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The micro- and grand-canonical partition functions for a system of spins on a dy-
namical two-dimensional random spherical surface with a coordination number 3 restricted
to the set of lattices without the ‘tadpole’ and °‘self-energy’ insertions is calculated. The
critical properties are shown to be the same as in the case of the unrestricted set of the g3
lattices.

PACS numbers: 12.40.Ee, 11.17.+y, 11.15.Pg

1. Introduction

The Ising model on a dynamical two-dimensional random lattice with a fixed coordi-
nation number was proposed by Kazakov [1]. The model with a coordination number k
is equivalent [1] to the ¢* theory of two interacting N x N hermitean matrices for N — oo,
which is exactly solvable [4]. The solutions for surfaces with a spherical topology and
k = 3,4 [1, 2] show the same critical behaviour. In the thermodynamic limit the proper-
ties of a system with a fixed number of spins # (the micro-canonical ensemble) seem to be
independent on the coordination number and the topology of the surface [3]. The Ising
model on a dynamical random surface can be treated as a regularization of a two-dimen-
sional fermionic string theory [5]. The sum over all admissible metrics is represented in
discrete models by the sum over all lattices. The critical exponent y,,, of the string sus-
ceptibility was found in spherical and toroidal cases for a grand-canonical partition func-
“tion of the Ising model [1, 3]. These results are in agreement with those obtained in the
continuous case [6, 7]. This coincidence of results confirm usefullness of random lattice
discretization methods as a regularization of some string theories.

This paper is devoted to the generahzatxon of the results of the paper [2] to the model
on ¢ spherical lattices with removed ‘tadpole and self-energy sub-diagrams. We expect
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that in the discrete models of random surfaces the critical propertiés are independent on
the concrete realization of the sum over metrics. This means that the critical behaviour
should not depend on the local structure of the lattice (a coordination number, existence
of the ‘tadpole’ insertions etc.). The only important thing is the random character of the
lattice, which implies that models considered in [1-3] and the one discussed in this paper
belong to the same universality class. We check that indeed the critical properties remain
the same as in the unrestricted cases [I-3] i.e. the critical indices for the micro-canonical
partition function are: o = 1, § = 1/2, y = 2, & = 5 and the critical exponent y,, = —1/2
for noncritical temperatures and 7y,, = —1/3 at the critical one.

2. Description of the model

Let us consider the free energy of the ¢* theory of two Nx N hermitean matrices in
zero dimensions:

exp (N*F(ay, ¢, g, N)) = | DyADyB exp (Tr (—1/2(a. A*
+a_BY)+cAB+1/3gN"*(4* + BY))), 2.1)

where a, >0, ¢ >0, a4a.—c* > 0.

Formally, integral (2.1) exists only for imaginary g. In order to extend the domain
of existence of this integral, one can add to the action the ¢*-term with the g’ coupling.
In the perturbative expansion (with respect to g and g') all diagrams with the g’ vertex
may be neglected if g’ exp (1/g) — 0. In this limit only the ¢* diagrams survive and this
defines the method of regularization of the integral (2.1).

As was shown by Mehta [4] integral (2.1) can be rewritten in the form

exp (N*F((ay, ¢, g, N)) = const | .li (dx,dyw(x;, y)NA(x)4(y), 2.2)
where A(x) = det [x] “", i,j = 1...N, and const is g-independent,
w(x, y) = exp (—1/2(a . x*+a_y*)+exy+1/3gN~ 172(x3 4 y*)). 2.3)
Changing variables in (2.2)
x> (a_fa ) %x, y-(aifa )y
we obtain
W(x, y) = w(x, y) = exp (—1/2(ax* +ay*)+cxy
+1/3gN"? (e % +e7 YY), (2.4)

here

A3

a = (a,a)'?, =a.la,.
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The free energy F(a, ¢, g, H, N) given by the function (2.4) was considered in [2].
It was shown that in the large N limit the terms of the order O((1/N?)*), k= 0, 1 ... of the
1/N? expansion of F(a, ¢, g, H, N) are equal up to the g-independent constant to the grand-
-canonical partition function of the Ising model on a two-dimensional random surface
with a coordination number 3 and a topology with genus A

24G, B, H) = 3 G Z(0(p, H). (@25

Here H is the homogenous external magnetlc field, G is the efffective couplmg constant
(in the thermodynamic interpretation log G is the chemical potential of a spin), § is the
inverse Ising temperature, Z{*(8, H) is the micro-canonical partition function for a sys-
tem with 2» spins (a lattice with coordination number 3, i.e. with the number of nearest
neighbours of each spin equal 3, admits only an even number of vertices) on the lattice
with genus A (genus is related to the topology of the the minimal surface spanned by the
lattice)

ZEp, B = 3 3 exp(f Y, AfPo's+H Y o), (26)

14y (oY) i
here ¢' = +1. A is an adjacency matrix

A‘z") I if ¢' and ¢’ are the nearest neighbours,
0 otherwise.

The first sum in (2.6) extends over all lattices with 2n vertices and genus 4.
G, B and a, ¢, g are related in the following way:

( a / C)IIZ

G* = g’/c? ( ., exp(2p) = ajc. @7
(ae)*~1

3. Calculation of the free energy F(a,c, g, H, N)

In this paper we study only the leading term O(1) of the 1/N? expansion of F(a, ¢, g,
H, N) (we denote it by F(a, c, g, H)). This corresponds to the grand-canonical partition
function for the Ising model in the spherical case. Without loss of generality we can choose
c=1
Following Metha [4]:

1
F(a,c =1, g H) = 1)2logf(x = 1)— gdxf'(x)/f(x)x

+1/2 i dxf' () [f(x)x* +3/4+1/2 log n/\/f’l, 3.1
where f = f(x) is given by the system of algebraic equations:
x = —2getqt, +s,r)+as,—f, 0= —get?2s, +ri)+ar,—r_,
0= (-2ge"¥+a)f-s_, 0= —ge"f*—t_ (3.2
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and the counterparts of these equations obtained by the replacement: H «» —H,roor,
Sper S, o>t
Introducing variables [2]

0s =2ryge*"—a, z=2g%f (3.3)
one obtains
gix =22 +z(g.0-—~1), z= ei23(92¢+2e¥mgi +2ae¥*" —4%)[80,. (3.9
It is convenient to define new variable ¢ by
z = (*+2¢+2a—a?)[8¢ = z(g, a). (3.5)
Comparing (3.4) and (3.5) one gets
e+ = ¢1(e, a, H)
and substituting z, ¢, in (3.4) as functions of ¢, qa, H
g*x = I'(g, a, H)
= 22%(0, @) +[e+ (e, a, H)e (e, a, H)—1]z(e, a). (3.6)
Integral (3.1) can be rewritten as an integral in g. We have

¢’ —a(2—a)
o(e*+2¢+a(2—a))

dxf'(X)[f(x) = deo = ddyz(z 3.7

and

X = F(Qs a, H)/F(Ra a, H),

where R is defined by g% = I'(R, q, H). ¢ is varying from —a to R while x from 0 to 1.
This, together with (3.7) gives

F(a,c =1, g, H) = ®(R, a, H)+3[4+1/2 log n//2, 3.9)
where

&(R, a, H) = 1/21log z(R, a)/[(R, a, H)—L(R, a, H)+1/2K(R, a, H),

R
L(R,a,H) = I'''(R,a, H) | dod,z/z[ (¢, a, H),

R
K(R,a,H) = I ¥R, a, H) | ded,z/z"*(e, a, H). 3.9

ForH=0andg=0Owehave R= —gand L = 1, K =1/2, z/I" = (¢*—1)~* and finally
Fla,c=1,g = 0,H = 0) = 1/2log n/(;/2 (a®*-1)).

It reproduces the Gaussian result. In the Appendix we give an explicit formula for & in
the case H = 0 and g # 0.
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4. Subtraction of tadpole and self-energy diagrams

To remove the tadpole and seli-energy subdiagrams from the model we consider
free energy F(ay, ¢, A+, g) generated by the weight w(x, y) (2.3) with an extra linear term

w(x, y) = exp (—1/2(arc*+a_y*) +cxy
+1/3 gN" 12 (x> + )+ NY2 (A x+1_y)). (4.1)
We introduce new dynamical variables, which are dual to a4, ¢, 4,
Pae = —0.F, po=0F, .py =0, F “2)

». and 2p, are propagators {AB», (44), {BB) respectively.
To kill tadpoles we choose

p)-i = 0' (4‘3)

To subtract self-energy insertions we define Ising temperature and the magnetic field H
as follows:

Pav/Pa. = €xp (4H[3); 4p,,p._[P. = exp (4B) (4.4)
and the “renormalized coupling” constant G:
G” = g*(Pa,Pap2)""". (4.5)

‘We.can now treat the above renormalization procedure as a thermodynamic process which
keeps values of p,,,p., p,, unchanged. The thermodynamic potential appropriate to
describe such a process is the “free enthalpy” obtained from the free energy by the Le-
gendre transform

E(Pas> Pes Pas» 8) = F(as, ¢, 24, 8)
+a,.ps +a_py_—CPe—AiPa, —A-Pa; (4.6)
‘where (4.2) is satisfied and simultaneously
Op E=ay, 08,E=—c 0, E=—1s 4.7
To find the explicit form of p,,, p, we change variables in the free energy Flay, ¢, 2y, 8):
x = x+N"e,, y-y+NV_.

We can rewrite F(ay, ¢, A4, g) in terms of the free energy without the linear term in the
action (2.1):

Fas, ¢, 21, 8) = F(As, ¢, 9)+6, (4.8)
‘where
A:t = ai—2g8i,
gel —ases+ee +Ay =0,

6 = 13g(e3 +e2)+1/24,6% +1/24_ & —ce,e_.
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The condition for removing the tadpoles (4.3) implies

2g

si = (A+A._ “Cz)

(A;04,F+cd,.F) 4.9)

and
Do, = —04, F—1/26%, p.=0F—c,e_. (4.10)

Taking A; = A exp (£2B/3) we express (4.9)-(4.10) in terms of the free energy of the
Ising system in the external magnetic field B given by F(4, ¢, g, B) which is determined
by the weight (2.4) and was studied in the prévious Section:

34, F = 1/2 exp (£2B/3) (0,F F 30,F[24),

gexp (£ B/3)
=T

+c exp (FB) (0,F +305F|24)). @.11)

(A exp (2 B) (0,F F305F[24)

We are now in a position to express the right-hand sides of (4.11) as functions of variables
R, A, B. As in previous Section we chose ¢ = 1 to simplify calculations:

64.F = —$u(R, A, B) = 12 exp (+2B/3) (04— 3x B0, /dxT)
F 3058 — 0,905 0x1)/24),

JT exp (£B/3)
A%-1

+3(exp (FB)— A exp (+ B)) (838 — 0z @05T'|0:T)[24), (4.12)

where ¢ = &(R, 4,B) and I = I'(R, 4, B) are given by (3.9) and (3.6), respectively.
We obtain

ey = 8:(R, 4, B) = ((4 exp (1 B)+exp (FB)) (6, — 0rP0,I'[0rT)

Pa. = Dau(R, A, B) = ¢ —1)2¢1,
P. = PR, 4, B) = A(exp (—2B/3)¢ . +exp (+2B/3)¢p_)—~3l 3P/, '~1. (4.13)
To derive the second equation we used
A 0,4, F+A_8, F+cd F+3/2g0,F+1 =0,
which is a simple consequence of the scaling relation
F(sAy, sc, s**g)+logs = F(44, ¢, g).

All physical quantities: the free enthalpy E, the effective coupling constant G2, the Ising
temperature B and the magnetic field H can be parametrized by R, 4, B:

E = E(R, A, B) = ®(R, 4, B)+8(R, A, B)+a_(R, 4, B)p,_(R, A, B)
+a4(R, 4, B)p,,(R, 4, B)—cp/(R, A, B),
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G* = G*(R, 4, B) = (P, Pa_p2)**T,
B = 1/41og (4p,,Pa_/P2)*"* = B(R, 4, B),
H = 3/41og(p,,/p..) = H(R, 4, B). (4.14)

‘Equations (4.14) give an implicit dependence of the free enthalpy on the physical param-
eters B, G2, H. Inverting three last equations of (4.14) we find

E = E(G*, 8, H) = E(R(G*, B, H), A(G, B, H), B(G?, B, H)).

For fixed g and H, the freé enthalpy E(R, A, H) has a finite radius of convergence in pa-
rameter G2. We denote it by GZ(B, H). It means (see 2.5) that

Z£2n>(ﬁ’ H) — n(?su-—3)(Gz(ﬂ, H))"", (415)

n—>w

where 7, is a critical exponent of the string susceptibility {1-3]. Equation (4.15) determines
a micro-canonical partition function of the Ising model in the thermodynamic limit. In
this limit we have, due to (4.15), a following formula for the free energy per spin

e(B, H) = —1/2log G;(B, H). (4.16)

To find a radius of convergence GX(8, H) of E(G?, f, H), one has to know the singularity
of E(G?, B, H) determined by the smallest value of |G?|. The singularity in question may
be hidden in the R, 4, B parametrization. Let us consider the point Ry, Ao, B, at which
E(R, A, B) is regular. We can perform a Taylor expansion:

AE = E—E, = 03 EAR+08,,EAA+05 EAB+ ...
and analogously
AG? = G*~G2 = 65,G*AR+08,,G*’AA+05,G*AB+ ...
AB = B—Bo = Or SAR+0, BAA+3y PAB+ ...
AH = H—H, = 0x HAR+0, HAA+ 85 HAB+ ... 4.17)

Let us consider the curve H, f = constant (that means that Af = AH = 0). One can see
that along this curve vanishing of Jacobian at R,, 4o, By

&G’ B, H)

Jac(Rg, Ags Bo) = ————— - =
( ¢ ° O) a(ROs AO’ BO)

(4.18)

implies
AG?|j1 p=const ¢ (AR)? <> AR o< (AG)'7, (4.19)
where p is an integer number and p > 2. Substituting (4.19) into the Taylor series of E

a singular part of AEjy - o ¢ (AG)"?, n =1
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one sees that the condition for vanishing of the Jacobian (4.18) is a signal of the appear-
ance of the singularity of E(G?, B, H) if nfp is not an integer number. To show that in
the investigated model such a situation takes place we first calculate the dg-derivatives:

Or(04P—0gP0,[0gT") = (OrI'|T) (04,L—0G,4K)~(0,I|I") (9gL—RK)
= (0xI'|[") (0, L—0,K+(0,I'/T") (L—-2K)) oc 0T,
and
Or(05®—0rP3pl[0RT") = (OpI'|T") (9L —05K) —(05T[T") (9rL — 0 K)
= (9pl|T) (GgL—0gK +(85I"|T) (L—2K))} oc Oxl". (4.20)
It can be seen by using (4.20) in (4.12) that 8z¢; and dgxe, have zeros along JgI':

Oy oC Opl'y,  Ogéy oc Ogll
and as a consequence
OrPa, o« Opl’  and  Ogp, oc dgT.
It implies
0rG? oc 8gl, 0P oc g, OxH o g (4.21)
and finally
Jac (R, A, B) oc 0xl" <> Jac (R, 4, B) = ;' X(R, A4, B). 4.22)

In the parameter space (R, A, B) the condition G? = 0 is satisfied in the plane R = —~A4.
The physical region of parameters R, 4, B is spread between this plane and the critical
surface. One can check for small B (it corresponds to small H as well) that between the
plane R = — A4 and the surface given by dzI" = 0 neither X(R, 4, B) has zeros nor
E(R, A, B) becomes singular. It implies that the solution of the equation

0r[(R,A,B) =0 (4.23)

closest to the plane R = — 4, determines the smallest singularity of E(G?, B, H) and, as
was mentioned, it determines the radius of convergence G(8, H) and the micro-canonical
partition function of the Ising model in the thermodynamic limit as well. The critical
condition (4.23) is the same as in the model on the unrestricted set of lattices [2]. Repeat-
ing all arguments from the work {2] and using (4.21) one finds a critica! point by

0.T(R, A, B=0)=0 and dgel'(R, A, B =10) =0,

and the fact that the whole set of critical exponents for the micro-canonical partition
function remains the same as in the full $3-model as was announced in the introduction.
In the Appendix we find the critical temperature: exp (28,) = 108/23.
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In the end we show that y,,, also remains unchanged if we remove the tadpole and
self-energy sub-diagrams. Taking derivative 9, of both sides of the Lagendgre transform
(4.6) at constant values of p, 4, p., p;+ One obtains:

0,E(Pass Pes Pro» 8) = 0,F(as, ¢, A4, 8), (4.24)

where a,, ¢, A, are chosen to keep propagators constant. As was shown in [1, 2] y,,
= —1/2 for noncritical temperatures and y,, = —1/3 at the critical one. It corresponds
to the following behaviour of the singular part of F:

AF,, oc (Ag)®’ besides the critical temperature,

AF sing OC (Ag)"’? at the critical temperature, (4.25)

where Ag = g—g.(B, H).
The higher derivatives of (4.6) are

a;gE(pa*3 Pes Pass g) = a;_qﬁ(a:l:! c 'q':i:’ g)+aqn+Fag2pa+ ﬂgza_Faz

chach yl+Fa;p; ,.E - 03 F@z

api~
MaE(Pa*’ Pos Pay»> 8) = ayaggF(ai’ Ay, O+ ... (4.26)

Since for finite p, 4, p., p,+ the values of a,, ¢, A, are also finite, we have from (4.26)
that the singular behaviour of 82,E(p,+, P, P11, &) is determined by the singular part
of the derivative 62 F(ai, ¢, Ay, 8. Analogously for higher derivatives. Thus we have:

OgE|ag-0 < 0, (’J’!”,ElAg_.0 < o0, 6mE|Ag_,0-—> 0. (4.27)

Above we used the fact that if agE and agﬁ are finite then also their derivatives with resp-
ect to a., ¢, 1, are finite. The singularity in 6mE comes from the agggF so it is deter-
mined by the same critical exponent. Thus we reproduced exactly the value of yy, = —1/2,
which jumps at the critical temperature to y,, = —1/3. Such a critical behaviour of y,,

was expected earlier in (4.19) which shows the behaviour
AG? 11 pmcons < (AR)? > AR o< (AG)'*  for B # f,

AG? 4 g=const < (AR)’ <> AR o« (AG)'?  for H =0 and g = f..

5. Summary

In this paper we have shown that the critical properties of the Ising model on the
random @3 lattice remain unchanged when we restrict ourselves to the lattices without
the tadpole and self-energy diagrams. It suggests that there exists an universal class of
random surfaces for which the detailed lattice features are unimportant — they may affect
the critical temperature but they do not affect the singular parts of thermodynamic func-
tions in the critical region.
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APPENDIX 1

In this appendix we give an explicit form of I'(R, 4, H = 0) and &(R, 4, H = 0).
From here on the dependence on H is omitted.

I'(R, A) = R (R*+2R+ A(2—A)) (4R*+R*—2R + A(2 - A)). (A.1)
The critical curve is given by the equation
ol =0

which has the following solution:
(BR?*+A(2—-A4)) QR*+3R*—A(2—4)) = 0. (A2)
We draw it in Fig. 1. The physical region ot parameters (4, R) is dotted in Fig. 1. It is.
bounded by the curve (a): R = —A which corresponds to G?> = 0 and by the curves
(b or c) being the smallest root of (A.2). The critical point is determined by the common
point of both roots or equivalently by
GRRF = Oo
It is not difficult to check that critical values of 4, R are
A, =2JT+1, R,=-3. (A3)
The exact forms of L(R, 4) and K(R, 4) are
C(R, d)
6(R>+2R+A(2— A)) (4R* +R*—2R+ A(2—A))’
D(R, d)
12(R?*4+2R+ AQ2—A)*(4R*+R* 2R+ AQ2-A))* ’

L(R, A) =

k(R, A) =

: “ (b,
aoot : ”

200

N Critical point
&w X

5.00
400
3.00

200

1.00
-5.00

1 1
-3.00 ~2.00

R

)
© =400
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where d = A—1 and
C(R, d) = 8R® +3R*+(—36+24d*)R> +(—46+42d” +32d*)R?
+(—12+12d)R+3(1—d%)?,
D(R, d) = 32R'®+96R® +3R® +(—232+964*)R’
+(—108 +1804> —964*)R® +(—360— 168d* —964*)R®
+(466 — 564d* +210d* + 64d°)R*
+(168 —336d> +264d*—96d°)R*
+(—12+12d*+12d*—12d°%)R?
+(—8+24d*—24d* +8d°)R+3(1 —d*»)*. (A.4)

Using these formulas and (4.4) we find the critical temperature §, of the renormalized ¢3
model corresponding to the values 4., R :

exp (28.) = 108/23. (A.5)

APPENDIX 2

We show that in the low temperature limit § — oo and for H = 0 this model repro-
duces the results of the one-matrix @3 theory [8]. It is obvious that the low temperature
limit ought to appear for 4 — oo (4.11). Going along the critical curve 3R>+ A4(2—-4) =0
we introduce the rescaled variable r = R/A. r is of the order of unity along this curve.
In this limit the effective coupling constant (4.5) must be redefined. It follows from the fact
that the contributions of diagrams with antiparallel vertices are negligible because of the
vanishing factor exp (—2f):

Y (2022 (Palp) 5557 2 X (872N, (A.6)

where p, = p,, = P,._,.N(z”’ is a number of diagrams with 2n-vertices. The factor 2 in
front of the sum on the right-hand side of (A.6) follows from the existence of two spin
directions. Thus the effective constant is

Gl = g’p3
In the r parametrization we have
Gl = I'pd = —(*—1) (9 = 1)*/(8*)* +O(1/4),
exp (2f) = Palpe = O(4) T ®

or using parameter ¢ = —(r2—1)/(8r?)

Gfgf =a(l—-a)}, a=a, =a_.=1+al-20) (A.D
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and
E = —%u*—3a—log |a— 1]+ const. (A.8)

The last two expressions are in agreement with the results of [8].
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