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In the 1950’s Hanbury Brown and Twiss showed that one could mea-
sure the angular sizes of astronomical radio sources and stars from correla-
tions of signal intensities, rather than amplitudes, in independent detectors.
Their subsequent correlation experiments demonstrating quantum bunch-
ing of photons in incoherent light beams were seminal in the development of
quantum optics. Since that time the technique of “intensity interferometry”
has become a valuable probe of high energy nuclear and particle collisions,
providing information on the space-time geometry of the collision. The
effect is one of the few measurements in elementary particle detection that
depends on the wave mechanics of the produced particles. Here we discuss
the basic physics of intensity interferometry, and its current applications
in high energy nuclear physics, as well as recent applications in condensed
matter and atomic physics.

PACS numbers: 25.75. Gz, 95.75. Kk

1. Introduction

Hanbury Brown–Twiss (HBT) interferometry, the measurement of two
identical particle correlations, has become a very important technique in
particle and heavy-ion collisions, enabling one to probe the evolving geome-
try of the collision volume. Figures 1 and 2 illustrate the general idea of an
HBT measurement: plotted in Fig. 1 is the two-particle correlation function,
C(Qinv) — measured for pairs of π+ as well as for pairs of π− by NA44 for
200 GeV/A S on Pb at the CERN SPS [1] — as a function of the invariant
momentum difference Qinv = [(p1 − p2)

2]1/2 of the two particles. The char-
acteristic falloff distance ∆q in momentum of the correlation function is of
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order 50 MeV/c for pions; the length ~/∆q, which is ∼ 4 fm, is basically
a measure of the size of the source of the final state pions, the size of the
source when the pions no longer interact strongly with other particles. Also
shown in Fig. 1, for comparison, is the correlation function for pairs of π+

for 450 GeV protons on Pb, which, being broader, indicates a smaller source
size. Figure 2 similarly shows the correlation function for π+π+, π−π−,
and K+K+ pairs produced in collisions of Au on Au at 10.8 GeV/A mea-
sured by E877 at the AGS in Brookhaven, also as a function of the invariant
momentum difference [2].
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Fig. 1. Two-particle correlation function for π+π+ and π−π− pairs in 200 GeV/A

collisions of S on Pb, and π+π+ pairs in collisions of 450 GeV p on Pb [1].

In general, the two-correlation function is defined by

C(q) =
{〈n~p1

n~p2
〉}

{〈n~p1
〉〈n~p2

〉} , (1)
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Fig. 2. Two-particle correlation function for π+π+, π−π−, and K+K+ pairs in

collisions of Au on Au at 10.8 GeV/A [2].

where n~p is the number of particles of momentum ~p measured in a single
event, ~q = ~p1 − ~p2 , and the averages, denoted by 〈· · ·〉, are over an ensemble
of events. The pairs in the numerator are taken from the same event, and the
pairs in the denominator from different events. Usually, one also averages
the numerator and denominator separately over a range of center of mass
momenta ~P = ~p1 + ~p2 of the pair, an average denoted here by {· · ·}. As q
becomes very large the correlations between the particles are lost, and the
correlation function approaches unity.

The basic issue I want to discuss in these lectures is how and why HBT
interferometry works. The effect is in a unique class of experiments involving
multiparticle correlations that are sensitive to the actual wave mechanics
of particles as they stream out to the detectors. Normally, one imagines
quantum mechanics as being important in high energy experiments only until
the particles leave the interaction region; from then on one usually pictures
them as little bullets on classical trajectories. (Quantum phenomena such
as kaon regeneration and neutrino oscillations involve the internal degrees
of freedom of the particles, rather than spatial amplitudes.) Considering
the wave mechanics of the emitted particles in space and time is crucial to
understanding questions such as why independent particle detectors give a
greater signal when they are close together, corresponding to small q, than
far apart. Further issues are: How accurately are the distances that are
determined by the falloff of the correlation function related to the size of the
system? In principal the correlation function at small momenta differences
should rise up to 2 for a perfectly chaotic source. However, it only goes up to
∼ 1.5–1.6 for the pion pairs shown in Figs 1 and 2. What is the physics that
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reduces the correlation function at small momentum differences? What is
the effect of final state Coulomb interactions on the measured correlations?

I will begin by describing the HBT effect in the simplest model of clas-
sical waves, and then discuss how one can understand HBT in terms of the
quantum mechanics of the particles reaching detectors. Then I will turn to
the nuclear physics applications and finally mention applications of HBT
interferometry in both atomic and condensed matter physics. My aim here
is to describe the physics underlying the HBT effect. For more detailed dis-
cussions of the current experimental situation in ultrarelativistic heavy-ion
collisions and its theoretical interpretation, the reader is referred to, e.g.,
the reviews [3–8].

2. Basic model of HBT intensity interferometry

HBT interferometry differs from ordinary amplitude interferometry in
that it does not compare amplitudes (as in a Young’s two-slit interferometer)
but rather intensities at different points1. The simplest picture of HBT
interferometry, from which we can see the fundamental idea, is to consider
two distant random point sources of light, a and b (of the same frequency),
or more realistically for a star, a distribution of point sources, and imagine
measuring the light falling in two independent telescopes 1 and 2; [9] see
Fig. 3. The detectors are not connected by any wires. Assume that the
sources are separated in space by ~R, the two detectors by ~d, and that the
distance from the sources to the detectors, L, is much larger than R or d.

a

b 2

1

R d

L

Fig. 3. Measurement of the separation of two sources, a and b, by correlation of

intensities in detectors 1 and 2.

Imagine that source a produces a spherical electromagnetic wave of am-
plitude αeik|~r−~ra|+iφa/|~r − ~ra|, and source b a spherical wave of amplitude
βeik|~r−~rb|+iφb/|~r − ~rb|, where φa and φb are random phases (we ignore po-
larizations here). Let us calculate the correlation of the electromagnetic
intensities in 1 and 2 as a function of the separation of the two telescopes.
The total amplitude at detector 1 is

A1 =
1

L

(

αeikr1a+iφa + βeikr1b+iφb

)

, (2)

1 As we shall see below, there is a close connection between the two types of interfer-
ometry.
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where r1a is the distance from source a to detector 1, etc., and the total
intensity in 1 is

I1 =
1

L2

(

|α|2 + |β|2 + α∗βei(k(r1b−r1a)+φb−φa) + αβ∗e−i(k(r1b−r1a)+φb−φa)
)

,

(3)
with a similar result for I2. On averaging over the random phases the latter
exponential terms average to zero, and we find the average intensities in the
two detectors,

〈I1〉 = 〈I2〉 =
1

L2

(

〈|α|2〉 + 〈|β|2〉
)

. (4)

The product of the averaged intensities 〈I1〉〈I2〉 is independent of the sepa-
ration of the detectors.

On the other hand, multiplication of the intensities I1I2 before averaging
gives an extra non-vanishing term ∼ (α∗β)(αβ∗), and we find after averaging
over the phases that

〈I1I2〉 = 〈I1〉〈I2〉 +
2

L4
|α|2|β|2 cos (k(r1a − r2a − r1b + r2b))

=
1

L4

[

(|α|4 + |β|4) + 2|α|2|β|2(1 + cos (k(r1a − r2a − r1b + r2b))
]

.

(5)

Then

C(~d ) =
〈I1I2〉
〈I1〉〈I2〉

= 1 + 2
〈|α|2〉〈|β|2〉

(〈|α|2〉 + 〈|β|2〉)2 cos (k(r1a − r2a − r1b + r2b)) . (6)

For large separation between the sources and detectors (L≫ R),

k(r1a − r2a − r1b + r2b) → k(~ra − ~rb) · (r̂2 − r̂1) = ~R · (~k2 − ~k1),

where ~ki = kr̂i is the wavevector of the light seen in detector i. The corre-
lated signal in Eq. (6) varies as a function of the detector separation d on a
characteristic length scale

d = λ/θ , (7)

where λ is the wavelength of the light, and θ = R/L is the angular size of the
sources as seen from the detectors. Thus by varying the separation of the
detectors one learns the apparent angle between the two sources, and with
a knowledge of the individual wavevectors, the physical size of the source.
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If instead of two discrete sources, one has a distribution of sources, ρ(~r ),
then averaging over the distribution, one finds that the correlation function
measures the Fourier transform of the source distribution:

C(~d ) − 1 ∼
∣

∣

∣

∣

∫

d3rρ(~r )ei(~k1−~k2 )·~r

∣

∣

∣

∣

2

. (8)

One important difference between astronomical observations and high
energy physics is that the stars stay fixed, while in a collision, the system
evolves a time scale of 10−23 to 10−22 seconds, and thus one has to take
into account the changing geometry. As we will see, in high energy physics
one measures not the Fourier transform of the distribution in space alone,
but to good approximation the Fourier transform in both space and time.
A second important difference is that in astronomy, in the absence of a
knowledge of the distance to the source, one cannot measure the actual
difference in direction of the wavevectors of the light in the two detectors,
and thus one measures only the angular size of the source as seen from the
detectors. In a high energy experiment, one can determine the wavevectors
of the detected particles, and thus measure the absolute size of the source.

To find an enhanced correlation at detector separation ≤ λ/θ it is not
necessary for the two detectors to be wired together. One needs only to
compare the data trains. Why, we may ask, do two independent nearby de-
tectors produce extra signal? Essentially if the amplitude varies randomly
then a positive fluctuation of the amplitude will produce a correlated in-
crease in both measured signals, and vice versa for a negative fluctuation.
For example, in black-body radiation, both the real and imaginary parts of
the complex electric fields E ∼ αei~k·~r−iωt are Gaussianly distributed. For
independent Gaussianly distributed real variables x and y, one finds simply
that 〈(x2 + y2)2〉 = 2〈x2 + y2〉2, so that

〈|E1|2|E1|2〉 = 2(〈|E1|2〉)2, (9)

while for a coherent source, e.g., a laser, 〈|E1|2|E1|2〉 ≃ (〈|E1|2〉)2. The extra
factor of two is precisely the source of the HBT correlations, the enhancement
that arises from the cosine term in Eqs (5) and (6).

Not apparent in the simple model above is how to deal with the time
involved in making measurements. For example, how far apart can one shift
the data trains in time in comparing the intensities in the two detectors and
still find a correlation between the signals? I will return to these questions
below.
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3. A brief history of the HBT effect

The radar technology developed in the Second World War opened the
field of radio astronomy in the postwar period, and soon led to the discovery
of bright radio “stars” in the sky. One had no idea how big various sources,
e.g., Cassiopeia A and Cygnus A, were, and the immediate problem was
how to measure their sizes. The standard technique in use was Michaelson
interferometry, in which one compares the amplitudes of the light landing
at two separated points, e.g., by converging the two signals using a lens
and producing a diffraction pattern as a function of the separation of the
points. From the structure of the diffraction pattern (on a distance scale
λ/θ) one can determine the angular size of the source. Using this technique
Michaelson measured the angular diameter of Jupiter’s system of moons in
1891, and K. Schwarzschild first measured the angular diameter of binary
stars in 1895. The resolution by amplitude interferometry at a given wave-
length is limited by the size of the separations over which one can compare
amplitudes. Were the radio sources to have had a large angular size, then
one would only have needed a small separation of the two detectors. On
the other hand, were the sources small, then it might have been necessary
to separate the telescopes by distances too large, e.g., on opposite sides of
the Atlantic, to be able correlate the amplitudes with the technology avail-
able in this period. This is the problem that the radio astronomer Robert
Hanbury Brown at Jodrell Bank solved in 1949. His basic realization was
that “if the radiation received at two places is mutually coherent, then the
fluctuation in the intensity of the signals received at those two places is
also correlated.” [10] Hanbury Brown then brought in Richard Twiss who
had a more mathematical training to carry out the mathematical analysis
of intensity correlations.

The first test of intensity interferometry was in 1950, when Hanbury
Brown and Twiss measured the diameter of the sun using two radio tele-
scopes operating at 2.4m wavelength (in the FM band) — quite a spec-
tatacular demonstration of the technique. Their group then went on to
measure the angular diameters of the Cas A and Cyg A radio sources, which
turned out to be resolvable within a few kilometers. Since they could in fact
have done Michaelson interferometry over such distances, Hanbury Brown
described the intensity interferometry effort as “building a steam roller to
crack a nut.” [11] Nowadays, Michaelson interferometry has completely re-
placed intensity interferometry in astronomy. In radio astronomy, amplitude
interferometry is the basis of the Very Large Array (VLA) in Socorro, New
Mexico, and the extended VLBI, in which one compares radio amplitudes in
separated radio telescopes. The 10 m optical Michaelson interferometer on
the Space Interferometry Mission satellite, to be flown in 2004, will be able
to resolve objects to 5 microseconds of arc.
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Intensity interferometry actually has an intimate relation with Michael-
son amplitude interferometry, as noted by Hanbury Brown and Twiss [12].
Amplitude interferometry measures essentially the square of the sum of the
amplitudes A1 and A2 falling on detectors 1 and 2:

|A1 +A2|2 = |A1|2 + |A1|2 + (A∗
1A2 +A1A

∗
2) . (10)

The latter term in parentheses, called the “fringe visibility,” V , is the inter-
esting part of the signal. Averaged over random variation in the signal, V 2

is simply

〈V 2〉 = 2〈|A1|2|A2|2〉 + 〈A∗2
1 A

2
2〉 + 〈A2

1A
∗2
2 〉 . (11)

As one can see from the simple model above, Eq. (2), the final terms vary
rapidly on a scale of separations, d ∼ λ, the wavelength of the radiation,
and average to zero. On the other hand, the first term in Eq. (11) is just
twice the correlation of the intensities landing in the two detectors. Thus

〈V 2〉 → 2〈I1I2〉 ; (12)

the time-average of the square of the fringe visibility is proportional to the
time-averaged correlation of the intensities.

While it was well demonstrated both theoretically and experimentally
that intensity interferometry worked for radio waves, which were commonly
understood as classical fields, it was not obvious in the early 1950’s that the
effect should also work for light. Light being made of photons was more
mysterious than radio signals made of classical electrical waves; the con-
nections, now clear, were obscure at the time. Hanbury Brown and Twiss
decided to test the idea for optics, with a simple tabletop experiment in
which they used a beam from a mercury vapor lamp — a thermal source
— and a half-silvered mirror to split the beam in two [13]. By measuring
the intensity correlations between the two separated beams, they essentially
compared the intensities at two different points in the unseparated beam,
and by varying the relative path lengths between the mirror and the detec-
tors they could vary the time separation, τ , of the points. What they found
was that while at large τ there were no intensity correlations, the correlations
increased with decreasing τ . The characteristic timescale is the coherence

time of the beam which, in this case is essentially ~/T , where T is the tem-
perature of the source. This experiment was the crucial demonstration of
“photon bunching,” i.e., that photons in a seemingly uncorrelated thermal
beam tend to be detected in close-by pairs. Their results were greeted with
great disbelief, and various experiments were done to disprove them. In the
end Hanbury Brown and Twiss prevailed, aided by a particularly important
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paper by Purcell [14] which showed how to understand the effect in terms
of electric field fluctuations (see Eq. (9)) — and the field of quantum optics
was born.

Armed with the demonstration that intensity interferometry worked for
light, Hanbury Brown and Twiss then went on to apply the technique to
measure the angular size of the star Sirius (α Canus Majoris A) by studying
optical intensity correlations between two telescopes [15]. Since the tele-
scopes required good light gathering ability but not great resolution, Han-
bury Brown and Twiss were able to fashion a pair from five-foot diameter
searchlights left over from the Second World War. The signals from the two
telescopes were correlated electronically (although the actual physical con-
nection is not needed to observe the effect). Figure 4 sketches their data for
the correlation function C(d) − 1, divided by its value at d=0, measured as
a function of the separation d of the two telescopes out to a maximum sep-
aration ∼ 9 m. The data yielded an angular diameter of Sirius of 0.0068′′±
0.0005′′ = 3.1 × 10−8 radians, a very impressive measurement of an object
at a distance of 2.7 pc. The four data points shown were taken for a total of
some 18 hours over a 5 month period, an indication of the poor viewing con-
ditions. The dashed line is the expected curve for a uniformly illuminated
disk of angular diameter, 0.0063′′.

10m0
0

1

d

C(d)-1
C(0)-1

Fig. 4. Measurement of the angular diameter of Sirius [15]

This figure looks very similar in structure to the heavy-ion plots in Figs 1
and 2. An important difference is that the actual HBT correlation seen here
was just one part in 106, a tiny signal above the background. What is
the source of this difference? The question is whether all observed pairs of
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photons are “HBT-correlated”2; for example, if one takes a data train from
1956 in one telescope and compares it with a data train in the other from
1997 will one see interferometry? The answer is that the photons are in
fact HBT-correlated only if they are emitted within a coherence time, the
characteristic timescale in the original HBT tabletop experiment with an
optical source. For a star the coherence time is τcoh ∼ 10−14 sec. On the
other hand, the signal was studied over a band 5–45 MHz, corresponding
to a binning time τbin ∼ 10−8 sec. Roughly the probability of observing an
HBT-correlated pair of photons is ∼ τcoh/τbin ∼ 10−6. Figure 5 shows the
region where photons produce an HBT signal in the plane of the times, t1
and t2, of detections in detectors 1 and 2. Below we discuss the analogous
timescales in heavy-ion collisions.

tcoh

tbin

tbin0
0

t1

t2

HBT-
co

rre
lat

ed
 p

air
s

Fig. 5. Region in the plane of the detection times t1−t2 where photon pairs produce

an HBT signal.

4. Quantum mechanics of HBT

The simple derivation of intensity interferometry in Sec. 2 is entirely
classical. How can one understand the effect from a quantum mechanical
viewpoint? If we think of the sources a and b in Fig. 3 as emitting pho-
tons, we can identify four different processes, shown in Fig. 6: (i) source a

2 Here we mean correlated in the sense that the photon pairs will produce an HBT
effect at the detectors, measured by C, as opposed to the different question of the
correlations in the beam produced in the source, as discussed in Sec. 6. The language
is potentially confusing, since photons that are maximally correlated at the source,
e.g., in a laser beam, do not exhibit an HBT effect, while a thermal source, which is
minimally correlated, produces the maximum HBT effect.
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(iii) (iv)
Fig. 6. The four independent photon emission and detection processes included in

Eq. (5).

emits two photons, one detected in each detector, (ii) source b emits the two
photons instead; (iii) source a emits a photon detected in 1 and b emits a
photon detected in 2, and finally, (iv) source a emits a photon detected in
2 and b emits a photon detected in 1, the exchange of the previous process,
(iii). The first two processes are distinguishable, and do not produce any
interferometry. They simply correspond to detection of the sources indepen-
dently (the |α|4 and |β|4 terms in Eq. (5)). Only the latter two processes,
(iii) and (iv), which are quantum-mechanically coherent, give rise to inter-
ferometry. [Indeed, if we drop the terms proportional to |α|4 and |β|4, then
Eq. (6) reduces to C(~d ) = 1 + cos(k(r1a − r2a − r1b + r2b)).] Quantum
mechanically, the HBT effect is a consequence of ordinary boson exchange,
an effect included in the symmetry of the wave function of the pair of par-
ticles, e.g., for a pair of independent bosons in orthogonal states φα and
φβ , φ(1, 2) = (φα(1)φβ(2) + φα(2)φβ(1)) /

√
2. The effect is present for all

pairs of identical bosons, including pions and kaons produced in high energy
collisions.

The detection of interferometry in particle collisions dates from 1960
when G. Goldhaber, S. Goldhaber, W.Y. Lee, and A. Pais [16] studied an-
gular correlations of pions produced in pp collisions at the Bevatron. Ac-
cording to Pais [17], the idea of exploring interferometry in particle physics,
although so similar to that in astronomical observations, was independently
conceived. The method is now a standard technique in high energy colli-
sions, from heavy ions [3–8], to meson–nucleon interactions [18], to electron–
positron annihilation [19]. As noted by Feynman [20], the experiment done
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with electrons would yield intensity anti-correlations. However the effect
is obscured by interactions among the fermions; electron pairs or proton
pairs have a repulsive Coulomb interaction which itself decreases the corre-
lation function at small momentum differences (see Sec. 9), while neutrons
at small relative momenta have significant final state strong interactions.
Correlation studies of nucleon pairs produced in heavy-ion collisions are de-
scribed in Refs [5] and [21], and references therein. HBT interferometry is
now being applied in study of boson atomic beams as well [22], as we discuss
in Sec. 10.

Eventually, we will describe HBT measurements in terms of the two-
particle correlation functions of the emitted identical particles. It is more
intuitive, however, first to study the problem in terms of particle wave func-
tions. To be specific we focus on pions, although the discussion is quite
general.

How does one describe quantum mechanically the set of pions emitted
emitted in a nuclear collision? Even in the best of all possible worlds —
where one knows the exact wave function of the two colliding nuclei, and
knows exactly how the quantum mechanical evolution operator does its job
to produce the final system as a coherent superposition of well defined pure
quantum mechanical states Ψ(1, 2, . . . ,N) of N particles — the subset of
pions emitted is described by a mixed quantum state. Quite generally, any
subset of particles in a pure state is described by a mixed state, even, e.g.,
for the electron in the ground state of a freely moving hydrogen atom. The
single particle density matrix for pions of a given charge at equal time is
given by

〈π†(r, t)π(r′, t)〉 =

∫

d3r2 · · · d3rnΨ
∗(r, r2, · · · , rN , t)Ψ(r′, r2, · · · , rN , t) ,

(13)

where π(x) is the operator destroying a pion of the given charge at point
x = (~r , t).

If Ψ is a product of single particle wave functions, then 〈π†(x)π(x′)〉
factors into a product of single particle states, φ∗(x)φ(x′). In general the
single-pion correlation function does not factor, even when the pions are no
longer interacting, but it can be represented as a sum over a collection of
single particle states φi:

〈π†(x)π(x′)〉 =
∑

i

fiφ
∗
i (x)φi(x

′) , (14)

where the fi give the probability of finding the pion in single particle state
i. For example, the probability of finding a pion at point 1 is given by
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∑

i fi|φi(1)|2. Only if the pion part of the state Ψ factors out in the form
of a product of the same single particle states for all the pions — a Bose–
Einstein condensate — will single pions be in a pure state. The mixed single
pion state always has finite entropy, −∑

i (fi ln fi − (1 + fi) ln(1 + fi)).
The closest one can come to describing pions as little bullets is to pic-

ture the single particle states making up the mixed ensemble of pions as
wavepackets with almost well defined momenta and energies, limited by the
uncertainty principle. We picture the collision volume as made up of many
sources of pions; whether the sources are fragmentation of strings, or in the
language of low energy nuclear physics individual nucleon–nucleon collisions,
the sources are localized to within a distance R which is less than the size of
the entire collision volume, and the emission process is temporally localized
to within a time τ . Thus the individual components of momentum, ~p , and
energy, εp, of the emitted particles are uncertain to within

∆pa &
~

R
, a = x, y, z

∆εp &
~

τ
. (15)

A pion nominally of momentum ~p emitted from a source at the origin in
space and time would have an amplitude to have four-momentum q = (εq,
~q ) that is roughly Gaussian,

A(q) ∼ e−(~q−~p )2R2/2e−(εq−εp)2τ2/2 , (16)

and in space-time the particle would be described by a wavepacket

φ~p (x) =

∫

d3q

(2π)3
eiqx

2εq
A(q) . (17)

How does the packet evolve in time after leaving the source? Assume
that the collision takes place, and the particles emerge, into vacuum. (In real
life secondary scattering on other atoms in the target and also scattering in
air are both very important effects, to which we return in Sec. 8.) The trans-
verse spatial spread, perpendicular to ~p , is determined by the uncertainty
in transverse velocity, which for for relativistic particles (εp ≈ p) is:

∆v⊥ =
∆p⊥
εp

∼ 1

pR
. (18)

The spread in longitudinal velocity is

∆vL = ∆

(

pL

εp

)

=
∆pL

γ2εp
∼ 1

γ2pR
, (19)
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where γ = εp/m is the Lorentz factor, and m is the pion mass. The pres-
ence of the factor γ2 reflects the fact that the more relativistic the particles
become the closer to the speed of light the packet moves, with vanishing
spread in longitudinal velocity. The transverse size of the wavepacket after
travelling a distance L is thus ∼ L/pR, while its thickness is ∼ L/γ2pR.

To be specific, consider a 1 GeV pion (γ = 7) produced within an initial
radius of 10 fm travelling to a detector 10 meters from the source. Then
the transverse spread of the wavepacket is about 20 cm, while the thickness
of the packet grows to half a centimeter. Pions emerge in rather extended
pancake-like states. The characteristic time for such a pion wavepacket to
cross a point at the distance of the detector is ∼ 10−11 sec. Smaller source
sizes lead to even larger spreads in the pion wavepackets. Photons would
have a similar transverse spread; however, the thickness of the wavepacket
would not grow.

5. Detector response

Let us now turn to the question of the detection of particles in such
wavepacket states by a magnetic spectrometer. In the “bullet” picture, the
particle travels along a classical trajectory, excites an atom in the detector,
which determines the direction of its momentum, and begins to make a track
(or in emulsion makes a spot on photographic film); the particle continues
on, producing a curved track in the spectrometer, from which one deduces
the magnitude of its momentum. But, in fact, the particle has a distribution
of probability amplitudes, wherever its wavepacket φ is non-zero, of where
it makes the first spot in the spectrometer. A particle of mean momentum ~p
can, because of the transverse momentum uncertainty, be detected anywhere
within the range of momenta ∆p⊥ around ~p contained in its wavepacket.
After the initial collision in the detector, a much more narrowly focused wave
packet emerges. (If one does not actually do the measurement, the state
that emerges is a mixed state corresponding to all possible points where the
incident packet can excite a detector atom.) The narrowed packet continues
through the magnetic field, and the subsequent collisions it makes selects its
energy. One measures momentum by measuring a sequence of positions in
the detection.

Consider the measurement of the momentum of an incident particle in
state φi(x). The probability that it makes the first single excitation of an
atom in the detector at point A and continues to produce a track corre-
sponding to measuring its momentum to be ~k is then

P~k
(A; i) =

∫

dxdx′eikxφ∗i (x)sA(x, x′)e−ikx′

φi(x
′) . (20)
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Here the detector atom response function, s, is localized in r and r′ about
the atom at A; it also extends over an interval in t− t′ which is the charac-
teristic time that the detector analyzes the amplitude and phase variation
of the incident wave, of order 10−16 sec ∼ ~/(10 eV), the inverse of a charac-
teristic atomic excitation energy. This time is much shorter than the typical
nanosecond scale resolution time of a detector, the time it takes to build
up a million-fold cascade of electrons3. More generally, the probability of
detection of a pion of given charge at A is given by

P~k
(A) =

∫

dxdx′eik(x−x′)sA(x, x′)〈π†(x)π(x′)〉 , (21)

where 〈π†(x)π(x′)〉 is the single-pion correlation function.
Consider next the detection of two independent particles. The ques-

tion is why, if one detector lights up, do nearby detectors tend to have
greater probability to light up than detectors further away — the HBT effect.
Suppose first that the two particles are incident in orthogonal wavepackets
φi and φj . The symmetrized two-particle wave function is φ(~r ,~r ′, t) =

(φi(~r , t)φj(~r
′, t) + φi(~r

′, t)φj(~r , t)) /
√

2. The probability of a joint detec-
tion by a detector atom at A of a pion that continues to make a track
corresponding to momentum ~k, and by a detector atom at B of a second
pion that continues to make a track corresponding to momentum ~k ′, is then
given by

P~k ,~k′ (A,B; i, j)

=

∫

dxdx′′eik(x−x′′)sA(x, x′′)

∫

dx′dx′′′eik′(x′−x′′′)sB(x′, x′′′)

×
(

φi(x)φj(x
′) + φi(x

′)φj(x)
)∗ (

φi(x
′′)φj(x

′′′) + φi(x
′′′)φj(x

′′)
)

= P~k
(A; i)P~k ′(B; j) + P~k

(A; j)P~k ′(B; i)

+A~k
(A; i, j)A~k ′(B; j, i) + A~k

(A; j, i)A~k ′(B; i, j) , (22)

where

A~k
(C; i, j) =

∫

dxdx′′eik(x−x′′)sC(x, x′′)φ∗i (x)φj(x
′′) . (23)

The first term in Eq. (22) is the probability of the particle in state i being
detected at A times the probability of the particle in state j being detected
at B, and the second is the same with i and j interchanged. These are the
normal terms.

3 A detailed discussion of the role of the detectors is given in Popp’s thesis [23], and in
Ref. [24].



1854 G. Baym

The final two terms in Eq. (22) are the enhancement of the detection
probability — the HBT effect. As we see, in order to have enhancement,
it is necessary that both wavepackets, i and j, overlap in the detector at
A during the time that the detector is doing quantum mechanics on the
incoming system, and similarly that they also must overlap in the detector
at B (but note that the wavepackets do not have to be present in both
detectors simultaneously). The presence of the wavepackets simultaneously
in each of the detectors is the reason the detectors produce more signal when
they are close to each other4.

The maximum transverse separation d of the detectors that will produce
an HBT signal is essentially the transverse size of a given wavepacket, L/pR,
the wavelength divided by the angular size of the source as seen from the
detectors, where again L is the distance from the source to the detector, R
is the size of the source, and p is the average particle momentum. The scale
of relative momenta q for which one finds a signal is q/p = d/L ∼ 1/pR,
and thus q ∼ 1/R, the standard HBT result. As we see from this argument,
the HBT effect directly measures the width of the wavepackets at the first
detection. This width is in turn determined by the uncertainties in the
momentum distribution at the time that the wavepacket is no longer affected
by strong interactions with the other particles in the collision.

Generally the amplitudes, Eqs (16) and (17), of the wavepackets, A(q),
vary slowly in q on an atomic scale, ∼ 1 KeV/c. In this case the overlap
integral (23) is not sensitive to the detection time scales, ∼ 10−16 sec, and
one finds a correlation function:

C(p, p′) = 1 +
|∑i fiA

∗
i (p)A

∗
i (p

′)|2
∑

i fi|Ai(p)|2
∑

j fj|Aj(p′)|2
, (24)

where fi is the single pion probability in the ensemble, Eq. (14).
However, if a particle is delayed in emission by more than the detection

time scale, the HBT correlations between that particle and one produced
directly will be suppressed. A simple example in heavy-ion collisions of
this effect is in the correlation of π− produced in Λ decay, Λ → π− + p,
with directly produced pions. Because the Λ travels more slowly than a
directly produced pion of the same rapidity as one emitted in the decay,
the pion from decay will lag the directly produced one by a time ∆t. To

4 Imagine that the detection at A occurs before the detection at B. Then one may
ask how both original wavepackets can be at the second detector, since the first
detection “reduces” the wavepacket of the detected particle. From this point of view
the amplitude for detection of a particle at B is proportional to the amplitude, φj(B),
for it to be in state j at B times the amplitude, φi(A), for the other particle in state
i to have been detected earlier at A, plus the same product with i ↔ j. The resulting
joint probability is the same as Eq. (22). I thank J. Walcher for raising this question.
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estimate this effect, we note that a π− emitted in the forward direction
has rapidity y0

π ≈ 0.67 in the Λ frame, and that a Λ of rapidity y travels
on average a distance τΛ sinh y before decaying, where τΛ is the Λ lifetime.
Thus ∆t = τΛ/(cosh y + sinh y/ tanh y0

π), which for a Λ of typical rapidity
3 is ∼ 0.037τΛ = 9.7 × 10−12 sec, much longer than the detector timescale.
Pions emitted in other than the forward direction will have an even greater
time lag.

As the above discussion makes apparent, the enhanced signal is not a
consequence of special preparation at the source, such as a particle of a
given momentum inducing emission of other particles of similar momentum,
as in a laser. (In fact, a coherent source such as a laser would not give an
HBT signal.) Clearly, in the stellar case there can be no such connection
between emission processes on opposite sides of the star, and yet photons
from opposite sides give an HBT enhancement. The effect is a property
of the detection. Furthermore, if two stars, S and T , which are at very
different distances from the Earth, are approximately along the same line
of sight, Fig. 7(a), one will see HBT correlations between a photon from S
and a photon from T . Of course the emission times have to be different
in order that the two photons arrive at each of the detectors at the same
time. (Even in measuring a single star one correlates earlier emitted photons
from the stellar rim with later emitted photons from the front surface.)
The HBT correlations between photons from the two sources as a function
of detector separation, d, sketched in Fig. 7(b), would have an oscillatory
term characteristic of the angular separation of the two stars (cf. Eq. (6),
modulated by a broader Gaussian characteristic of the angular size of an
individual star. By comparison, a single bright star, T , surrounded by a
halo of dim stars (an average over a distribution of stars S), would yield a
correlation function, Fig. 7(c), with a rise proportional, for d. d2, to the
inverse of the angular size of the central star λ/d2, plus a much more narrow
rise, for d. d1, inversely proportional to the angular size of the halo. As an
exercise, sketch the correlation function produced by two lasers which are
mutually incoherent, rather than the two stars.

That the HBT effect is not a property of production, but rather is a
property of detection is well illustrated by the following experiment. Imag-
ine, as in Fig. 8, that RHIC, the BNL heavy-ion collider, sends a pion into
a far away particle detector array, and that by using the pionic analog of a
half-silvered mirror, we reflect a pion from CERN into the same detector ar-
ray, so that it arrives at the same time as the pion from RHIC. As long as the
wavepackets of the pions overlap sufficiently that the interference amplitudes
A at the detector atoms are non-zero, one will see an HBT enhancement! As
this experiment illustrates, the HBT effect does not depend on the history
of the particles. What matters is the form of the wavepackets when they
arrive at the detectors.
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Fig. 7. (a) Two stars, S, and T , along nearby lines of sight from the earth; (b)

schematic of HBT measurement of correlated intensity from the two stars; (c)

schematic of HBT measurement a bright star surrounded by a halo of dim stars.

RHIC

CERN

Detectors

Fig. 8. Detection of the HBT effect between a pion from RHIC and a pion from

CERN.
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6. Correlation functions

Let us now turn to describing the HBT effect in terms of the correlations
of the sources of pions in a collision. To generalize Eq. (22), we may write
the joint probability of detection at the detectors at A and B in terms of
the two-pion correlation function 〈π†(x)π†(x′′)π(x′′′)π(x′)〉 as

P~k ,~k′ (A,B)

=

∫

dxdx′eik(x−x′)sA(x, x′)

∫

dx′′dx′′′eik′(x′′−x′′′)sB(x′′, x′′′)

×〈π†(x)π†(x′′)π(x′′′)π(x′)〉 . (25)

The two-pion correlation function 〈π†(1)π†(2)π(3)π(4)〉, where the integers
stand for space-time points, is the amplitude for starting in a state of the
system, removing a pion at 4, then removing a second pion at 3, adding a
pion back at 2, adding another back at 1, and returning to the initial state.

Consider first a system of N free bosons that is completely Bose–Einstein
condensed, or the photons produced by a laser. For such a system all the
particles, or photons, are in the same particle state φ(x). Then the correla-
tion function completely factors. The amplitude for removing a particle at
a given point 4 is simply proportional to the wave function φ at the point,
while the amplitude for adding a particle is proportional to φ∗ at the point.
In this case the single-particle correlation function is

〈π†(1)π(2)〉 = Nφ∗(1)φ(2) (26)

and

〈π†(1)π†(2)π(3)π(4)〉 = N2φ∗(1)φ∗(2)φ(3)φ(4)

= 〈π†(1)π(4)〉〈π†(2)π(3)〉 . (27)

Such a source is coherent 5.
The correlations of particles from a thermal source, e.g., a black-body

cavity, are quite different. For free particles, the mean number of particles
of energy ε is given by 〈nε〉 = 1/(eβ(ε−µ) − 1), while the fluctuations are
given by

〈n2
ε〉 − 〈nε〉2 = 〈nε〉(1 ± 〈nε〉) , (28)

where the upper sign is for bosons and the lower for fermions. (The fermion
result follows trivially since n can only equal 0 or 1.) Translated back into a

5 Taking Poisson statistics for the distribution of the number n of photons in a laser
beam more carefully into account leads to the same result (27), since 〈n(n−1)〉 = 〈n〉2.
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statement about the correlation function, one finds the expected factorized
form for a thermal ensemble:

〈π†(1)π†(2)π(3)π(4)〉 = 〈π†(1)π(4)〉〈π†(2)π(3)〉 ± 〈π†(1)π(3)〉〈π†(2)π(4)〉 ,
(29)

where π here represents either a Bose or Fermi field. This equation says
that if one removes two particles at 4 and 3, one can come back to the same
state by either replacing the first with a particle at 1 and the second at 2
(first term), or the first at 2 and the second at 1 (second term). In the boson
case, when 3 = 4 and 1 = 2, the amplitude for removing two particles is
just 2〈π†(1)π(4)〉2. The extra fluctuations — the factor of 2 here, or more
generally the second term on the right side of Eq. (29) — are the source of
the HBT interferometry effect. The maximum HBT effect occurs when the
correlation function factorizes in this fashion. Then one describes the source
as chaotic.

The source need not be thermal to factor this way. The result (29) always
holds for non-interacting fermions, while for bosons it is sufficient that no
single particle mode i be macroscopically occupied, i.e., that all 〈ni〉 are
≪ 1. The basic reason one expects the correlation function in heavy-ion
collisions to factorize as in Eq. (29) is that the pions undergo considerable
rescattering in the hot environment of the collision volume; the key is the
destruction by rescattering of phase correlations among the pions from the
production process6.

It is useful to relate the pion correlation functions to correlations of the
sources of the pion field. The freely propagating field π(x) measured at the
detector is produced according to the field equation

(22 −m2
π)π(x) = J(x), (30)

where J(x) is the source of the field at the last collision. Then

π(x) =

∫

dx′D(x, x′)J(x′) =

∫

d3k

(2π)3
eikx

2iεk

∫

dx′e−ikx′

J(x′) , (31)

where D is the free pion Green’s function, and the latter form holds in the far
field. The single pion correlation function is related to the source correlation
function by

〈π†(x)π(x′)〉 =

∫

dx′′dx′′′D∗(x, x′′)D(x′, x′′′)〈J†(x′′)J(x′′′)〉 . (32)

6 A simple example that violates Eq. (29) are the correlations among pions radiated
by a weakly interacting gas of nucleons.
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Generally 〈π†(x)π(x′)〉 can be written in a factorized form as a sum of
wavepackets as in Eq. (14).

The measured singles distribution of pions is then given in terms of the
source correlation function by

εp
d3n

d3p
=

d3n

d2p⊥dy
=

1

2

∫

dxdx′eip(x−x′)〈J†(x)J(x′)〉 , (33)

and the measured pair distribution by

εpε
′
p

d6n

d3pd3p′

=
1

4

∫

dxdx′eip(x−x′)dx′′dx′′′eip′(x′′−x′′′)〈J†(x)J†(x′′)J(x′′′)J(x′)〉 .

(34)

In the following let us assume a chaotic source, so that

〈J†(x)J†(x′′)J(x′′′)J(x′)〉
= 〈J†(x)J(x′)〉〈J†(x′′)J(x′′′)〉 + 〈J†(x)J(x′′′)〉〈J†(x′′)J(x′)〉 ; (35)

then the pair distribution function becomes

εpε
′
p

d6n

d3pd3p′
=

1

4

∫

dxdx′dx′′dx′′′eip(x−x′)eip(x′′−x′′′)

×〈J†(x)J(x′)〉〈J†(x′′)J(x′′′)〉
×

[

eip(x−x′)eip′(x′′−x′′′) + eip(x−x′′′)eip′(x′′−x′)
]

. (36)

We see that the HBT correlation function, defined by

C(q) =
d6n/d3pd3p′

(d3n/d3p)(d3n/d3p′)
, (37)

where ~q = ~p − ~p ′ (and with implied separate averages over the center of
mass coordinates of the numerator and denominator, cf. Eq. (1)), measures
the structure of the current-current correlation function. Note that the
information it provides is on the nature of the source of particles after the
last strong interactions, when the particles begin to stream freely towards
the detectors.

The correlation function 〈J†(x)J(x′)〉 contains two length, and time,
scales. The range of the center of mass variables, X = (~r+ ~r ′)/2, (t+ t′)/2,
are on the order of the size of the collision volume, R ∼ 10 fm, and the
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duration of the collision, τ , also on the order of 5–10 fm/c. On the other
hand, the dependences in x−x′ measure the space-time extent of the region
in which the phase at a point x′ is coherent with the phase of the current
at x, a region of size, ξc and τc in space and time. The lengths ξc and τc,
which determine the falloff of the singles distribution, Eq. (33), are typically
on the order of one fm in space and one fm/c in time, much shorter than
the range in the center of mass variables.

Such behavior is illustrated by the factorized form for 〈J†(x)J(x′)〉,

〈J†(x)J(x′)〉 = e−(~r +~r ′)2/8R2

e−(t+t′)2]/8τ2

g(x− x′) . (38)

The singles distribution, from Eq. (33), is then

εp
d3n

d3p
∼

∫

dxeipxg(x) , (39)

and the two-particle correlation function, assuming a chaotic source, is

C(q) = 1 + e−~q 2R2

e−q02
τ2 (d3n/d3K)2

(d3n/d3(K + q/2))(d3n/d3(K − q/2))
, (40)

where K = (p+p′)/2. As we see from this equation, the length measured in
HBT is modified from the length, R , governing the center of mass behavior
of the current–current correlation function, 〈J†(x)J(x′)〉, due to the final
factor, the ratios of the singles distributions.

A particularly simple and illustrative model is the following. Assume
that the particle production is described by a distribution of sources of size
Rs, τs, at space-time points xs, each producing pions in wavepackets of mean
momentum ~p ,

φp(x− xs) =

∫

d3k

(2π)3
eik(x−xs)

2εk
e−(p−k)2R2

s/2, (41)

with probability f(~p ). The spread in momenta in the individual states φp(x)
is of order ~/Rs. If the sources are Gaussianly distributed in space and time
over a region of size R0, τ0, then from Eq. (14) the pion correlation function
is,

〈π†(x)π(x′)〉

∼
∫

d3p

(2π)3
f(p)

∫

d4xse
−r2

s/2R2
0e−t2s/2τ2

0 φ∗p(x− xs)φp(x
′ − xs) . (42)

Carrying out the xs integrals explicitly, one readily finds that this model is
the same as that with a source of the form (38), where

R2 = R2
0 +R2

s/2 , τ2 = τ2
s + τ2

0 /2 , (43)
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and

g(x) =

∫

d3p

(2π)3
f(p)e−ipxe−x2/4R2

0 . (44)

The details of the individual wavepackets are all subsumed in the current–
current correlation function. As this model illustrates, the length scale de-
scribing the center of mass of the current correlation function is the size of
the distribution of sources, plus a correction from the size of the individual
sources.

In fact, this latter correction is countered by the correction from the
singles distributions in Eq. (40). If we assume, solely as a mathematically
simple example, that d3n/d3K ∼ e−ξ2K2

, then

C(q) = 1 + e−~q 2(R2
0+(R2

s−ξ2)/2)e−q02
(τ2

s +τ2
0 /2) . (45)

The net deviations of the measured scales R and τ from the scales of the
source distributions R0 and τ0 are of order of a few percent at most.

More generally one can define a total-momentum dependent pair source
function,

SP (X) =

∫

dxe−iPx/2〈J†(X + x/2)J(X − x/2)〉 , (46)

where P = p + p′ is the total four-momentum of the pair. For the simple
example (38), we have SP (X) = e−X2/2R2

g(P/2); note the relation to the
description (42) in terms of wavepackets produced by the source. In terms
of S, the HBT correlation function becomes [25],

C(q) = 1 +
|
∫

dXeiqXSP (X)|2
∫

dXSP+q/2(X)
∫

dXSP−q/2(X)
. (47)

This equation relates the HBT correlation function to four-dimensional Fourier
transforms of the source function SP (x). Compare with the result (24),
which gives the correlation function in terms of the Fourier transforms of
the wavepackets making up the pion distribution.

The simplest approximation is to take ξc = τc = 0, or equivalently, to
ignore the P dependence in SP (X). Then the current-current correlation
becomes a function of only one variable:

〈J†(x)J(x′)〉 → S(x)δ(x − x′) . (48)

This approximation is excellent for stars, where the emission of a photon is
coherent on the order of an atomic scale, while the size of the star is ∼ 1011
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cm. Neglecting the correlation length is not as good an approximation in a
heavy-ion collision.

With the neglect of the finite size of the correlation lengths, we find from
Eq. (33) that

εp
d3n

d3p
=

1

2

∫

dxS(x) , (49)

i.e., the singles distribution is flat in momentum. Furthermore the pair
distribution (assuming a chaotic source) becomes

εpε
′
p

d6n

d3pd3p′
=

∣

∣

∣

∣

1

2

∫

dxS(x)

∣

∣

∣

∣

2

+

∣

∣

∣

∣

1

2

∫

dxS(x)ei(p−p′)x

∣

∣

∣

∣

2

, (50)

and

C(q) = 1 +

∣

∣

∫

dxS(x)eiqx
∣

∣

2

∣

∣

∫

dxS(x)
∣

∣

2 . (51)

7. Parametrizations of data

The most straightforward way to analyze HBT data is to parametrize the
correlation function C(q) as a Gaussian in q. Expanding C(q) in Eq. (47)
for small q to second order we find

C(q) = 2 − qµqν(〈XµXν〉 − 〈Xµ〉〈Xν〉)
+qµqν(〈xµxν〉 − 〈xµ〉〈xν〉) + · · · , (52)

where

〈θ(x,X)〉 =

∫

dxdXθ(x,X)〈J†(X + x/2)J(X − x/2)〉
∫

dxdX〈J†(X + x/2)J(X − x/2)〉 . (53)

The terms in x in (52), which come from expansion of the denominator in
Eq. (47), are of relative order (ξc/R)2, (τc/τ)

2, and are often neglected in
the interpretation of the data, although, as mentioned, they can modify the
extracted sizes by a few percent. Dropping these latter terms we have

C(q) = 2 − qµqν(〈xµxν〉 − 〈xµ〉〈xν〉) + · · · , (54)

where here and below we write 〈θ(x)〉 =
∫

dxSP (x)θ(x)/
∫

dx′SP (x′). This
form suggests a parametrization [26, 27],

C(q) = 1 + λe−qµqν(〈xµxν〉−〈xµ〉〈xν〉) , (55)
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where we also introduce the chaoticity parameter λ; for a completely chaotic
source the correlation function rises up to 2 as q → 0, and thus λ = 1, while
for a completely coherent source, such as a laser, λ = 0.

Various increasingly sophisticated versions of this parametrization have
been adopted. The simplest is to write

C(q) = 1 + λe−Q2
invR2

, (56)

where Qinv is the invariant momentum difference of the two particles, Q2
inv =

(~p1 − ~p2)
2 − (εp1

− εp2
)2. Results of such a single-size analysis by NA44 for

pairs of π+ and pairs of π− produced in 200 GeV/A collisions of S on Pb
at the SPS [1] are shown in Fig. 1, and by E877 for pairs of π+, pairs of
π−, and pairs of K+ produced in collisions of 10.8 GeV/A Au on Au at
the AGS [2] in Fig. 2. This parametrization corresponds to the assump-
tion that 〈xµxν〉 − 〈xµ〉〈xν〉 = gµνR

2. Since the sign of the contribution
of the time-time component should be the same as the space-space com-
ponents a somewhat better single-size parametrization would be to assume
that 〈xµxν〉 − 〈xµ〉〈xν〉 = δµνR

2. Then

C(q) = 1 + λe−(~q 2+q02
)R2

; (57)

cf. Eq. (45).
A second level of approximation is to distinguish the space and time

dependence of the evolving system, taking a spherical fireball in space, so
that

C(q) = 1 + λe−(~q 2R2+q02
τ2) . (58)

The time τ is essentially the duration of the collision: τ2 = 〈t2〉 − 〈t〉2, and
R the radius of the collision volume: R2 = 〈~r 2〉 − 〈~r 〉2.

The next level is to try to take the evolving geometry into account,
including non-sphericity of the source and possible flow effects. Consider a
pair of particles of total three-momentum ~P and relative three-momentum
~q. Since q · P = (p− p′) · (p + p′) = p2 − p′2 = 0, we have

q0 = ~q · ~P/P 0 = ~q · ~v , (59)

where ~v is the velocity of the center of mass of the pair of particles, ~P/P 0.
Then qµxµ = ~q · (~r − ~v t), and

qµqν(〈xµxν〉 − 〈xµ〉〈xν〉) = 〈(~q · (~r − ~v t))2〉 − 〈~q · (~r − ~v t)〉2. (60)

Let us erect a three dimensional coordinate system in which the longitudinal

direction is along the beam axis, the outwards axis (the x direction) is along
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the transverse component of ~P , and the third, or side, axis is in the y
direction. In this frame vy vanishes. (Note that this coordinate system varies
with the pair of particles studied.) The ensemble of events is symmetric
under y → −y, so that cross terms involving a single y vanish. However,
the cross terms 〈zt〉 − 〈z〉〈t〉 and 〈xt〉 − 〈x〉〈t〉 are generally non-zero, and
we find

qµqν(〈xµxν〉 − 〈xµ〉〈xν〉)
= q2out(〈(x − vxt)

2〉 − 〈x− vxt〉2) + q2side(〈y2〉 − 〈y〉2)
+q2long(〈(z − vzt)

2〉 − 〈z − vzt〉2)
+2qoutqlong(〈(x− vxt)(z − vzt)〉 − 〈x− vxt〉〈z − vzt〉) , (61)

a form which suggests a parametrization of the correlation function in terms
of four radii [28],

C(~q ) = 1 + λe−(q2
outR

2
out+q2

side
R2

side
+q2

long
R2

long
+2qoutqlongR2

ol
) , (62)

where the parameters have the interpretation

R2
out = 〈(x− vxt)

2〉 − 〈x− vxt〉2,
R2

side = 〈y2〉 − 〈y〉2,
R2

long = 〈(z − vzt)
2〉 − 〈z − vzt〉2,

R2
ol = 〈(x− vxt)(z − vzt)〉 − 〈x− vxt〉〈z − vzt〉 . (63)

Note that R2
ol, although written as a square, need not be positive. It is often

convenient to analyze data, pair-by-pair, in the “longitudinal center of mass”
frame, in which Pz = 0; then qout = q0/v, and R2

long reduces to 〈z2〉 − 〈z〉2.
The three-dimensional parametrization, Eq. (63), is commonly used in in-

terpreting present HBT measurements. Typical three-dimensional analyses
of correlations of pion pairs are shown in Figs 9 and 10, in Fig. 9 correla-
tions of π+π+ from 200 GeV/A S+Pb collisions studied by NA44 [29], and in
Fig. 10 correlations of π+π+ and π−π− from 10.8 GeV/A Au+Au collisions
studied by E877 [30].

Considerable information on the development of the collision volume,
e.g., flow [31], can be extracted from the three-dimensional analyses. The
experimental dependence of the two-particle correlations on the momenta
of the particles indeed indicates that the systems are expanding. For de-
tailed discussions of the physics extracted from recent experiments, see, e.g.,
Refs [32] and [33].

Figure 11 shows NA44 data on K+K+ and K−K− correlations, pro-
jected as functions of qlong and the component qtransv of ~q perpendicular to
the beam axis [3]. Note that the chaoticity parameter λ is somewhat larger
for kaons than pions, a point which examine in the following section.
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8. Sources of chaoticity λ < 1

The chaoticity parameter, λ, is generally found experimentally to be less
than one, a reflection of intrinsic physical effects as well as experimental
difficulties. The most fundamental effect would be that the source exhibits
a level of coherence, the situation in a laser, or a form of pion or other
boson condensate. HBT measurements of pions produced from a disordered
chiral condensate in an ultrarelativistic heavy-ion collision would also show a
reduced λ [34]. However, as we noted above, rescattering by other particles in
the collision volume tends to destroy phase correlations from the production
process. Another example is the MIT atom laser [35] where magnetically
trapped and evaporatively cooled sodium atoms are extracted in coherent
states from a Bose–Einstein condensed system; since the extracted atoms do
not exhibit an HBT effect, λ would be zero. (See the discussion of HBT in
atomic beams below.)

Even if the source is completely chaotic, measurements do not necessar-
ily give λ = 1. The first reason is the simple but important problem of
contamination of the sample from misidentification of particles, e.g., an e−

or K− as a π−, so that one includes pairs of non-identical particles in the
data set.
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A second stems from unravelling the effects of Coulomb final state inter-
actions between a pair of identical charged particles. The point is that the
methods of removing effects of Coulomb interactions, which we discuss in
some detail in the following section, become more uncertain the smaller the
relative momentum difference, leading to uncertainty in λ.

The next physical effect reducing λ is the production of pions from long-
lived resonances. Such pions appear to come from sources of large radii,
which would give an HBT enhancement only at very small q. Indeed, perhaps
half of the pions produced in an ultrarelativistic heavy-ion collision come
from resonances, rather than being produced directly. Pions from short-
lived resonances, e.g., from ρ → ππ or from ∆ → Nπ, are produced well
within the collision volume and are not an issue. On the other hand, the
long-lived resonance η has a lifetime of order 1.2 Å/c, and the 3π into which
it decays would appear to be produced at a relatively enormous distance of
order Å from the collision volume. The ω goes some 24 fm, the η′ some 800
fm, etc. The result is that the collision volume is surrounded by a halo of
pions from resonances.

A small chaotic source would lead to a broad HBT correlation function,
while a very large source would lead to a correlation function with a sharp
rise only at small relative momenta. Now if one has both a small and a
large source, e.g., a partially transparent cloud in front of the sun, one
sees a combination of both, as illustrated in Fig. 7(c), where the width
of the bump closest to the origin is inversely proportional to the size of
the large source (the cloud), and the width of the broader bump reflects
the size of the small source (the sun). Figure 12 illustrates how pions from
different resonances contribute to the correlation function, here as a function
of the out component of the momentum difference, in a central CERN S–Pb
collision [36]. The estimate is based on an RQMD simulation of the collision.
Note the rise at very small relative momenta from long-lived resonances7.
However, unless one is capable of resolving the little peak at small q one
would deduce that the data goes to a value of λ less than one. The effect on
the observed λ is a reduction of ∼ 30% for pions, and ∼ 10% for kaons, since
a smaller fraction of kaons are produced by long-lived resonances. Since
the production of resonances falls off with increasing transverse momentum,
one finds in fact that the contribution of pions from resonances to the HBT
signal decreases as p⊥ of the pions studied increases.

7 The calculation assumes that the pions from resonances are described by the same
factorized form of the two-pion correlation function as the pions emerging directly
from the collision volume. However, the pions from longer-lived resonances do not
undergo any rescattering and thus reflect the statistics of the source resonances,
which can in principle decrease the contribution to the HBT effect at small relative
momenta.
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In the simple model of HBT described above we assumed well defined
wave functions propagating through vacuum. But in reality the particles
propagate through of order 1 mm of target and then, e.g., in NA44, through
15 meters of air. Let us consider the effects of secondary scattering in the
target and the intervening air. From a quantum mechanical point of view
scattering from the target and air atoms changes an initial pure state wave
function of a particle into a mixed quantum state: when a pure wave func-
tion hits the atoms in the target or air, it generates, à la Huygens, a beam of
secondary wave functions; because the atoms are disturbed, the secondary
waves become incoherent with the initial wave. The secondary interactions
produce many small angle scatterings of the particles, which have the ob-
servational effect of distorting the correlation function [37].

To see the effects of small angle scattering, it is adequate to describe
the interaction of a high energy particle with an atom of charge Z by a
screened Coulomb potential, V (r) = Ze2e−r/a/r, where a = 0.8853a0/Z

1/3

is the Fermi–Thomas radius of the atom and a0 is the Bohr radius, and
neglect elastic scatterings due to strong interaction with the nucleus. The
differential cross section of an incident particle of momentum p is given in
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the Born approximation by

dσ

dΩ
=

4p2Z(Z + 1)α2

(q2 + 1
a2 )2

, (64)

where ~q is the momentum transfer in the scattering, and the substitution
Z → Z+1 takes into account scattering by atomic electrons [38]. While the
total cross section is σ = 4πZ(Z + 1)α2a2, the effects of multiple scattering
are more accurately controlled by the transport cross section,

σt ≡
∫

dΩ(1 − cos θ)
dσ

dΩ
,

given here by

σt =
4πZ(Z + 1)α2

p2

(

ln(2pa) − 1

2

)

. (65)

In a single scattering, 〈cos θ〉 = 1 − σt/σ, so that at high energies, 〈θ2〉 ≃
2σt/σ.

Consider a particle going a distance L through a medium of atomic den-
sity na. From the multiple scattering equation one readily finds that the par-
ticle emerges with 〈cos θ〉 = e−naLσt , and more generally, with 〈Pℓ(cos θ)〉 =
e−naLσℓ , where σℓ =

∫

dΩ(1−Pℓ(cos θ))dσ/dΩ [39]. The underlying angular
distribution is more complicated, but for our present estimates we may as-
sume that the spread in angles is Gaussian: f(θ, L)θdθ ∼ e−θ2/〈θ2〉θdθ. The
mean square scattering angle 〈θ2〉 is given by the non-linear equation [38],

〈θ2〉 − 4πZ(Z + 1)α2

p2
naL ln〈θ2〉 = 2naLσ

eff
t ≡ 〈θ2〉0 , (66)

where

σeff
t =

4πZ(Z + 1)α2

p2
ln

( pa

ν1/2

)

, (67)

and the factor ν ≈ 1.32(1 + 3.34Z2α2) includes corrections to the cross
section beyond the Born approximation. The second term on the left in
Eq. (66) approximately takes into account effects of large angle scatterings,
and reduces 〈θ2〉 from 〈θ2〉0.

Let us consider as illustration the effect on a 4 GeV pion scattering
through 1 mm of Pb. Then the mean scattering angle is ∼ 2 × 10−3, which
produces a mean transverse spread in momentum, ∆p⊥, of order 8 MeV,
corresponding to a transverse deflection, ∆r⊥, of order 3 cm. Similarly, a 4
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GeV pion traversing 15 m of air (Z = 7) undergoes a mean angular deflection
∼ 0.9 × 10−3, with ∆p⊥ ∼ 3.7 MeV and ∆r⊥ ∼ 1.4 cm. The pion makes
some 103 scatterings per cm; air is remarkably opaque to pions.

The effect of these small angle deviations is to spread out the singles
distributions and the correlation function. Such secondary scattering effects
are generally accounted for in the estimated experimental momentum res-
olution. An initial distribution of single particle transverse momenta, n0

~p⊥
,

will be spread into a final distribution,

n~p⊥ ∼
∫

e−(~p⊥−~p′
⊥

)2/∆p⊥)2n0
~p ′

⊥

d2~p ′
⊥ . (68)

Similarly, two particles starting out with a given relative momentum and
undergoing random walks do not end up with the same final relative mo-
mentum. For example, two particles detected with zero relative momentum
may have actually started out at a larger momenta and have been bent in
by the air or target. An initial HBT correlation function C0(q) = 1+e−~q 2R2

0

will be spread into an observed correlation function,

Cobs(q) = 1 + λeffe−~q 2R2
eff , (69)

where the measured radius Reff is decreased from the original radius, R, by
a factor

Reff

R
=

1

[1 + 2(R∆p⊥)2]1/2
, (70)

and the chaoticity parameter is reduced from unity to

λeff =

(

Reff

R

)2

. (71)

For example, with an initial nominal radius of R = 7 fm, scattering in air
reduces the measured R by 2% and the measured λ by 3%. Including the
effect of a 1 mm Pb target, one finds a 7% reduction in the measured R and
a total reduction of λ due to secondary scattering of 16%. The effects on
HBT of secondary scattering in a thick target can be substantial; e.g., for 1
cm of Pb, λ falls below 0.4.

The astute reader may at this point have noticed a contradiction between
the picture of secondary scattering in a cloud obscuring a smaller source, the
sun say, leading to a narrower correlation function than the one that would
be produced by the sun (cf. Fig. 7(c)), and the present picture of scattering
in air, which broadens the correlation function and reduces it at the origin.
I leave the resolution of this problem as an instructive exercise.
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9. Final state Coulomb interactions

Up to now we have discussed Hanbury Brown–Twiss interferometry as-
suming that the particles travel completely independently once they leave
the collision region. In fact one measures correlations primarily among
charged mesons; the Coulomb interactions between any given pair of parti-
cles, as well as those of the individuals in the pair with the other charged par-
ticles in the system, produce important effects on the measured correlation
functions. Even though the detectors are many meters from the collision,
those that produce the enhanced signal are typically within a meter of each
other. The pions whose correlation one measures travel essentially along the
same direction and they continue to have a strong Coulomb interaction the
entire way. Disintangling these final state Coulomb interactions is a very
difficult question8.
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Fig. 13. E877 data [41] for (a) π+π−, (b) π−p, and (c) π+p, as well as comparison

(dotted lines) with the toy model, Eq. (78) for r0 in the range 3–15 fm, assuming

a bare correlation function C0 = 1, and the Gamow correction (solid line).

8 Most of the material described in this Section was developed by the author and
P. Braun–Munzinger, with J. Popp’s helpful assistance, and reported in Ref. [40].
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Fig. 14. E877 data [41] for π+π+ and (b) π−π−, together with the Coulomb cor-

rection, Eq. (78), for the same range of r0 as in Fig. 13.

Bare data, uncorrected for Coulomb interactions, brings out the situation
very clearly. Figure 13 shows the uncorrected E877 correlation function
measurements for π+π−, π−p, and π+p pairs produced in Au+Au collisions
at the AGS at 10.8 GeV per nucleon [41], while Fig. 14 shows bare data
for the π+π+ and π−π− correlation functions. The correlation function for
distinguishable particle pairs does not have the expected value of unity, while
the correlation function for identical particles does not rise up anywhere as
high as in the Coulomb-corrected data, e.g., Figs 1, 2, and 9–11. Rather,
the data for both identical particles and oppositely charged non-identical
particles are very similar.

The traditional method of correcting for final state Coulomb interac-
tions is to employ the Gamow correction. For example, in the beta de-
cay of a neutron into a proton, electron, and antineutrino, the proton and
electron are produced in a relative Coulomb state. Because the electron
and proton are attracted to each other, the amplitude for them to be at
the origin is enhanced. The decay amplitude is a bare matrix element
times the relative electron–proton Coulomb wave function, ψC(0), at the
origin. Non-relativistically, the Coulomb wave function for the relative mo-
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tion of a pair of particles of charges ze and z′e with relative momentum
~Q = (~p − ~p ′)/2 = ~q/2 at infinity, and relative velocity vrel = Q/mred, is
ψC(~r ) = ψC(0)1F1(−iη; 1; i(Qr− ~Q ·~r)), where the dimensionless parameter
η(Q) is given by

η =
zz′α

vrel/c
, (72)

and the reduced mass mred equals m/2 for two particles of mass m. Also,

ψC(0) =

(

2πη

e2πη − 1

)1/2

. (73)

The actual rate is that which one would measure in the absence of any
Coulomb effects times the Coulomb correction, |ψC(0)|2. For particles of
opposite charge the probability is enhanced, by a factor tending to 2π|η| at
small Q. On the other hand imagine a decay of a ∆++ into a proton, positron
and neutrino. The proton and positron repel each other, and thus have a
reduced amplitude to be at the origin. The Coulomb correction, |ψC(0)|2,
is less than unity in this case, and the net rate would be suppressed from
its value in the absence of Coulomb interactions, by a factor tending to
2πηe−2πη at small Q.

In making a Gamow correction in heavy-ion collisions, one assumes that
the pair of identical particles is produced in a relative Coulomb state at zero
separation, and thus the amplitude for doing so is reduced from the bare
amplitude by the factor ψC(0). The bare correlation function, C0(q), where
q = 2Q, is thus extracted from the measured correlation function, C(q), by
dividing out the assumed factor |ψC(0)|2 in the production rate:

C0(q) =
C(q)

|ψC(0)|2 = C(q)
(e2πη(Q) − 1)

2πη(Q)
. (74)

Note that as the relative momentum goes to zero, η → +∞ and ψC(0) → 0
for identical particles, and Eq. (74) yields an infinite correction.

The question is why one should assume that the Coulomb wave func-
tion at the origin should control the Coulomb corrections? For particles of
the same charge, ψC(r) falls to zero exponentially as the particles approach
each other inside the (zero angular momentum) classical turning point, rt,
defined by q2/2mred = e2/rt. Outside rt it oscillates, and describes essen-
tially classical physics. In order for the physics at the origin to be relevant,
it is necessary that the source be highly localized compared to the distance
to the turning point. However, for pions in a heavy-ion collision, rt ≃ (200
fm)/Q2, where Q is measured in MeV/c; for Q ∼ 10 MeV/c, a typical mini-
mum value, rt is only 2 fm, and smaller for larger Q. Since rt is much smaller
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than the characteristic heavy-ion radius, most of the pairs of particles ob-
served in a heavy-ion collision are in fact made at relative separations well
outside their classical turning points.

There are three relevant length scales in the Coulomb problem, the clas-
sical turning point, rt, the wavelength of the relative motion, and the two-
particle Bohr radius, a0 = 1/mrede

2 (which is 387 fm for ππ and 222 fm for
πp). For typical Q, these length scales are cleanly separated:

rt : 1/Q : a0 = 2 : a0Q : (a0Q)2. (75)

For ππ (or πp), a0Q = 1/|η| = 1.96 (or 1.13) Q/(Mev/c) ≫ 1. The classical
turning point is thus the relevant scale for Coulomb effects. These arguments
suggest that the Coulomb corrections are dominated by classical physics.

The major effect of the Coulomb interaction between the particles in
the pair, at distances large compared with rt, is to accelerate them relative
to each other. Particles of the same charge are accelerated to larger rela-
tive momenta, thus depressing the observed distribution at small Q, while
particles of opposite charge are reduced in relative momentum in the final
state, which builds up the distribution at small Q. Although these effects
are qualitatively similar those produced by the Gamow correction, they are
quantitatively rather different.

In the presence of many produced particles, the relative motion of the
particles in the pair is strongly affected by their interactions with the plasma
of other particles. The mutual Coulomb interaction of the pair becomes
dominant only when the pair has sufficiently separated from the other par-
ticles in the system that there is small probability of finding other particles
between the particles in the pair.

One can write down a simple toy model to take these effects into ac-
count, by simply neglecting the Coulomb interaction between the pair for
separations less than an initial radius r0, and for separations greater than r0
including only the relative Coulomb interaction. Since the relative motion
is in the classical region, conservation of energy of the pair implies that the
final observed relative momentum Q is related to the initial momentum of
the pair Q0 at r0 by

Q2

2mred
=

Q2
0

2mred
± e2

r0
, (76)

where the upper sign is for particles of like charge, and the lower for particles
of opposite charge. For example, for pions with r0 = 10 fm, Q2 = Q2

0 ±
20(MeV/c)2. The physics can be treated non-relativistically because in the
rest frame of the pair, one is interested in relative momenta small compared
with mc.
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Since the Coulomb interaction conserves particles and the total momen-
tum of the pair, the final distribution d6n/d3pd3p′ of relative momenta Q is
thus given in terms of the initial distribution of pairs, d6n0/d3p0d

3p′0, by

d6n

d3pd3p′
d3Q =

d6n0

d3p0d3p′0
d3Q0 . (77)

The Jacobian, with changes in relative angles ignored, is, from Eq. (76),
d3Q0/d

3Q = Q0/Q. Neglecting to good accuracy the effects of Coulomb
interactions on the singles distributions we have

C(~q ) =
q0
q
C0(~q0 ) =

(

1 ∓ 2mrede
2

r0Q2

)1/2

C0(~q0 ) . (78)

Figure 13 compares the predictions of the toy model, Eq. (78), with the
E877 data for π+π−, π−p, and π+p systems in Au+Au collisions at the
AGS [41], assuming that the bare correlation function C0 equals unity. The
dashed lines are the results of the toy model for r0 = 3 fm (rightmost curve),
9 fm, and 15 fm (leftmost curve), along with the standard Gamow correction
(solid line). Except at very small relative momenta Q. 10 MeV/c, where
effects due to the finite momentum resolution of the experiment become
visible in the data, the model gives a good account of the data for r0 in the
range of 9–15 fm. By contrast, the Gamow factor considerably overpredicts
the data for all Q shown here. Similar bare data from NA49 at CERN, for
π+π− produced in 160 GeV per nucleon Pb on Pb collisions is also well fit
by the toy model with r0 ∼ 10 − 20 fm, while again the Gamow correction
is too large, as in Fig. 13 [42].

Note that the raw correlation data for non-identical particles contains
information about the mean separation of pairs when screening effects be-
come negligible, summarized in the toy model by the parameter r0, which is
possibly Q dependent.

With the initial radius r0 extracted from the unlike-sign data, one can
then construct the Coulomb correction for like-sign particles. The Coulomb
correction factor deduced from Eq. (78) is shown for π+π+ in Fig. 14(a) and
π−π− in Fig. 14(b), for the same range of r0 (as in Fig. 13, the rightmost
curve corresponds to r0 = 3 fm). Again we see that use of the Gamow factor
implies a correction which differs significantly from that of the toy model.

Dividing the raw E877 data by the toy model correction factor, with r0 =
15 fm, we obtain the correlation function for like-sign pions (crosses) shown
in Fig. 15(a) for π+π+ and Fig. 15(b) for π−π−, which also shows the corre-
lation function (vertical bars) derived by making the standard Gamow cor-
rection. Using the Gamow factor instead of the proper Coulomb correction
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Fig. 15. Toy model calculation of C(Q) for like-sign pions (crosses), compared

with the correlation function derived by making the standard Gamow correction

(vertical bars); (a) π+π+ and (b) π−π−.

leads to a correlation function which is ∼ 30% wider, implying a correspond-
ingly reduced radius parameter. Furthermore, the shape of the “Gamow-
corrected” correlation functions have considerable non-Gaussian tails in the
range 30 < Q < 80 MeV/c. These tails do not exist in the raw correlation
function and obscure the interpretation of the data.

The length r0 gives one a measure of the scale at which Coulomb in-
teractions between the particles in the pair dominate their relative motion.
To calculate this decoupling length from microscopic models requires a non-
trivial description of many-particle screening in the high frequency reqime.
The Coulomb corrections will furthermore change character at RHIC ener-
gies, where the meson density in given events will be sufficiently large that
the Coulomb corrections remain those of a many-particle system out to much
larger distances.
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In order to make a bridge between the toy model and the Gamow correc-
tion, as a first step in constructing a more accurate accounting of Coulomb
corrections, it is instructive to review how the classical description emerges
from the full quantum-mechanical treatment of the Coulomb problem. In
the absence of Coulomb interactions (denoted by 0 here) the number of pairs
of relative momentum ~Q is given by Eq. (34):

εpε
′
p

(

d6n

d3pd3p′

)

0

=
1

4

∫

dxdx′dx′′dx′′′eiP (x+x′′−x′−x′′′)/2eiQ(x−x′′−x′+x′′′)

×〈J†(x)J†(x′′)J(x′′′)J(x′)〉 . (79)

To take into account the Coulomb interaction only between the pair of pro-
duced particles, we simply replace the relative free-particle wave functions,
eiQ(x−x′′) and eiQ(x′−x′′′), by the Coulomb wave functions, ψC(x − x′′) and
ψC(x′ − x′′′) for the relative motion for a pair of relative momentum Q at
infinity, so that

εpε
′
p

d6n

d3pd3p′
=

1

4

∫

dxdx′dx′′dx′′′eiP (x+x′′−x′−x′′′)/2ψC(x− x′′)ψ∗
C(x′ − x′′′)

×〈J†(x)J†(x′′)J(x′′′)J(x′)〉 . (80)

Pairs of low relative momentum have relatively low angular momentum,
e.g., a pair produced at 10 fm separation with relative momentum 20 MeV/c
can have at most one unit of relative angular momentum. Thus only the low
partial wave components of the Coulomb wave function enter Eq. (80) with
appreciable probability. Let us consider just s-waves in the WKB approx-
imation, which is quite good for the s-wave outside the collision volume9.
Outside the classical turning point the s-wave is

ψs
C(r) ≃ 1

rk(r)1/2Q1/2
sinφ(r) , (81)

where the local relative momentum, measuring the rate of change of phase,
φ, of the wave function, is given by

k(r) =
dφ

dr
=

(

Q2 ∓ 2mrede
2

r

)1/2

. (82)

9 The condition for validity of the approximation is |∂p(r)/∂r| ≪ p(r)2, which for

r ≪ a0, the region of interest, becomes the restriction, r&3/q3/2a
1/2

0 . For ππ (or πp)
pairs with Q > 20 MeV/c, WKB is reasonable for r down to ∼ 5 fm (or ∼ 6 fm).
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(Equation (81), with ℓ-dependent φ(r) holds as well for higher partial waves,
ℓ > 0.) The normalization of (81) agrees with (73) as r → 0, while as r → ∞,
the Coulomb wave function behaves as

ψs
C(r) → 1

Qr
sin(Qr − η ln 2Qr + δ0) . (83)

The distribution of s-wave pairs in the absence of Coulomb interactions
is

εpε
′
p

(

d6n

d3pd3p′

)s

0

=
1

4

∫

dxdx′dx′′dx′′′eiP (x+x′′−x′−x′′′)/2

×sinQ|r − r′′|
Q|r − r′′|

sinQ|r′ − r′′′|
Q|r′′ − r′′′| 〈J†(x)J†(x′′)J(x′′′)J(x′)〉 .

(84)

Then since in the region of any radius r outside the turning point the
Coulomb wave function behaves locally as a free particle s-wave of momen-
tum k(r), the s-wave pair distribution function is given by

(

d6n

d3pd3p′

)s

≈ k(r0)

Q

(

d6n

d3pd3p′

)s

0

, (85)

where the factor k(r0)/Q arises from the denominators in Eqs (81) and
(84). Consequently, C(q) ≃ C0(k(r0))k(r0)/Q, the result in Eq. (78) with
Q0 = k(r0). Doing classical physics using Coulomb wave functions is again
using a steam roller to crack a nut.

With the connection between the toy model and the Coulomb wave func-
tion we can now extend the description of Coulomb corrections to smaller
values of the source radius r0. In general, the effect of the Coulomb inter-
actions depends on the detailed structure of the source correlation function;
let us describe the localization of the source correlation function
〈J†(x)J†(x′′)J(x′′′)J(x′)〉 in both |~r − ~r ′′ | and |~r ′ − ~r ′′′ | by writing

〈J†(x)J†(x′′)J(x′′′)J(x′)〉 ≈ s(x− x′′)s(x′ − x′′′)

×(〈J†(x)J(x′)〉0〈J†(x′′)J(x′′′)〉0
+〈J†(x)J(x′′′)〉0〈J†(x′′)J(x′)〉0) , (86)

where s(x− x′) defines the effective initial separation of the pair. For small
relative momenta, the combination ψC(x)s(x) ≡ f(x) varies slowly on a
scale of the coherence length ξc. Then we find, roughly,

εpε
′
p

d6n

d3pd3p′
=

1

4

∫

dxdx′dx′′dx′′′f(w)(f∗(w) + f∗(−w))eiP (x+x′′−x′−x′′′)/2

×〈J†(x)J(x′)〉0〈J†(x′′)J(x′′′)〉0 , (87)
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where w = (x − x′ + x′′′ − x′′)/2. The integrals in this equation are suffi-
ciently involved that the Coulomb corrections would have to be extracted
numerically. However, if as an approximation we simply replace the term
f(w)(f(w) + f(−w)) by its integral over all space, we arrive basically at
Pratt’s formula [43]:

C(Q) ≃
∫

d3r(|f(r)|2 + f(r)f∗(−r))C0(Q) , (88)

for the modification of the correlation function by Coulomb interactions.
The correction to the direct term in Eq. (88) has the form

C(Q)dir =

∫

|ψC(r)|2|s(r)|2. (89)

To illustrate the transition from the Gamow correction to the toy model
let us take |s(r)|2 to be a normalized Gaussian of range r0: |s(r)|2 =
(2π)−3/2r−3

0 exp(−r2/2r20). We show, in Fig. 16, for the π+π− system, the
results of calculations of the correction term

∫

|ψC(r)|2|s(r)|2 for r0 = 1, 5,
9, and 18 fm (dash-dot curves, the highest for r0 = 1 fm, and falling with
increasing r0). As r0 → 0, the projection of the square of the Coulomb wave
function onto the source |s(r)|2 converges to the standard Gamow correction
(solid line); for r0 < 0.1 fm (not shown in Fig. 16) the difference between
the Gamow correction and a calculation with Eq. (89) is less than 0.5%. For
larger r0 values the correction rather quickly approaches the prediction of
the toy model (shown here for an initial radius of 9 fm as a dotted curve),
indicating that, for pairs originating outside their classical turning point,
the toy model provides an adequate and reasonably accurate description of
the Coulomb effects.

Let us turn next to the question of the effects of the Coulomb interac-
tions of the pair with the remaining particles. This is a difficult many-body
problem, which we greatly simplify as a first approximation by assuming
that the remaining particles can be described by a central Coulomb poten-
tial, Zeffe

2/r, where in a central collison of nucleus A with nucleus B the
effective charge Zeff is of order of the total initial nuclear charge (ZA +ZB).
This central potential accelerates positive mesons away and slows down the
negatives, effects described by the Coulomb wave functions for the potential.
The final momentum of any particle is related to the initial momentum pa

at production point ra by

ǫ(p) = ǫ(pa) ±
Zeffe

2

ra
, (90)

where ǫ(p) = (p2 + m2)1/2. (While Coulomb effects for the relative mo-
mentum can be treated non-relativistically as in Eq. (76), the individual
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Fig. 16. Transition from the toy model (dotted line, with r0 = 9 fm) to the Gamow

correction (solid line) with decreasing source size, calculated from Eq. (89) (dash-

dot curves). From highest to lowest dash-dot curves the source range r0 is 1, 5, 9,

and 18 fm.

momenta are generally relativistic.) For simplicity let us ignore quantum
mechanical suppressions or enhancements of the amplitude for particle emis-
sion, as well as possible effects of angular changes in the individual particle
orbits on the particle distributions. Then the single particle distribution is
modified by the central potential, analogously to Eq. (77), by

d3n(~p )

dp3
=
d3n0(~pa )

d3pa

d3pa

d3p
=
paǫ(pa)

pǫ(p)

d3n0(~pa )

d3pa
. (91)

Both the magnitude of the distribution as well as its argument are shifted.
Experimental observation of these effects is reported in Ref. [44].

Although the central potential shifts the singles distribution, it can-
not introduce any correlations among emitted particles that have no ini-
tial correlation in the absence of the central potential, e.g., as one usu-
ally assumes for different species or oppositely charged pions. If in the
absence of the central potential, uncorrelated particles [C(Q) = 1] are emit-
ted in independent free particle states, then in the presence of the poten-
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tial they are emitted in Coulomb states for the central potential, but still
d6n(~p , ~p ′)/d3pd3p′ = (d3n(~p )/d3p)(d3n(~p ′)/d3p′) and C(Q) remains unity.

For particles that are initially correlated as a consequence of Bose–
Einstein statistics, d6n(~p , ~p ′)/dp3dp′3 and (d3n(~p )/dp3)(d3n(~p ′)/dp′3) will
be modified both by the Jacobians of the transformations from initial to fi-
nal momenta, and shifts of argument. However, in forming C(q), the effects
of the Jacobians in the numerator and denominator essentially cancel, and
the primary effect is the shift in the arguments:

C(~q ) =

{

d6n2(~pa , ~pa
′)d3pad

3p′a
}

{

d3n(~pa )
d3pa

d3n(~pa
′)

d3p′a

} . (92)

Since positive particles are accelerated, the final momentum difference, ~q =
~p − ~p ′, of a positive pair will generally be larger in magnitude than it is
initially, while for negative pairs the final momentum difference will generally
be smaller. Thus we expect the central Coulomb potential to cause the size
of the collision volume extracted from positive pairs to be smaller than the
actual size, and that from negative pairs to be larger than the actual size. As
an illustration consider a pair of relativistic particles whose initial momenta
~pa and ~pa

′ are equal in magnitude to pa, and final momenta ~p and ~p ′ equal
in magnitude to p; then

q =

(

p

pa

)

qa ≃ qa

(

1 ± Zeffe
2/ra
pa

)

, (93)

where the upper sign refers to both particles positively charged and the lower
to both negatively charged. For Z ∼ 150, ra ∼ 7 fm and pa ∼ 300 MeV/c,
the effect is an increase for positives (and a decrease for negatives) in the
observed scale of C(Q) and decrease (or increase) in the extracted radius of
ten percent. Such a shift of the same magnitude has been observed by E877
in 10.8 GeV/A collisions of Au on Au [41]; however, NA44 recently reports
an effect in the opposite direction, in 158 Gev/A Pb on Pb collisions, in
radii as a function of charged particle multiplicity [33], indicating the need
for a more refined theory of the effect of the central Coulomb potential [45].

10. Applications in condensed matter and atomic physics

Let me finally mention briefly work on HBT in condensed matter and
atomic physics. Recently, Yasuda and Shimizu (at Tokyo University) [22]
have made the first measurement of HBT correlations in an atomic system,
observing the time correlations in laser-cooled ultracold (but not yet Bose–
Einstein condensed) beams of bosonic 20Ne atoms. The correlations in the
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beam are those expected from a thermal source, where the correlation time
is the inverse of the temperature of the beam. Indeed the HBT correlation
function begins to rise at time separations less than ∼ 0.5 × 10−6 sec to
a value a factor of two larger than at large time, corresponding to a beam
temperature ∼ 102µK. This result is very similar to the original Hanbury
Brown–Twiss tabletop experiment on photon bunching from a Hg vapor
lamp. By contrast, a measurement of HBT correlations in the MIT atomic
laser [35] would yield no such atomic bunching, because of the coherence of
the beam, but rather the correlation function would remain flat. Lack of an
HBT enhancement would indicate coherence of the beam. In general, loss
of HBT correlations would probe the onset of Bose–Einstein condensation,
not only in atomic systems, but in condensed matter systems such as the
observed Bose-condensed paraexcitons in cuprous oxide [46, 47].

Another interesting application of HBT has been in light scattering from
atoms trapped in optical lattices [48]. Jurczak et al. (at Orsay) have created
an optical lattice with an arrangement of four lasers in which they trap
atomic rubidium at a density ∼ 2×109 cm−3, filling about 10−4 of the lattice
sites. The lasers also scatter from the rubidium, and the time correlations
in the scattered light (of two different polarizations) effectively measure the
atom–atom correlation functions in the lattice. From these measurements
they are able to measure the diffusion of the loosely packed atoms in the
optical lattice. Lastly we mention that HBT has also been proposed as a
probe of the space and time structure of bubbles in sonoluminesence [49].

In summary, the technique of Hanbury Brown and Twiss, which was first
developed to measure astronomical object of sizes at least 1012 cm, has, as
we have seen, turned into a valuable tool to measure subatomic phenom-
ena on the quite opposite scale of 10−12 cm. More recent experiments have
shown its utility in atomic and condensed matter physics as well. While the
basic theory underlying the nuclear applications is established, as described
in these lectures, many effects, e.g., Coulomb interactions, possible non-
chaoticity, non-zero coherence lengths, multiple scattering, etc., introduce
various levels of uncertainity into the interpretation of the HBT measure-
ments. A better understanding of such effects remains a challenge in an
accurate connection of HBT measurements to the microscopic physics of
collisions.

These lectures are a small birthday tribute to my dear friend Wiesław
Czyż who over the years opened many worlds to me — from Zakopane
and Cracow, to the pleasures of high energy nuclear physics. I would like
to take this opportunity to express my gratitude to the organizers of the
present Cracow School of Theoretical Physics at Zakopane for enabling me
to participate in the School where these lectures were given. I would also
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like thank the members of my group in Urbana — Alejandro Ayala, James
Popp, and Benoit Vanderheyden — who are responsible for much of the
material reported here, and Michael Baym for preparing the graphics. I
am also grateful to Peter Braun–Munzinger, Henning Heiselberg, Barbara
Jacak, and Dariusz Miskowiec for many discussions of this material and for
making figures available, and to Ulrich Heinz for insightful comments on
the manuscript. This work was supported in part by U.S. National Science
Foundation Grant No. PHY94-21309.
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