sense. The unique solution A : X→ Y of

DA(x)

Dx
= A(x) , A(0X) = 1Y (42)
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turns out to be

A(x) = f−1Y

(
efX(x)

)
=

3
√
elnx = 3

√
x . (43)

Indeed, first of all,

A(0X) =
3
√

1 = 1 = 1Y . (44)

Recalling that multiplication in Y is unchanged, we check directly from
definition (cf. [7]):

DA(x)

Dx
= lim

h→0

(
A(x⊕X f

−1
X (h))	Y A(x)

)
�Y f

−1
Y (h)

= lim
h→0

(
3
√
x⊕X eh 	Y

3
√
x
)/

3
√
h

= lim
h→0

3

√
x
eh − 1

h
= 3
√
x = A(x) . (45)

The exponent satisfies

A(x1 ⊕X x2) = A(x1x2) = 3
√
x1x2 = 3

√
x1 3
√
x2 = A(x1)A(x2)

= A(x1)�Y A(x2) , (46)

as expected. The results are counterintuitive but consistent. The bijection
fX(x) = lnx is a simplest example of an information channel associated
with human or animal nervous system (the Weber–Fechner law; this is why
decibels correspond to a logarithmic scale [19]).

As final two examples consider first fX(x) = x, fY(x) = lnx. The non-
Newtonian derivative reads explicitly

DA(x)

Dx
= lim

h→0

(
A(x+ h)	Y A(x)

)
�Y hY

= lim
h→0

e( lnA(x+h)−lnA(x))/h = eA
′(x)/A(x) . (47)

Here, A′(x) = dA(x)/dx is the Newtonian derivative. Let us now solve

DA(x)

Dx
= A(x) , A(0) = 1Y = f−1Y (1) = e , (48)

an equation equivalent to

eA
′(x)/A(x) = A(x) . (49)
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By the general formula, we know that this must be the non-Newtonian
exponent

A(x) = f−1Y

(
efX(x)

)
= ee

x
. (50)

Secondly, let fX(x) = lnx = fY(x). Then

DA(x)

Dx
= exA

′(x)/A(x) . (51)

Here, values of non-Newtonian and Newtonian exponents coincide,

A(x) = f−1Y

(
efX(x)

)
= ee

ln x
= ex , (52)

but their domains are different. Both types of differentiation have been
extensively studied in the literature, with numerous applications [20–25].
The variety of applications, from signal processing to economics, is not that
surprising if one realizes that lnx represents a neuronal information chan-
nel [19]. The two non-Newtonian derivatives represent here a perception of
change, and not the change itself.

Armed with these intuitions, we are ready to apply the formalism to
waves on Koch-type fractals.

2. Koch curve supported on unit interval

For convenience, we represent R2 by C. Let us begin with the Koch
curve K[0,1] ⊂ C, beginning at 0 and ending at 1 (Fig. 3).

A point z ∈ K[0,1] can be parametrized by a real number in quaternary
representation

y = (0.q1 . . . qj . . .)4 ∈ [0, 1] , (53)

where qk = 0, 1, 2, 3. The parametrization is defined by a bijection g :
[0, 1] → K[0,1], z = g(y), constructed as follows. Consider a = eiα, 0 ≤ α ≤
π/2, L = 1/(2 + 2 cosα), and

0̂(z) = Lz , (54)
1̂(z) = L(1 + az) , (55)
2̂(z) = L(1 + a+ āz) , (56)
3̂(z) = L(1 + 2 cosα+ z) . (57)

An n-digit point z ∈ K[0,1] corresponding to y = (0.q1 . . . qn)4, qn 6= 0, is
given by

q̂1 ◦ . . . ◦ q̂n(0) = g(y) (58)
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Fig. 3. Koch curves and their generator (the upper inset) parametrized by α and
corresponding to (54)–(58). From highest to lowest: α = π/2.5, α = π/3, α = π/4,
α = π/6.

(value at 0 of the composition of maps). If yn = (0.q1 . . . qn)4 is a Cauchy
sequence convergent to y = limn→∞ yn, then g(y) = limn→∞ g(yn). Curves
from Fig. 3 are the images g([0, 1]) for various α. g is one–one, so it defines
the inverse bijection g−1 = f : K[0,1] → [0, 1].

In order to have a better feel of our bijection, let us have a look at the re-
lation between the standard π/3 Koch curve and its quaternary parametriza-
tion, as illustrated in Fig. 4. Decreasing the initiator [26, 27] of the Koch
curve three times is equivalent to dividing each vertex number by four (i.e.
shifting left the decimal separator by one position). The bijection is, there-
fore, equivalent to parametrization of the Koch curve by its Hausdorff inte-
gral, in exact analogy to the construction of Epstein and Śniatycki [26, 27].
The authors of [26, 27] begin with the integral and obtain derivatives by
means of the fundamental theorem of calculus. The arithmetic approach
begins with the derivative, and then the integral is defined through the fun-
damental theorem of non-Newtonian calculus.

Another formalism that has to be mentioned in this context begins with
the notion of a mass function [28], a concept in some respects similar to the
Hausdorff measure, but easier to compute. Interestingly, it can be shown
that the resulting ‘Fα-calculus’ implicitly involves a bijection (see Sec. 6 in
[28]), playing exactly the same role as the bijections occurring in a general
non-Newtonian calculus, namely conjugating non-Newtonian derivatives and
integrals with their Newtonian counterparts. The bijection is then, more
or less explicitly, applied to Langevin, Newton and Schrödinger equations
on fractal curves and space-times [29–31]. However, the formalism heavily
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Fig. 4. Link between a vertex position in the α = π/3 Koch curve and its num-
bering by y = (0.q1 . . . qj . . .)4 ∈ [0, 1) in quaternary representation. Rescaling the
unit segment three times, we obtain a smaller copy of the Koch curve. The corre-
sponding vertices of the two curves are numbered by identical digits, with digital
separators shifted by one position. The number y can be thus regarded as a Haus-
dorff measure of the part of the Koch curve extending between the origin and the
vertex, if we normalize the measure to 1 on the segment [0, 1). The rule applies to
all the Koch curves generated by (54)–(57).

depends on structure and parametrization of the fractal sets, and reduces
to the ordinary Newtonian one on non-fractal domains. This should be
contrasted with the general non-Newtonian approach, working whenever the
sets in question have cardinality of continuum. Moreover, the arithmetic
perspective, advocated in the present work, is not restricted to calculus
only, but includes algebraic or probabilistic aspects as well. This is why the
non-Newtonian wave equation will be shown to be Lorentz covariant, even
if fractal space-time is modeled by a Cartesian product of different fractals.

Let us finally note here that the more traditional approaches to fractal
analysis [32, 33] have not managed to formulate any calculus on fractals of
a Koch-curve type.

For α = π/3, we obtain the standard curve, generated by equilateral
triangles. Similarity dimension of a curve generated by (54)–(58) is given
by (Fig. 5)

D =
log 4

log(2 + 2 cosα)
. (59)

There are many ways of extending the Koch curve from K[0,1] to KR. For
example, letK[k,k+1] be the curveK[0,1] shifted according to z 7→ z+k, k ∈ Z.
Then KR = ∪k∈ZK[k,k+1] is a periodic Koch curve, with the bijection f :
KR → R constructed from appropriately shifted maps g defined above. Non-
periodic but self-similar extensions can be obtained by shifts and rescalings.
From our point of view, the only condition we impose on f is the continuity
of g = f−1 at 0, i.e. limy→0− g(y) = limy→0+ g(y) = g(0). We take g(0) = 0.
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Fig. 5. Similarity dimension D and the length L of the generator from Fig. 1 as
functions of α. The horizontal lines show the values for the standard π/3 Koch
curve.

Combining the generalized Koch curves, we can construct a curve which
is in a one–one relation with R, with explicitly given bijection f , and whose
fractal dimensions vary from segment to segment in a prescribed way. This
type of generalization may be useful for applications involving realistic coast-
lines, whose fractal dimensions coincide with the data described by the
Richardson law [34]. In what follows, we will concentrate on the simple
case α = π/3, L = 1/3, of the standard Koch curve.

3. Wave equation on Koch curves

First of all, let us assume we discuss a real-valued field, whose evolution
on the Koch curve X = KR is described with respect to a ‘normal’ non-
fractal time t. The field is thus represented by R × X 7→ Φt(x) ∈ R, with
x ∈ X. Since Y = R, we take fY = idR. (Although fY(y) = y3 or any other
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bijection would do as well, leading to a different behavior of the wave.) The
wave equation is

1

c2
d2

dt2
Φt(x)− D2

Dx2
Φt(x) = 0 , (60)

where

d

dt
Φt(x) =

limh→0

(
Φt+h(x)− Φt(x)

)
h

, (61)

D

Dx
Φt(x) =

limh→0

(
Φt
(
x⊕X f

−1
X (h)

)
− Φt(x)

)
h

. (62)

We search solutions in the form (here y = ct)

Φt(x) = A(x, y) +B(x, y) , (63)

where (
d

dy
− D

Dx

)
A(x, y) =

(
d

dy
+

D

Dx

)
B(x, y) ≡ 0 , (64)

suggesting simply

A(x, y) = a(fX(x) + y) , (65)
B(x, y) = b(fX(x)− y) (66)

for some twice differentiable a, b : R→ R.
Indeed, from definitions

D

Dx
A(x, y) = lim

h→0

A
(
x⊕X f

−1
X (h), y

)
−A(x, y)

h

= lim
h→0

a
(
fX(x) + h+ y)− a(fX(x) + y)

h

≡ d

dy
a(fX(x) + y) =

d

dy
A(x, y) . (67)

One similarly verifies that d/dy and D/Dx commute, and

D

Dx
B(x, y) ≡ − d

dy
B(x, y) . (68)
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Figure 6 shows the dynamics of Φt(x) with a = 0. The energy of the wave
is given by

E =
1

2

f−1
X (∞)∫

f−1
X (−∞)

(
1

c2

∣∣∣∣dΦt(x)

dt

∣∣∣∣2 +

∣∣∣∣DΦt(x)

Dx

∣∣∣∣2
)

Dx , (69)

where the integral is defined by (13).

0.05 0.10 0.15 0.20

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Fig. 6. ‘Aurora borealis wave’: Six snapshots of Φt(x) propagating to the right
along the Koch curve. The upper plot shows the corresponding function b occurring
in (66).
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Let us explicitly check the time independence of E for the particular case
of Φt(x) = a(fX(x)+ct). Let a′(x) = da(x)/dx be the Newtonian derivative.
Then,

E =

∞∫
−∞

∣∣a′ (fX ◦ f−1X (x) + ct
)∣∣2 dx

=

∞∫
−∞

∣∣a′(x)
∣∣2 dx (70)

is independent of time, as it should be.

4. Lorentz covariance

In our model, space-time consists of points (x0, x1) = (ct, x) ∈ R × X,
with (x0, fX(x1)) ∈ R2. A Lorentz transformation x′ = L(x), L : R × X →
R× X, is defined by(

x′0

x′1

)
=

(
L0

0x
0 + L0

1fX
(
x1
)

f−1X

(
L1

0x
0 + L1

1fX
(
x1
) ) ) , (71)

or, equivalently, by(
x′0

fX
(
x′1
) ) =

(
L0

0 L0
1

L1
0 L1

1

)(
x0

fX
(
x1
) ) , (72)

where L ∈ SO(1, 1). Equation (71) implements a nonlinear action of the
group SO(1, 1), and reduces to the usual representation if X = R and
fX(x1) = x1. Transformations (71) form a group.

In order to prove Lorentz invariance of the wave equation, let us first
note that its solution

Φt(x) = a
(
fX
(
x1
)

+ x0
)

+ b
(
fX
(
x1
)
− x0

)
= φ

(
x0, fX

(
x1
))

(73)

defines a function φ, satisfying (due to triviality of fY)

DΦt(x)

Dx
=

∂φ
(
x0, fX

(
x1
))

∂fX (x1)
, (74)

1

c

dΦt(x)

dt
=

∂φ
(
x0, fX

(
x1
))

∂x0
. (75)
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Accordingly, the wave equation takes the standard form of(
1

c2
∂2

∂t2
− ∂2

∂fX(x1)2

)
φ
(
x0, fX

(
x1
))

= 0 . (76)

It is invariant under (72) if φ transforms by

φ′
(
x′0, fX

(
x′1
))

= φ
(
x0, fX

(
x1
))
, (77)

which is equivalent to the scalar-field transformation Φ′t′(x
′) = Φt(x) .

Replacing R×X by a more general case X0×X1, fXj : Xj → R (cf. [30]),
one arrives at a Lorentz invariant wave equation (with both space-time
derivatives appropriately defined), and Lorentz transformations

(
x′0

x′1

)
=

 f−1X0

(
L0

0fX0

(
x0
)

+ L0
1fX1

(
x1
) )

f−1X1

(
L1

0fX0

(
x0
)

+ L1
1fX1

(
x1
) )

 . (78)

A generalization to space-times constructed by Cartesian products of arbi-
trary numbers of fractals is now obvious.

5. Conclusions

To conclude, we have obtained a wave that propagates along a Koch-type
curve. The wave possesses finite conserved energy and satisfies the usual
wave equation, formulated with respect to appropriately defined derivatives.
The derivatives are not the ones we know from the standard mathematical
literature of the subject, but are very natural and easy to work with. The
solution we have found is the general one, a fact following from the standard
form (76) of the wave equation. The velocity of the wave is intriguing. On
the one hand, it is described by the parameter c in the wave equation. On the
other hand, however, the length of any piece of a fractal coast is infinite and
yet the wave moves from point to point in a finite time, and with speed that
looks finite and natural. This is possible since the fractal sum z = x⊕X y of
two points in a Koch curve is uniquely defined in spite of the apparently ‘in-
finite’ distances between x, y, z and the origin 0. Another interesting aspect
of the resulting motion is the lack of difficulties with combining non-fractal
time with fractal space. Lorentz transformations in the corresponding space-
time have been constructed, and Lorentz invariance of the wave equation has
been proved. Fractal arithmetic automatically tames the infinities inherent
in the length of the curve. It would not be very surprising if our fractal
calculus found applications also in other branches of physics, where finite
physical results are buried in apparently infinite theoretical predictions.
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