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tice approach. We discuss one dimensional model of simplicial complexes
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1. Introduction

The theory of random geometries provides a useful framework to describe
a wide spectrum of problems in statistical physics ranging from physics of
polymers, membranes and domain walls, to problems where the dynamical
geometry arises as a purely mathematical object. Another area of applica-
tions of the theory is related to the quantization of the geometrical theories
like the string theory or the general relativity [1–7].

Nowadays, one can not imagine physics without the quantum theory or
the general relativity. Both theories describe physical phenomena with a
remarkable accuracy and both have proven to have great predictive power.
Each of them has its own domain of applicability and so far there is no exper-
iment which would contradict either of them. Both theories do not interfere
with each other. Theoretical consistency requires, however, that there ex-
ists a covering theory which would unify the quantum theory and general
relativity. This means that either gravity must be quantized or quantum
theory "gravitized". The formulation of such a theory is one of the greatest
challenges of theoretical physics. It attracts researchers from different areas
of physics and results in numerous independent approaches [8].
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The theory of random geometries reported here is a generalization of
the conventional Euclidean path formalism successfully used as a nonper-
turbative method in field theory. The great interest in the theory of random
geometries in the last decade was triggered by string theory (see for re-
view [9–11]). The representation of the quantum amplitudes for strings in
terms of the amplitudes for 2d gravity coupled minimally to matter fields
evolved, in parallel to the string interpretation, as a theory of 2d quantum
gravity [1, 2]. The success of the two dimensional theory [12–14] and espe-
cially of the dynamical triangulation approach [15–17] which, in particular,
allowed for addressing nonperturbative questions [18–20], and for calculating
invariant correlations [21, 22], challenged researchers to generalize the ideas
to higher dimensional gravity. The generalization was done stepwise : first
to three dimensions [23–26], then to four [6, 7, 27–30].

In this review paper we focus on the discretized approach combining the
lattice regularization with the standard concepts of critical phenomena in
statistical physics. The paper is organized as follows. After a short intro-
duction where we recall the basic concepts and the discretization scheme, in
the successive sections we discuss the statistical physics of one dimensional
simplicial complexes (branched polymers), the theory of random surfaces
and four dimensional simplicial gravity.

The model of branched polymers is solvable [31–35]. It undergoes a
phase transition [34] related to the collapse of geometry and to the appear-
ance of singular vertices [36]. An analogous phase transition is also encoun-
tered in models of random surfaces [31,40] and higher dimensional simplicial
gravity [37–39]. The mechanism of the transition can be mapped onto the
condensation of the balls-in-boxes model [36, 43, 44].

The model of dynamically triangulated surfaces is also well understood.
It has three phases : collapsed geometries, branched polymers and 2d Liou-
ville gravity [40–42]. The gravity phase has a well defined continuum limit
corresponding to the quantum Liouville field theory. The theory is ana-
lytically solvable by means of the continuum formalism [12–14] and by the
discretized approach using matrix model techniques [16,45,46]. The scaling
and universal properties of this phase are well established.

Our understanding of four dimensional simplicial gravity has improved
recently. We have gained insight into the phase structure of the model
and the mechanisms governing the behaviour of the system. Nevertheless,
we are still far from achieving the ultimate goal of the study, namely, the
determination of the relation of simplicial gravity to the continuum physics.

The basic difficulty encountered in investigating the model is the lack
of analytic methods of summing over four dimensional geometries. For the
time being the only way of studying the model is the Monte Carlo technique
[54, 55].
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By means of this method, the basic properties of the model have been
determined. We discuss the state of art and summarize the main properties
of the model in the section on four dimensional gravity. We show that the
model possesses a well defined thermodynamic limit [56–58]. We discuss
the phase structure. The model has two phases : the collapsed phase with
infinite Hausdorff dimension and the elongated phase with the Hausdorff
dimension equal two. It was believed that the phase transition between the
elongated and the crumpled phase under a variation of the gravitational
coupling constant was second order. Massive numerical simulations showed
that the transition is however discontinuous, meaning that one can not asso-
ciate a continuum physics with the critical point [51, 52]. The discontinuity
of the transition may be explained in terms of the constrained mean field
scenario [43]. A physical explanation advocated in [35, 59] is that the con-
formal mode gets released at the transition due to the entropical dominance
of spiky configurations, similarly as above the c = 1 barrier in two dimen-
sions [60–62]. According to this, if one extends the model by adding matter
fields, there may exist another phase, like the Liouville phase in two dimen-
sions, free of this instability. Indeed, recent numerical investigations of 4d
simplicial gravity interacting with vector fields support this scenario [63].

Apart from the main line of presentation we discuss the balls-in-boxes
model which serves as a mean field approximation for the dynamical lattice
models [36,39]. We also sketch ideas underlying the Monte Carlo simulations
of dynamical lattices. We end the paper with a short summary.

2. Preliminaries

One defines the partition function on the ensemble of geometries {G} :

Z =
∑

G

W [G] , (2.1)

where W [G] is a nonnegative weight function given by the Gibbs measure.
In the quantization procedure of geometrical theories, the weight is

W [G] = e−S[G] , (2.2)

where S[G] is the Euclidean action. In this case, the statistical sum (2.1)
corresponds to the quantum amplitudes. The simplest example of a model
belonging to this class is a model of random paths. The sum over random
paths gives the free particle propagator as one expects from the quantum
theory [1].

In general, the construction of the theory follows the ideas of statistical
field theory. There are however many detail differences. A standard field
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theory is defined on a manifold with an inert geometry. There is no such fixed
underlying structure which would serve as a reference manifold in the models
of random geometry. Geometrical quantities like a distance or a Hausdorff
dimension are the dynamical properties of a given ensemble, not of a single
manifold as in field theory. In field theory one defines field correlators of
the type 〈φ(x)φ(y)〉 where x, y are the points on the basis manifold. One
investigates then the behaviour in terms of the distance |x − y|. From this
behaviour one can learn about the excitations in the system. The task
is more difficult in the case of the random geometries where one cannot
fix the points x, y because manifolds fluctuate. It is even hard to define
the correlators between the pairs of points at a given distance r, since the
distance between points is a global property of the manifold. The correlation
functions can be found analytically only in few particular cases like branched
polymers [32, 33] or two dimensional pure gravity. In the latter case the
calculation requires an elaborate technique which was developed only for
this purpose [21, 22].

There are many new interesting phenomena not present in field theory,
like the geometrical collapse, the back reaction of matter fields on geometry
or the change of the dimensionality of the system.

The class of geometries which can be considered in the partition function
(2.1) is not limited to paths, surfaces or higher dimensional hyper–surfaces.
Geometry can be thought of as any set with a given metric structure such
as a diagram with a function specifying the distance between vertices.

A theory is said to be geometrical if the action S[G] is a function of
geometry only. In calculations, one usually uses redundant representations
of geometry. Redundancy manifests itself as a gauge symmetry of the ac-
tion. For random paths, for example, a path between two points a, b can
be represented as a continuous map of the unit interval onto a target space
where the path is embedded : t → x[t], a = x[0], b = x[1]. The path will
not change if one changes the map to : t → y[t] = x[f(t)] where f is a
monotonic diffeomorphism preserving the ends of the unit interval f(0) = 0,
f(1) = 1. A geometrical action will not change either: S[x[t]] = S[y[t]].
This diffeomorphism invariance corresponds to the gauge symmetry of the
representation.

In general for any representation, a set of maps which represent the same
geometry G, defines an equivalence class (gauge orbit). If one represents
geometry by a metric tensor gµν , the geometrical action must be invariant
with respect to diffeomorphism. The simplest invariants yield the Einstein-
Hilbert action :

S[gµν ] = λ

∫

ddξ
√

g − 1

16πGN

∫

ddξ
√

gR , (2.3)

where R is the scalar curvature. The symmetry of this representation di-
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vides the metric tensors into diffeomorphism classes. The sum (2.1) must
be defined in such a way that the over-counting of metrics from the same
diffeomorphism class is avoided. In general there are two strategies to do
this. Either one picks up only one representative of each equivalence class,
which is usually technically impossible, or one sums over all elements T of
each equivalence class but at the same time one divides out the volume of
the equivalence class (gauge orbit):

Z =
∑

G

W [G] =
∑

T

1

C[T ]
W [T ] . (2.4)

A practical realization of this idea was elaborated in field theory as the gauge
fixing procedure. The role of the factor 1/C[T ] is played by the Fadeev-
Popov determinant. The gauge fixing procedure was successfully carried
out for random paths and random surfaces corresponding to 2d gravity in-
teracting minimally with conformal matter with c ≤ 1 [1, 2, 12–14].

For continuous geometries, the expression (2.4) has only a symbolic
meaning. One has to express the sums in (2.4) in terms of well defined
mathematical quantities which would uniquely specify what is really meant
by the sums. To this purpose one introduces a short distance cut-off. In
the continuum approach, one develops the theory covariantly and in the
end one introduces the cut-off to compute the final covariant integrals. On
the contrary, in the lattice regularization, one introduces the cut-off at the
very beginning, before starting the whole machinery. In this way one breaks
symmetries of the continuum theory but one hopes to recover them in the
continuum limit when the cut-off is carefully sent to zero. The lattice, which
is an auxiliary construct, is eventually removed from the problem in this
limit.

The idea of a discretization is commonly used in the statistical field
theory. It is also not new in the context of geometrical models where it
is known under the name Regge calculus [64]. The Regge’s idea was to
use a piecewise linear manifold to approximate the continuous geometry.
Regge’s lattices have a fixed connectivity. Geometrical degrees of freedom
are encoded in the link lengths. This idea has proven to be very helpful
on the classical level where it is just the finite element method to solve the
classical field equations. Its applicability to define the sum (2.1) over random
geometries is, however, limited by the integration measure problem. In the
two dimensional case, the integration measure can be deduced from the
Liouville theory. It turns out that it is given by a highly nonlocal expression
involving all link variables of the triangulation [65]. In general, the measure
is not known for Regge manifolds. Any attempt to mimic the measure by
local expressions fails [66]. In other words the Regge method is well suited
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as a method to approximate Riemannian structures but not to approximate
the sum over them.

An alternative discretized approach to random geometries is based on
dynamical triangulations [15–17]. The randomness of the geometry is en-
coded in the fluctuating connectivity of the lattice. Link lengths are fixed.
The dynamical triangulations method is not as good as the Regge calculus
as an approximation of the classical equations but it is very well suited to
problem of summing over random geometries.

The basic Ansatz is that the sum over diffeomorphism classes of the
continuum approach can be regularized as a sum over equilateral triangu-
lations. The volume of the symmetry group for such a triangulation with
labelled vertices is equal to the number of possible vertex relabellings . If
we denote the labelled triangulations by T and the number of vertices of the
triangulation by N , we have C[T ] = N ! and:

∫ Dgµν

Ddiff
. . . 7→

∑

T

1

C[T ]
. . . =

∑

T

1

N !
. . . . (2.5)

If we use the non labelled triangulations T instead, the symmetry factor
C[T ] is equal to N ! divided by the number of distinct labellings of the
triangulation. For triangulations without any symmetry, the factor C[T ] is
equal one.

The sum over dynamical triangulations can be done analytically by the
matrix model technique. The results of the matrix model and the Liouville
theory agree. This is usually treated as a strong indication that the two
methods provide correct definitions of the integration measure over random
surfaces. An advantage of the lattice method is that without changing the
Ansatz (2.5) one can generalize it beyond the Liouville phase of two dimen-
sional gravity, in particular, to higher dimensional gravity.

If one applies the Regge calculus to the discretization of the Einstein-
Hilbert action (2.3) on the equilateral simplicial lattice one obtains [6, 7] :

S = κdNd − κd−2Nd−2 , (2.6)

where Nd and Nd−2 denote the number of d-simplices and (d − 2)-simplices
of the simplicial manifold. The coupling constants κ’s are related to the
couplings of the continuum action (2.3) and to the lattice spacing in the
naive continuum limit.

One can extend this discretization procedure to geometrical actions with
higher derivative terms [67,68] or actions which describe interaction of grav-
ity with some matter fields [26,27,70,71]. This discretization scheme leaves
some freedom because one can add to the discretized action terms, which
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disappear in the naive continuum limit. One should perhaps look at the dis-
crete models from a different perspective, in which the model is not viewed
as a discretization of a continuum theory but rather as a primary definition
of the theory. Then if one finds a continuum limit then one can ask what
is the underlying continuum theory related to this limit, and whether this
theory is related to gravity. In fact this is the most difficult part of the
procedure, since we do not have the experimental data. All we know about
the continuum theory is that it should reproduce general relativity in the
classical limit. This, together with the self consistency requirement, provides
the only available checks for the consistency of the constructed theory.

3. Branched polymers

The model of branched polymers provides a useful ground for testing
various ideas. It is simply and solvable. It plays a similar role for ran-
dom geometries as the Ising model for statistical field theory [31–35]. The
model undergoes a phase transition related to the change of the Hausdorff
dimension and to the collapse of geometry [34–36]. A similar transition is
also present in the models of random surfaces [40] and four dimensional
gravity [37, 38].

Branched polymer is a graph (one dimensional simplicial complex) with-
out loops. Geometry on a branched polymer is given by the geodesic distance
between vertices of the graph. The distance is defined as the number of links
of the shortest path between the points. On a tree-like graph there is only
one path joining any two points.

In the simplest case, one considers polymers whose vertices are indepen-
dent in the sense that there is no direct correlation between the branching
orders. A branching order is defined as the number of links emerging from
the vertex. The action for such a branched polymers is

S[T ] = µN [T ] −
∑

i∈T

s(qi) , (3.1)

where N [T ] is the number of vertices on a branched polymer T , µ is the
chemical potential and s(q) is a one-vertex action depending only on the
vertex order q. The sum in the second term of (3.1) runs over all vertices
of the branched polymer. The grand canonical partition function defined on
the ensemble of trees of arbitrary size, reads :

Z(µ) =
∑

T

1

C[T ]
exp

(

∑

i∈T

s(qi) − µN [T ]
)

=
∑

N

z(N)e−µN (3.2)
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and can be treated as a discrete Laplace transform of the canonical partition
function z(N), being the statistical sum over the ensemble of trees with N
vertices.

It can be shown that the coefficients z(N) grow exponentially

z(N) ∼ Nγ−3 exp(µcrN) , (3.3)

for large N . This means that the thermodynamic limit, N → ∞, is well
defined. The quantity µcr is the critical value of the chemical potential
at which the grand-canonical function has a singularity. The power-like
corrections Nγ−3 determine the type of the singularity of the grand canonical
partition function for ∆µ = µ − µcr → 0+ : Z(µ) ∼ ∆µ2−γ . The singular
part of the susceptibility defined as the second derivative of Z, behaves as

χ(µ) = Z ′′(µ) ∼ ∆µ−γ (3.4)

at the critical µ. The exponent γ is called a susceptibility exponent or
entropy exponent. The exponent γ is generally used to determine the uni-
versality class of models of random geometries [12–14].

The susceptibility is related to the puncture-puncture correlation func-
tion defined as [22, 32] :

G(r, µ) =
∑

T

1

C[T ]
e−S[T ]

∑

a,b

δ(r − d(a, b)) . (3.5)

The internal sum runs over all pairs of points. The delta function selects
contributions from pairs at a distance r. Integrated over r, the two-point
correlator gives:

χ(µ) =
∑

r

G(r, µ) . (3.6)

For large r, the correlation function G(r, µ) falls off exponentially and this
is a general feature of models of random geometries [72]. One associates a
mass with the exponential fall-off:

m = − lim
r→∞

ln
G(r, µ)

r
. (3.7)

It is physically important if the mass scales to zero when ∆µ = µ − µcr →
0+. If it does, the geometry has a well defined Hausdorff dimension. The
dimension is related to the mass critical index given by the scaling formula
[72] :

m ∼ ∆µ1/dH . (3.8)
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If it does not scale, the geometry is collapsed, as we show later. To see
that the exponent dH may be indeed identified with the Hausdorff dimen-
sion in the scaling case, it is convenient to consider a counterpart of the
puncture-puncture correlator (3.5) in the canonical ensemble with a fixed
size N . Similarly to the partition functions (3.2) one can relate the correla-
tion functions by the discrete Laplace transform :

G(r, µ) =
∑

N

G(r,N)e−µN , (3.9)

where G(r,N) is the correlation function in the canonical ensemble. Defined
this way, G(r,N) has an unnatural normalization proportional to z(N). One
can get rid of it, by defining the normalized correlator :

g(r,N) =
G(r,N)

G(0, N)
=

1

N
〈
∑

a,b

δ(r − d(a, b))〉N , (3.10)

where the averaging 〈. . .〉N is over the ensemble of trees of size N . Now
we are interested in the large N behaviour of the function g. This be-
haviour can be extracted from the inverse Laplace transform of G(r, µ) ∼
exp(−∆µ1/dH r), (3.5) for ∆µ → 0. Small ∆µ corresponds to large N ∼
1/∆µ in the transform, whence the normalized correlation function g(r,N)
must be a function of the argument r/N1/dH for large N . The function
g(r,N) measures the average number of points at a distance r from a ran-
dom point. Summed over r, g(r,N) gives the number of all points N . If
one inserts the universal argument r/N1/dH one obtains, that the average
distance between points :

〈r〉 =
1

N

∑

r

r g(r,N) (3.11)

behaves for large N as

〈r〉 ∼ N1/dH . (3.12)

The last formula relates the size of the system N to the typical linear ex-
tension of the system, naturally leading to the interpretation of the mass
exponent dH (3.8) as the Hausdorff dimension.

Since the model is solvable, the critical indices : the susceptibility expo-
nent γ and the Hausdorff dimension dH can be calculated.

In practical calculations one considers the ensemble of planar rooted
trees [34]. Rooted trees have one marked vertex with one attached link.
The planarity means that trees are drawn on a plane. The existence of the
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root and the planarity uniquely specify the symmetry factor C[T ]. One can
find a representation where C[T ] = 1.

The grand-canonical partition function (3.2) is given by the solution of
the equation [31, 34] :

µ = K(Z) = log

∞
∑

q=1

p(q)Zq−2 (3.13)

which is to be solved for Z. The series coefficients p(q) are related to the
one-vertex action : p(q) = e−s(q). A vertex with order q contributes p(q)
to the total weight of the tree. The weights p’s are nonnegative in unitary
models. Vertices with the order q are forbidden if p(q) = 0. One requires
p(1) > 0 in order to have the endpoints in the tree. In order that the polymer
could branch, at least one weight must be positive for q ≥ 3.

The solution of the equation (3.13) for Z is given by the inverse function
of K : Z = K−1(µ). In fact, without inverting one can find the singularities
of Z. Namely Z is singular at a certain µcr when either the derivative of the
inverse function is zero, K ′ = 0, or the inverse function K is itself singular
at Zcr = Z(µcr) [34].

In the former case one gets :

µ = K(Zcr) +
1

2
K ′′(Zcr)(Z − Zcr)

2 + . . . (3.14)

which gives Z ∼ ∆µ1/2, where ∆µ = µ−K(Zcr). It follows that γ = 1/2, as
seen from the comparison with the singularity Z ∼ ∆µ1−γ of the partition
function1. This is a generic situation since the function K has a minimum for
any choice of weights p’s fulfilling the general assumptions discussed before.

The function K is singular when the series (3.13) has a finite radius
of convergence. For example, for the weights, which for large q behave as
p(q) ∼ q−β, the series has a singularity (1 − Z)β−1 at Z = 1. When β > 2,
the situation is interesting since there are three different possible behaviours
of the singular part of the grand canonical partition function. Let Z0 be the
value at which the derivative of K vanishes : K ′(Z0) = 0. Now we have
two special points Z = Z0 and Z = 1. When Z0 < 1, the singularity of
Z comes from inverting K around Z0. In this case one obtains the generic
value γ = 1/2, as previously. When Z0 > 1 the singularity of Z comes from
the singularity of K at Z = 1. In this case Z ∼ ∆µβ−1 and hence γ = 2−β.
This is a semi-generic situation. Finally, in the marginal situation when

1 In a rooted ensemble, like in the one considered here, one vertex is fixed by the root.
Therefore to obtain susceptibility χ one needs to differentiate Z with respect to µ
only once and not twice as in (3.4) where Z is partition function for a non-rooted
ensemble.
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Z0 = 1, the singularity of the partition function is Z ∼ ∆µ1/(β−1) when
2 < β < 3 or Z ∼ ∆µ1/2 otherwise. Hence the exponent γ is equal to
(β − 2)/(β − 1) or 1/2, respectively.

It is worth noting that the situation will not change if we add an expo-
nential prefactor to the weights p(q) : q−β → e−κqq−β. Namely, due to the
Euler relation, the sum of the vertex (branching) orders over the non-rooted
vertices is :

∑

i

qi = 2N − 1 , (3.15)

and therefore the exponential term can be absorbed in the cosmological term
e−µN (3.2) by a redefinition of the chemical potential µ → µ + 2κ. After
the redefinition the weights have again the original form p(q) ∼ q−β and we
obtain the previous situation.

The generic phase of branched polymers has many universal properties.
In particular the normalized puncture-puncture correlation function has for
large N the form :

g(r,N) =
√

Na ḡ(
ar√
N

) , (3.16)

where ḡ is the universal function given by the formula :

ḡ(x) = 2xe−x2

(3.17)

of the universal argument x = ar/N1/2. The form of the function ḡ does not
depend on the choice of p’s as long as the system is in the generic phase. The
universality tells us that the local properties like the branching distribution
do not affect the long range behaviour. The change of the weights p’s can
be compensated by the change of only one parameter a in the correlation
function.

The Hausdorff dimension is dH = 2, as follows from the universal scaling
x = ar/N1/2. Finite size calculations show that the scaling is weakly broken
for finite N and one should use a shifted argument x = a(r+δ)/N1/2 [33,50].

In the marginal situation the form of the correlation function changes and
so does the universal parameter [35]. In this case the Hausdorff dimension
is dH = 1/γ which is dH = (β − 1)/(β − 2) for 2 < β ≤ 3 or dH = 2
otherwise. In the semi-generic situation the normalized correlation function
acquires a mass term e−mr with a non-vanishing mass in front of the scaling
piece. The mass m does not depend on N . This means that the average
distance (3.12) is of the order 1/m :

〈r〉 ∼ 1

m
∼ const. (3.18)
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and does not scale with N . This may be interpreted as an infinite Hausdorff
dimension. This phase is called a collapsed phase since it is dominated by
short branched polymers which do not grow, contrary to the generic situation
dominated by the elongated polymers.

The collapse of the geometry is a result of the appearance of singular
vertices on branched polymers [34–36]. A singular vertex is a vertex with an
order which grows extensively with N . The mechanism of the appearance of
the singular vertices can be described in terms of the balls-in-boxes model
discussed in the next section. The results of the discussion are summarized
in the Table I.

TABLE I

Critical exponents γ and dH for the three phases of the branched polymers model.

phase γ dH

generic 1/2 2

marginal(β ≤ 3) 1/2 2

(2 < β < 3) (β − 2)/(β − 1) (β − 1)/(β − 2)

collapsed(β > 2) 2 − β ∞

To end this section let us briefly discuss the topological aspect of the
model [35]. One may extend the class of graphs to the ensemble of graphs
with loops. Such graphs can be generated by the perturbative expansion of
a zero dimensional field theory with a potential containing terms φq. The
coefficients in front of the terms are related to the weights p(q). The tree
diagrams discussed so far come from the leading term in the loop expansion
corresponding to the classical tree level. The number of diagrams with an
arbitrary number of loops is not exponentially bounded so that the entropy
is not an extensive quantity and there is no thermodynamic limit. There
are some ideas how to cure the problem as discussed below [18–20,35].

If one wants to sum over topologies in (3.2) one has to consider topolog-
ical terms in the action. The number of loops L is the simplest topological
term for graphs. The partition function can be written as :

Z(~, µ) =
∑

L

~
LZL(µ) , (3.19)

where ZL is the partition for the sub-ensemble with L loops, and ~ is a
coupling constant for the topological term. The nonexistence of the expo-
nential bound for the number of all diagrams implies that the series is not
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summable. It is not even Borel summable. The radius of convergence is
zero and therefore there are functions which can be added to Z without
changing the coefficients ZL of the series. Such functions are called non-
perturbative modes. In principle the number of nonperturbative modes is
infinite. The idea is to reduce it as much as possible. This is done by the
loop expansion of the scalar field theory generating the asymptotic series
(3.19). This series incorporates contributions from diagrams with any num-
ber of loops. One can show that in the double scaling limit ~ → 0 and
t = ∆µ3/2/~ = const, the susceptibility χ(t), being the derivative of Z with
respect to µ, is given by the Riccati equation in the scaling argument t [35].
This equation uniquely determines all coefficients ZL of the series (3.19) and
has only one non-perturbative parameter. Thus the number of perturbative
modes gets reduced to only one and the goal of summing over topologies gets
partially achieved. Unfortunately, so far no physical principle to fix this re-
maining free parameter is known. The existence of the double scaling follows
from the fact that the susceptibility exponent γ grows linearly with the Eu-
ler number. This was first discovered in two dimensional gravity [18–20].
One also finds a linear dependence in the marginal and semi-generic phases
of branched polymers [35].

4. Balls-in-boxes model

In this section we discuss a model of weighted integer partitions – mean
field approximation for models of dynamical lattices. The model undergoes
a phase transition which has many common features with the Bose-Einstein
condensation. The integer partitions of the model correspond to the par-
titions of vertex orders of dynamical lattices. The phase transition relies
on a condensation which favours partitions with one integer proportional to
the sum of all integers in the partition [36]. This integer corresponds to the
singular vertex order on the random lattice [37, 38].

The partition function of the balls-in-boxes model :

Z(M,N) =
∑

q1,...,qM

p(q1) · · · p(qM )δ(q1 + · · · + qM − N) (4.1)

describes weighted partitions of N balls in M boxes. The function δ() is
the Kronecker delta. The weight is a product of one-box weights p(qi) which
means that the numbers of balls q in any two different boxes are independent
of each other. The independence is weakly broken by the constraint on the
total sum which prevents the factorization. This constraint makes the model
nontrivial. For the convenience we assume that each box contains at least one
ball q ≥ 1. If we additionally choose N = 2M−1 then the partition function
(4.1) is equal to the partition function (3.2) of the branched polymer [34,36].
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The numbers qi of (4.1) correspond to the orders of vertices of the branched
polymer. The Euler relation

∑

i qi = 2M − 1 introduces the constraint.
In the large M limit the partition function of the model takes the form :

Z(M,N) = eMf(ρ)+... , (4.2)

where ρ = M/N is the average density of balls per box, and f(ρ) is the free
energy density per box. The model has a phase transition at a certain critical
density ρcr where the free energy is singular. The value of ρcr depends on
the choice of weights p’s. In particular ρcr may be moved away to infinity
or to one. In either case the model would only have one phase. Here we are
interested in the situation where ρcr is finite and the model has two phases
depending on whether ρ is lager or smaller than ρcr. For example, for the
weights :

p(q) = q−β (4.3)

the model undergoes the phase transition at

ρcr =
ζ(β − 1)

ζ(β)
, (4.4)

where ζ is the Riemann Zeta function. To fix attention and not to make
formulas too abstract we will keep in this section this particular form (4.3)
of weights, but the discussion can be naturally generalized to other forms
[35, 36]. The critical density ρcr is finite for β larger than two. When β
goes to infinity the critical density approaches one. When β goes to two
the critical density goes to infinity and eventually the transition disappears
when β becomes equal or smaller than two.

An alternative way of triggering the transition is to change β for fixed ρ
as for instance for branched polymers where density is fixed ρ = 2.

The free energy density has the following singularity at the phase tran-
sition :

∂ρf ∼















∆ρ1/(β−2) for 2 < β < 3

∆ρβ−2 for β > 3

. (4.5)

There are logarithmic corrections in ∆ρ for integer β. The free energy has
the same type of singularity in the parameter ∆β.

Analogously to branched polymers (see previous section), an additional
exponential factor in the weights (4.3) p(q) = e−κqq−β does not affect the
phase structure [36].
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It is convenient to consider the dressed one-box probability π(q) to see
what happens in the system at the transition. The dressed probability π(q)
is a probability that a particular box has q balls. One obtains for large M :

π(q) =



















q−βe−µq

N (µ) for ρ < ρcr

q−β

N (0) + 1
M δ(q − M(ρ − ρcr)) for ρ ≥ ρcr

, (4.6)

where the normalization factor N (µ) is :

N (µ) =
∞
∑

q=1

q−βe−µq (4.7)

and µ is a positive function of ρ which vanishes at the transition. One can
check that the average number of balls per box is indeed ρ :

∞
∑

q=1

qπ(q) = ρ (4.8)

for the one-box probability π(q) given by (4.6). The interpretation of the
result (4.6) is following. In the low density phase (ρ < ρcr), the typical
fluctuation of the box occupation number q is of the order 1/µ. At the
transition, µ vanishes, so the fluctuations must be of the order of the system
size. Indeed, at the transition one box captures a number of balls which
grows with M as shows the argument of the delta function in the second
term of the high density formula (4.6), and the occupation of this singular
box gives rise to large fluctuations. At the transition the probability π has
the critical form :

πcr(q) =
q−β

N (0)
. (4.9)

Above the transition this form is frozen but it is supplemented by the anoma-
lous term:

anomaly =
1

M
δ
(

q − M(ρ − ρcr)
)

. (4.10)

This term is anomalous in the sense that it disappears from the probability
distribution π(q) if one takes the point-wise limit M → ∞ for each fixed q.
In this limit, only πcr(q) survives. If one calculated the average (4.8) for such
a limiting probability distribution πcr(q), one would obtain the wrong value
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ρcr instead of the correct one ρ. This means that the anomalous term can
not be neglected in calculating the average (4.8). The anomaly introduces
an additional probability 1/M of picking one out of M boxes with M(ρ−ρcr)
balls. This is the singular box (singular vertex).

As we see the anomaly corresponds to the condensation of balls in one
box which just takes over the surplus of balls holding the rest of the system
critical. The condensation is similar to the Bose-Einstein condensation.
The difference between the two condensations is that in the Bose–Einstein
condensation, particles go to the lowest energy state, while here the box
must be chosen by the spontaneous symmetry breaking since the boxes are
indistinguishable.

The transition to the condensed phase is visualized for the finite size
system M in the figure 1. The finite size calculations have been done by an
improved version of the recursive technique described in [36]. There are some

1 10 100 1000
q

10−9

10−7

10−5

10−3

10−1

π(
q)

ρ=1.10
ρ=1.21
ρ=2.00

Fig. 1. Evolution of the shape of the dressed one-box probability π(q) with density

ρ. The three curves correspond to densities below, at and above the transition.

(The model with the weights q−β for β = 4).

secondary finite size effects to the formula (4.6) as for instance that the peak
at M(ρ − ρcr) is smeared for finite M or that one has to go to sufficiently
large M to see the peak depart from the remaining part of the distribution.
However, the basic features of the solution (4.6) that the position of the peak
moves linearly with M and that its height decreases as 1/M are already seen
for moderate sizes M (see figure 2).

It is also interesting to consider ensembles with varying density ρ [43,44].
There are two natural candidates. The ensemble with a variable number of
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1 10 100 1000
q

10−10

10−8

10−6

10−4

10−2

100

π(
q)

Fig. 2. The dressed one-box probability π(q) in the condensed phase for ρ = 2,

β = 4, N = 128, 512, 2048.

balls with the partition function :

Z(M,µ) =
∑

N

Z(M,N)e−µN (4.11)

or the ensemble with the variable number of boxes :

Z(κ,N) =
∑

M

Z(M,N)eκM (4.12)

If the sum over N in (4.11) extends to infinity, the problem factorizes to M
copies of the urn-model [73, 74]. It does not, however, if there is an upper
limit Nmax for N . In this case the phase structure is basically the same
as in the Z(M,N) ensemble. For large µ the system is in the low density
phase. At some critical value of µ, the system enters the phase where one
of the boxes captures the surplus of balls to maximize N . Analogously in
the ensemble (4.12), for κ above a critical value, the system is in the high
density phase realized by minimizing the number of boxes to the smallest
available number Mmin.

If one considers the (κ,N) ensemble, it is more convenient to use the
quantity :

r =
〈M〉
N

=
1

N

∂Z(κ,N)

∂κ
(4.13)
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instead of the balls density. The values of r are limited to the range :
Mmin/N ≤ r ≤ Mmax/N . The lower limit may be naturally chosen :
Mmin = 1, to have at least one box, and the upper one : Mmax = N ,
which corresponds to one ball per box. When κ goes from large negative to
large positive values, r goes from the lower to the upper limit. In the large
N limit the function r = r(κ) can be found. For κ < κcr the system stays
at the lower limit r = 0. At the critical value it jumps to r0 > 0 and then
approaches continuously the upper limit when κ goes to infinity. The phase
transition is discontinuous and there is a latent heat related to the height
r0 of the jump. For finite N the transition between the phases is smoothed.
There is a crossover interval of the size δκ ∼ N−1 where the curve r steeply
goes between the two regimes. In this crossover region system is effectively
a mixture of two phases and hence the distribution of r has two peaks as
shown in figure 3. One peak is at the lower kinematic limit while the other

0.0 0.2 0.4 0.6 0.8
r

0.0

0.5

1.0

1.5

2.0

2.5

P
(r

)

512
1024

Fig. 3. The distribution of r = M/N in the (κ, N) ensemble in the pseudo-critical

region for two different volumes: (−0.32184, 512), (−0.31910, 1024) for the model

with the weights p(q) = q−β for β = 2.5.

at r0 in the large r phase. When κ moves in the crossover region, the rela-
tive peak heights change. One can define a pseudo critical value of κ for a
finite system as the value at which the heights of both peaks become equal.
We show in figure 3 histograms obtained by finite size computations for two
N ’s. The depth of the valley between the peaks increases with the size since
each of the peaks becomes narrower. Eventually in the limit N → ∞ the
configurations from the valley are completely suppressed.
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To summarize, the transition related to the appearance of the surplus
anomaly is continuous in the fixed density ensemble and discontinuous in
the (M,µ) or (κ,N) ensembles with fluctuating density.

5. Random surfaces

A theory of random surfaces has been an active research field since
Polyakov proposed the geometrical approach to the quantization of strings
by combining the Feynman quantization principle with the geometrical na-
ture of the string action [1,2]. There are some excellent reviews summarizing
the models, the ideas and the methods [9–11]. Here, for completeness, we
briefly sketch the ideas and the main results which can be found there. Then
we discuss some issues which appeared later in the literature.

Let us come to the origin. The partition function for the Polyakov theory
reads :

Z =
∑

top

∫ Dgab

Ddiff
Dϕ exp

[

− S[gµν , ϕ]
]

. (5.1)

The action is a sum of the Einstein–Hilbert action (2.3) and the action for
the matter fields ϕ coupled minimally to gravity. The term :

∫

d2ξ
√

gR =
4π(1−h) of the Einstein–Hilbert action is a topological invariant and appears
only if one sums over genera h.

The Nambu-Goto string embedded in D dimensions rewritten in terms
of the Polyakov formalism corresponds to the action :

S[gab, ϕ] =

D
∑

µ=1

∫

d2ξ
√

ggab∂aϕ
µ∂bϕ

µ + µ

∫

d2ξ
√

g , (5.2)

for D scalar fields coupled minimally to gravity. The term proportional to
the Euler characteristic is not displayed. One extends this action to non
integer D. In this case D = c where c is the central charge of the conformal
matter coupled minimally to gravity.

As mentioned, the continuum Liouville field theory and the discretized
dynamical triangulation approach used to calculate the partition function,
yield the same results for c ≤ 1. The approaches are independent. Even
more, they are independent to such a degree that it is very difficult to find
a direct correspondence between them. It is much easier to compare results
for the universal quantities than to compare the formalisms themselves. For
example, a lot of work has been spent to recover the complex structure or
moduli spaces in the dynamical triangulation approach [75].

The fundamental results of the theory are summarized in the KPZ (Kni-
zhnik, Polyakov, Zamolodchikov) formula [12–14] for the scaling dimensions
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of operators dressed by gravity and the susceptibility exponent γ defined by
the analogous formula as (3.3). Conformal weight ∆0 of an operator acquires
a new value ∆ when the operator is coupled to gravity. The dressed value
is given by the equation :

∆ − ∆0 = −α2

2
∆(∆ − 1) , (5.3)

where

α =
1

2
√

3
(
√

25 − c −
√

1 − c) . (5.4)

The number of surfaces with area A is given by

Z(A) ∼ Aγ−3eµ0A , (5.5)

where the entropy exponent γ for spherical surfaces is :

γ =
1

12

(

c − 1 −
√

(25 − c)(1 − c)
)

. (5.6)

For other topologies the exponent γ changes linearly with genus : γh =
γ + h(2 − γ). The Liouville theory breaks down at c = 1. This is known as
the c = 1 barrier. This is related to the instability of the conformal mode
which drives the system to the branched polymer phase. In the language
of strings it corresponds to a tachyonic state which destabilizes the stringy
vacuum.

In the discretized approach, the functional integral over surfaces is reg-
ularized by the sum over triangulations [15–17]. The discretized theory is
given by the partition function :

Z =
∑

T

∏

i

q−α
i

1

C[T ]
e−µA+λh exp



−1

2

D
∑

µ=1

∑

ij

(Xµ
i − Xµ

j )2



 , (5.7)

where the sum runs over triangulation, and Xµ are D scalar fields with
the nearest neighbours interactions. For non integer D one can either di-
rectly weight triangulations by the power −D/2 of the determinant of the
Laplacian obtained by integration of the X fields or one can consider various
statistical models corresponding to the conformal matter field with D = c.
The number of triangles on the lattice (area) is denoted by A, and the genus
by h. The two terms −µA + λh correspond to the Einstein–Hilbert action.

The product of the powers of vertex orders was originally introduced to
investigate the stability of the discretized integration measure [40–42]. The
measure term corresponds to the higher derivative terms and is irrelevant in
the perturbative regime.
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The phase structure of the model in the (α,D = c) plane has three
phases : the gravitational phase corresponding to the Liouville theory, the
collapsed phase with singular geometries and the branched polymer phase
[41, 42, 45]. The phase structure is approximately sketched in figure 4.

CollapsedBranched
Polymers

Liouville
Gravity

D

α0

1

Fig. 4. The phase structure of the model given by the partition function (5.7) in

the (α, D) plane.

For c between zero and one, in the Liouville phase, there exists a discrete
series of models of unitary conformal matter coupled to gravity with the
conformal charge c = 1 − 6/m(m + 1) which can be enumerated by an
index m = 2, 3, . . . [9–11]. The susceptibility exponent for this series is
γ = −1/m (5.6). This series has a realization in terms of statistical models
on a dynamical triangulation. For example, the first member of the series
corresponds to the dynamical triangulation without dressing (pure gravity).
The second to the critical Ising spins on a dynamical triangulation, the
third to the three-state Potts model. To associate with a statistical model
a particular conformal field, one has to compare the operator contents. The
conformal weights of the underlying conformal theory are related to critical
indices of the corresponding statistical models. For example for the Ising
model on random lattice the values of the standard critical exponents 2

[45, 76, 77] :

α = −1 , β = 1/2 , γ = 2 , δ = 5 , dHν = 3 (5.8)

2 Compare with the Onsager exponents for the fixed lattice : α = 0, β = 1/8, γ = 7/4,
δ = 15, dν = 2.
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correspond to the exponents calculated from the conformal weights (5.3) of
the c = 1/2 conformal field dressed by the Liouville field. The exponent ν
appears in the combination with the fractal dimension dH , which itself is a
dynamical quantity. It will be discussed below.

Analytic calculations for the discretized random lattice are performed
by the matrix model technique (see reviews [9–11]). Let us briefly recall the
idea. By the duality transformation one can rewrite the sum over triangu-
lations as a sum over φ3 Feynman diagrams generated by the perturbation
expansion of the φ3 matrix field theory in zero dimensions. Amongst dia-
grams of the φ3 theory there are such which include tadpoles and self-energy
sub-diagrams. These correspond to pathological triangulations containing
for example triangles whose two edges are glued together. One can remove
tadpoles and self-energy sub-diagrams by using standard renormalization
procedure for the perturbation theory. The renormalized theory has the
same universal content encoded in the critical indices as the original theory.
In the Ising model, one can check this by direct calculations [77]. Universal
properties do not change when instead of φ3 one considers the φ4 diagrams,
as expected on the grounds of the more general argument that the local
properties of the lattice do not matter in the limit when the lattice spacing
goes to zero. This intuitively means that in this limit one cannot distinguish
whether the lattice is built from triangles, quadrangles or other polygons.

The perturbation expansion of the matrix models generates all terms in
the partition function (5.7). The symmetry factor 1/C occurs automatically
from the Wick theorem. The area term corresponds to the perturbation
order of the diagram which counts the number of vertices. The topological
term arises from the colour expansion of the matrix field [78]. The matter
content of the theory is generated by the multi matrix action with chain
interactions [45, 46]. In this way one can construct c ≤ 1 conformal matter
field from the unitary series c = 1 − 6/m(m + 1) or some non-unitary mat-
ter. Within the formalism one can calculate critical exponents, correlation
functions, macroscopic loop amplitudes etc. The colour expansion of the
matrix model simultaneously incorporates contributions from all topologies.
This leads to a partial solution of the problem of summing over genera by
reducing the number of nonperturbative modes similarly as discussed in the
section on branched polymers. For c = 0, for example, the sum over topolo-
gies is reduced in the double scaling limit to solutions of the Painlevé II
equation which has only two nonperturbative modes [18–20].

Contrary to the Liouville phase, in the two other phases the central
charge does not determine the universality class of the model. For example
two different microscopic realizations of matter with the same large c : the
multiple-spin model with n = 2c spin species and the Gaussian scalar model
with D = c fields, have different susceptibility exponents γ equal 1/3 and
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1/2 respectively. By using some general arguments one can show that there
exists a possible series of models with positive values of γ in the range
(0, 1/2) [79]. We denote the value of the susceptibility exponent in this
series by γ̄. The models in the series are related to the unitary models
γ = −1/m, m = 2, 3 . . . by :

γ̄ =
γ

γ − 1
. (5.9)

According to the picture advocated in [79] such surfaces with γ̄ look like
trees of weakly touching bubbles which themselves describe surfaces with
γ. The first model in this series γ̄ = 1/3 corresponds to random surfaces
consisting of bubbles of pure gravity (γ = −1/2) weakly touching each
other. A microscopic realization of such a model is the multi spin model [79].
In this model magnetized domains cover the whole surface of the bubbles.
Each bubble contains aligned spins which decouple from geometry within
the bubbles [80]. Effectively each bubble behaves therefore as pure gravity.
The domains of aligned spins try to minimize the mutual contact border so
that neighbouring bubbles contact by a very narrow neck. Such a surface
indeed looks like a tree of bubbles [82, 83].

A candidate for a model with γ̄ = 1/4 (m = 3) being the next in the
series should have bubbles with γ = −1/3 ie with the c = 1/2 matter which
is realized by the Ising field or the Majorana fermions in continuum. The
exponent γ consistent with 1/4 was measured at the phase transition of the
model of random surfaces with extrinsic curvature [81]. Extrinsic curvature
terms can be obtained by integrating out fermions from the super-string
theory [84] and therefore it is tempting to speculate that this model indeed
inherits some fermionic properties leading to γ = 1/4.

One can find a realization of the situation described above in the matrix
model by introducing a touching term [85]. Such a touching term allows sur-
faces with a given γ to touch each other. It has a certain coupling constant,
x, controlling the number of such touchings. The value of the exponent γ as
a function of the touching coupling x, stays at the Liouville value γ as long
as x is smaller than a critical value xcr. At the critical point xcr the value
of γ jumps to γ̄, and then for x > xcr, to the branched polymer value 1/2.
The phase with γ̄ is marginal in this model similarly as the marginal phase
in the model of branched polymers.

The phase transition at xcr has been recently analyzed [86] in terms of
the renormalization group flow in the parameter space (x, µ). There are two
fixed points for c < 1 : one associated with the Liouville phase and the
other with the branched polymer phase and there is a multi-critical point
related to them on the x = 0 line. At c = 1, the two fixed points merge
at x = 0, and for c > 1 disappear from the real (x, µ) plane and become



596 Z. Burda

complex conjugate. When c grows they slowly depart from the real plane.
Renormalization group trajectories in the real plane that pass in the vicinity
of the complex points look very much like in the limiting c = 1 case, where
γ = 0. Only if one starts a renormalization group trajectory at µ very close
to the critical value µcr

|µ − µcr| ∼ exp
[

− const√
c − 1

]

(5.10)

one can avoid the critical slowing down from the trajectory passing close to
these complex points. One has to go to lattices of the size N ∼ 1/|µ − µcr|
to see the branched polymer value 1/2. When c is increased, the branched
polymer regime comes closer. This explains a long standing puzzle of values
of γ computed at finite volumes [41, 88–90]. The values of γ, measured
numerically, smoothly increase with c and reach 1/2 within the error bars
only at c around 5. The model with the touching term has been recently
simulated numerically [87] confirming the scenario of [86].

This renormalization group picture furnishes completely our understand-
ing of the behaviour of the system at the border line between the Liouville
phase and the branched polymer phase. Below we will discuss the behaviour
of the system at the border of collapsed phase. As we show, it can be un-
derstood in terms of the balls-in-boxes model.

With each triangulation one can associate a distribution of vertex orders
{qi}. The opposite statement is not true, since in general it can be more
than one triangulation associated with a given distribution {qi}. Denote the
number of such triangulations by N({qi}). The idea is [39] to substitute the
sum over triangulations by a sum over the order distributions {qi}’s :

∑

T

1

C[T ]
. . . 7→

∑

{qi}

N({qi}) . . . (5.11)

and to approximate N by the mean–field formula :

N({qi}) ∼ p(q1) . . . p(qN ) , (5.12)

where p(q) are one–vertex terms. The measure term
∏

q−α
i in the partition

function (5.7) has the same factorized form in qi’s, so it in a sense enhances
the one–vertex terms in comparison with multi–vertex terms neglected by
the approximation. The matter fields also contribute to the one–vertex

terms. In the large D limit this contribution is approximately q
−D/2
i [31].

For triangulations with N vertices and genus h

∑

i

qi = 6N − 2 + 2h (5.13)
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as results from the Euler relation. This constrains the sum of the vertex
orders. One obtains the following approximation of the partition function
(5.7) :

Z ≈
∑

{qi}

P (q1) . . . P (qN )δ(q1 + . . . qN − (6N − 2 + 2h)) , (5.14)

where P (q) = p(q)q−D/2−α. One recognizes the balls–in–boxes model dis-
cussed in the previous section. Thus one expects that for large D the tran-
sition to the collapsed phase, where singular vertices arise, occurs at the
line α ∼ −D/2. Generally for any D, one may force the transition to
the collapsed phase by taking α large enough. Similarly to the collapsed
phase of the branched polymer model, the number of triangles in the near-
est neighbourhood of the singular vertex grows with total triangulation size.
Following this, the average distance between points does not grow with the
triangulation size. Therefore one can say that the Hausdorff dimension is
equal infinity.

Let us discuss now the two other phases of the model. A common feature
of the Liouville gravity and the branched polymers phase is that the typi-
cal surfaces in these phases are highly branched. Moreover, the branching
structure is self similar. This can be seen as follows. As a corollary of the
KPZ relation the number of surfaces with the disc topology whose boundary
is a minimal triangular loop is :

N(A) ∼ Aγ−2eµcrA , (5.15)

where γ is the susceptibility exponent for spherical surfaces. A triangular
loop on the spherical triangulation with A triangles divides the surface onto
two discs with the triangular loop boundary : one with area a and the other
with A − a. The number of realizations of such a situation is [91]

MA(a) ∼ N(a)N(A − a) . (5.16)

The smaller of the discs, looks as an outgrowth on the rest of the tri-
angulation. Such an outgrowth is called a minbu : minimal neck baby
universe [91]. When one considers triangulations with fixed size A, one
can skip terms independent of a in the expression (5.16) since they give a
normalization factor. What remains, is :

MA(a) ∼
(

a(A − a)

)γ−2

∼
(

a(1 − a/A)

)γ−2

. (5.17)

In the range 1 ≪ a ≪ A/2, the distribution of minbu sizes scales as :
MA(a) ∼ aγ−2, showing that in this range the tree of minbus is indeed self
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similar. For γ > 0 the average minbu size :
∫

aMA(a) ∼ Aγ grows with the
size of the triangulation.

There is a close relation between the branching structure of the baby
universes and the fractal structure of the random surface. The relation has
been investigated by means of the real space renormalization group method
[92,93]. The idea is to define an elementary blocking transformation of the
renormalization group using self similarity of the tree of baby universes. This
idea can be practically realized by cutting off the last generation of minbus
and calculating a change of the scale associated with the rescaling of the
minbu tree. An interesting outcome of these studies is that the change of
the average distance between points 〈r〉 on the decimated triangulation is
related to the change of scale :

〈r〉2
〈r〉1

∼
(〈A〉2

A1

)ν

, (5.18)

where the subscripts 1 and 2 refer to the ensembles before and after the
renormalization group transformation. The blocking is performed on the
fixed area A1 ensemble. The exponent ν was found to approach ν = 1/dH =
1/4 for large lattices showing the existence of a close relation between the
fractal structure of random surfaces and the branching structure of baby
universes.

One can determine the Hausdorff dimension directly from the scaling of
the puncture-puncture correlation functions [21, 22]. The correlation func-
tion has been found analytically for pure gravity. The resulting form shows
indeed that it is a function of one universal parameter having the form
x = r/A1/dH where dH = 4.

The fractal structure of random surfaces in the presence of matter is
not yet fully understood [47–49]. There are different theoretical predictions
for the value of the Hausdorff dimension. The diffusion equation in the
Liouville theory combined with the De-Witt short distance expansion of the
heat kernel tells us [94, 95]

dH = 2

√
25 − c +

√
49 − c√

25 − c +
√

1 − c
. (5.19)

An alternative result obtained using the Hamiltonian formalism where one
identifies the geodesic distance with the proper time is [96] :

dH =
24

1 − c +
√

(25 − c)(1 − c)
. (5.20)

Numerically the measurements of the matter fields with the central charge
c in the range 0 < c ≤ 1 suggest that the Hausdorff dimension dH is equal
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to four irrespectively of the matter dressing [48]. The are two ways of mea-
suring the Hausdorff dimension numerically. Either one counts the num-
ber of lattice points n(r) at a distance r from a random point and aver-
ages it over points and surfaces and then one fits the result to the formula
n(r) ∼ rdH−1 [97]. An alternative way is to measure the average distance
〈r〉 between all points on the lattice and then determine dH from the scaling
formula 〈r〉 ∼ A1/dH (3.12) for large lattice sizes A [98]. For pure gravity
c = 0 and for c = −2, the two estimates give the same values [99]. In general
they need not be equal. The definition based on the average distance 〈r〉
is related to the universal scaling in x = r/A1/dH and the mass exponent
(3.8) and therefore it is closer in spirit to the continuum physics. For the
numerical purposes the scaling argument is usually modified by a small finite
shift r → r + δ : x = (r + a)/A1/dH which can be neglected in the large A
limit [50]. Introducing the shift for finite A’s, improves the fit quality in the
whole range of r [47, 48].

The results of very extensive simulations can be summarized as follows.
The numerical measurements disagree with the transfer matrix prediction
(5.20). For gravity in the presence of the matter fields 0 ≤ c ≤ 1 the value of
the Hausdorff dimension seems to approximately equal four for all c ≤ 1. The
values predicted by (5.19) lie a bit outside the error bars of the measured
values, but contrary to this, for c = −2 one obtains a perfect numerical
agreement dH = 3.574(8) with the diffusion formula (5.19) [99]. This shows
that this part of the two dimensional theory is yet weakly understood. The
fractal structure is being currently intensively investigated.

Another quantity characterizing the fractal structure of random surfaces
is the branching dimension dB . It measures the scaling of the average number
n0(r) of disconnected pieces of the ball’s boundary with radius r :

〈n0(r)〉 ∼ rdB . (5.21)

The branching dimension was measured numerically for c = 1 and was es-
timated to be larger that 2.5 showing indeed a big rate of branching of the
surface3 [98].

The scaling dimensions dB and dH can be derived from the loop dis-
tribution function [21]. This distribution carries the most complete infor-
mation about the fractal structure. The loop distribution function ρ(r, L)
is defined as the average number of loops of length L on the boundary
of ball with radius r. More precisely ρ(r, L)dL is the average number of
loops with lengths in the range L to L + dL. The loop distribution was
found analytically for pure gravity by the transfer matrix method [21].
For A = ∞ it reads : ρ(r, L) = 1/r2f(x), where x = L/r2, and f(x) =

3 The results of [98] were obtained from fits without the shift r → r + δ.
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(x−5/2 + 1/2 x−1/2 + 14/3 x1/2)e−x. The moments of the distribution :

〈Ln〉 =

∞
∫

ε

dLLnρ(r, L) (5.22)

are :

〈L0〉 = c0r
3/
√

ε
3
,

〈L1〉 = c1r
3/
√

ε ,

〈Ln〉 = cnr2n for n > 1 , (5.23)

where ε is the short distance cut-off (e.g. lattice spacing) and c′s are con-
stants. The zeroth moment corresponds to the number of loops of the ball’s
boundary and the first moment of the distribution corresponds to the length
of the boundary. The two scaling dimensions dH = 4, dB = 3 are related to
the singular part of the loop distribution ρ (5.23).

To summarize this section. The two dimensional theory is in a very good
shape. The phase structure is determined. One understands the behaviour
of the system at the critical lines between phases. The Liouville phase,
related to 2d quantum gravity, can be studied by a variety of methods. For
the time being, the only open question is the fractal structure of surfaces in
the Liouville phase.

6. Monte Carlo simulations

A bonus from the lattice regularization is the possibility to perform
Monte Carlo simulations. Computer simulations provide a powerful exper-
imental tool to investigate nonperturbatively statistical systems. In many
cases, where analytic techniques break down, computer simulations are the
only method to study a model. This for instance is the case for higher
dimensional random geometries.

The basic idea behind the computer simulations is to implement a Mar-
kov chain in the space of configurations with the stationary distribution
proportional to e−S . The chain is determined by the transition probability
p(1 → 2) between any two configurations 1, 2. In practice, one proposes
a simple scheme, called the elementary step of the algorithm, of modifying
a current configuration to obtain its successor in the chain. One can show
that the detailed-balance condition imposed on the transition probabilities :

e−S(1)p(1 → 2) = e−S(2)p(2 → 1) (6.1)

and the ergodicity of the elementary steps suffice for the algorithm to gen-
erate configurations from the stationary distribution e−S .
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Fig. 5. Ergodic set of local transformations of dynamical triangulations.

An ergodic set of local operations to simulate two dimensional dynamical
triangulations is shown in figure 5. The flip operation preserves the area. It
is ergodic in the ensemble of triangulations with a fixed area [41, 100]. The
other two operations in the figure which remove or add a point of order three,
change the area and allow for extending simulations to the grand-canonical
ensemble. The three moves form a set of moves called in general the (p, q)
moves [101]. The first argument p corresponds to the number of triangles
before the transformation, and q after it. Note, that the four triangles,
p + q = 4, form a tetrahedron when glued together [24]. This observation
was used to generalize these transformations to higher dimensions, as we
shall see later. There is also another ergodic set of transformations, called
the split and joint operations, also used in update schemes [102]. The two
sets are equivalent.

The standard algorithm was extensively tested in two dimensions. The
distribution of triangulations generated by the algorithm is in perfect agree-
ment with the analytic formula for the diagram enumeration. Numerical
measurements of the critical exponents of the statistical models 0 < c ≤ 1
are in excellent agreement with the KPZ results [103]. The agreement ex-
tends beyond the critical region as is shown by the comparison of the nu-
merical results for the Ising model on the dynamical triangulations and the
analytic results of the two matrix model [77, 104]. This can be treated as
a proof for the practical ergodicity of the Monte Carlo algorithms. This
practical proof is in a sense stronger than the mathematical proof which
only states the existence of a Markov chain between any two configurations
which may of course not suffice for practical purposes.

The (p, q) moves have a natural generalization to higher dimensional
simplicial manifolds [101]. In four dimensional case there are five moves p +
q = 6, p = 1, . . . , 5. Geometrically they can be viewed as a substitution of p
4-simplices from the triangulation by q new simplices being a complementary
part of the boundary of a 5-simplex. One can show that the (p, q) moves
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are equivalent to the Alexander transformations [100] known to be ergodic
in the set of combinatorially equivalent simplicial manifolds with a fixed
topology. As in two dimensions, one can show the practical ergodicity of the
algorithm [105]. One has to keep in mind, however, as prompted in [106],
that the recognizability conjecture states that for some topologies a fraction
of manifolds accessible by a Markov chain may scale to a number less than
one in the large volume limit. This may systematically bias the analysis of
the finite size scaling.

The ergodicity and the detailed balance condition leave a large freedom
for the invention of optimal algorithms. The local update schemes are known
in general to suffer from the slowing down, decreasing the algorithmic effi-
ciency. The reason lies in the random–walk nature of local changes – namely,
many changes are undone by successive steps of the algorithm. A general
strategy to cure the problem is to implement algorithms focusing directly
on physically important modes. This strategy has been frequently used in
the standard field theoretical Monte Carlo simulations as for instance in
the multi scale or cluster algorithms [107, 108]. As discussed, typical ran-

Fig. 6. Elementary step of the baby universe surgery on dynamical triangulations.

dom surfaces from the branched polymer phase or from the Liouville phase
are populated with baby universes forming self similar trees [91]. The idea
to use the tree structure in the update scheme leads to the baby universe
surgery algorithm [109] . The algorithm is in fact very simple as depicted
in figure 6. One finds a minimal neck on the surface, cuts the surface along
the neck, removes the corresponding minbu and pastes it into a randomly
chosen place on the rest of the surface. Reshuffling minbus speeds up the
algorithm dynamics by decorrelating the tree branches.

A typical quantity characterizing the efficiency is the autocorrelation
time. It tells us, roughly speaking, how many sweeps of the algorithm are
needed to decorrelate the measurements of a given observable. The rise of
the integrated autocorrelation time τ for large system sizes A is controlled
by the dynamical critical exponent z :

τ ∼ Az . (6.2)
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In Table II we present the comparison of values of the dynamical exponent z
for the standard algorithm and a hybrid of the standard algorithm with the
minbu surgery for various observables measured in the model with one scalar
field. The values of the exponent z get generally reduced if one supports
the algorithm by the minbu surgery [109]. This improves significantly the
algorithm dynamics. The baby universe surgery is also applied to simulate
higher dimensional simplicial manifolds in the elongated phase [50, 93].

TABLE II

The dynamical exponent for the standard local algorithm and the hybrid with the

baby universe surgery, for the simulations of surfaces with c = 1, for the averaged

internal distance between points : d, the distance between two given points : dxy

and the gyration radius : r. One sees a large reduction of the exponent z when

one adds the surgery to the update scheme.

quantity zlocal zhybrid

d 1.06(3) 0.76(3)

dxy 0.81(6) 0.14(2)

r 1.4(1) 0.50(3)

Apart from the dynamical Monte Carlo techniques described above, in
some particular cases there are the so-called static algorithms. They sample
directly the static distribution e−S without using an auxiliary Markov chain.
Thus, they are free of the dynamical slowing down. Example of such an
algorithm is a recursive sampling technique, applicable for c = 0,−2. In
these cases there are known analytic formulas for the diagram enumeration
which allow one to directly construct the diagrams weighted by the static
distribution e−S [97, 110].

The numerical algorithms for sampling of random geometries have be-
come a well established method allowing for studying triangulations with
sizes ranging up to million triangles or hundreds of thousands of 4-simplices
in the four dimensional case.

7. Simplicial gravity

Simplicial gravity is an attempt to formulate the quantum theory of
gravity. It is a part of a larger programme based on the assumption that
one can apply the same set of fundamental principles as in field theory, to
quantize gravity. Following these lines one tries to apply the Euclidean ver-
sion of the Feynman formalism as already described for the two dimensional



604 Z. Burda

gravity (5.1). There are many conceptual problems related to the Euclidean
formulation like for example the lack of formal conditions which would en-
sure that we can reconstruct the Minkowskian quantum gravity. This is,
however, a part of a more general difficulty, namely that we do not know
how to formulate the Minkowskian quantum gravity, so we do not know
what exactly should be reconstructed. The role of the topology is also not
clear. And again, the problem is more general since we can not classify four
dimensional topologies. Finally, there is a problem with the unboundedness
of the action coming from the conformal mode. This problem, fortunately,
is automatically cured by the discretization scheme. Having all these dif-
ficulties in mind let us formulate in the beginning a more modest aim, to
define consistently the Feynman integral over the Riemannian structures
with a fixed topology. Now the measure problem arises. It is much more
pronounced in four dimensions than it is in two. One way to bypass it is to
formulate the theory perturbatively in terms of the Gaussian measure which
is well defined. The perturbation theory obtained in this way is however not
renormalizable and the treatment fails. One can improve the convergence
of the perturbative diagrams at large momenta by resummation techniques
but then one encounters problems with unitarity [111].

One attempt of the nonperturbative formulation of quantum gravity is
based on the 2+ ε expansion [3,112,113]. The situation is somewhat similar
to the nonlinear sigma model [114] where the perturbative treatment does
not work above two dimensions but one can find a well defined nonpertur-
bative fixed point in terms of the 2+ ε expansion. The 2+ ε expansion may
in principle be applied to gravity but in this case one has two conceptual
difficulties. First of all, ε equal two is not a small parameter, and second
of all, two dimensional integrals appearing as coefficients in the ε-expansion
are not able to reproduce the whole content of higher dimensional gravity.

Another way to define the Feynman integrals nonperturbatively is pro-
vided by the lattice regularization. In this context it was proposed in [6, 7].
This is a generalization of the dynamical triangulation approach from two
[15–17] and three dimensions [23–25].

A lattice formulation allows the use of the statistical ideas and tech-
niques to calculate quantum amplitudes which in the statistical language
correspond to some averages over the statistical ensembles. The standard
procedure of the the statistical approach is well established. Namely, given
a model one addresses the following questions :

1. Does the model posses a well defined thermodynamic limit?

2. What is the phase structure of the model?

3. Can one define a lattice independent continuum limit?
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The last issue is related to the existence of a continuous phase transition
and the infinite correlation length of some physical excitations which would
be independent of the short-range details of the lattice.

Let us follow these lines in the presentation. We consider an ensemble
of simplicial manifolds with a fixed topology. Four dimensional simplicial
manifold consists of equilateral 4-simplices glued together in such a way that
each two neighbouring simplices share a three dimensional 3-simplex. The
neighbourhood of each vertex is homomorphic to the 4-ball.

As discussed in the previous sections, the sum over one dimensional
graphs could be generated by the perturbative expansion of the scalar field
theory while the sum over two dimensional graphs by the matrix field theory.
The extension of this idea to the tensor model to generate four dimensional
simplicial manifolds does not work, though it might seem to be an evident
generalization at a first glance. The reason is that the perturbation ex-
pansion of tensor models generates graphs with fluctuating topology. Even
worse, the topology of diagrams fluctuates locally so that such diagrams do
not correspond to manifolds [11]. For the time being the only method to
investigate the sum over the ensemble of four dimensional simplicial mani-
folds are the numerical simulations combined with the standard statistical
data analysis.

One considers the grand-canonical ensemble of simplicial manifolds with
a given topology. The partition function reads :

Z(κ4, κ0) =
∑

T

1

C[T ]
eκ0N0[T ]−κ4N4[T ] . (7.1)

The discretized Einstein-Hilbert action (2.6) reproduces in the naive contin-
uum limit the continuum counterpart (2.3). For convenience we substituted
the number of triangles N2 from the formula (2.6) by the number of vertices
N0. This can be done since the numbers Ni of i-simplices on the manifold
are linearly related by the Euler and Dehn-Somerville relations, which leave
only two independent Ni’s. In particular, for the four dimensional sphere
N0 and N2 are related by N2 = 2(N0 + N4 − 2).

One can rewrite the grand-canonical partition function as a sum :

Z(κ4, κ0) =
∑

N4

Z(N4, κ0)e
−κ4N4 , (7.2)

where Z(N4, κ0) are the partition functions for the canonical ensembles
which have a fixed volume N4. One can go one step further and express
Z(N4, κ0) in terms of the state density z(N4,N0) :

Z(N4, κ0) =
∑

N4

eκ0N0z(N4,N0) . (7.3)
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The thermodynamic limit exists if the free energy density has a well defined
large N4 limit. This means that the function ∆ in the formula

log Z(N4, κ0) = N4{f(κ0) + ∆(N4, κ0)} (7.4)

must be a finite size correction ∆ which vanishes for large volumes N4 → ∞ :

∆(N4, κ0) → 0 (7.5)

so that in the limit N4 → ∞, the free energy density log Z(N4, κ0)/N4 is a
function of κ0 only.

One can show that if the function ∆ vanishes for one finite value of κ0 it
does so for all other. The function ∆ was studied for different values of the
coupling κ0 [55–58]. In particular it was found that for κ0 = 0 the function
delta scales as ∆ ∼ N−x

4 where x = 0.5(2) for manifolds with spherical and
toroidal topology [58]. This is a numerical proof for the existence of the
thermodynamic limit. For κ0 = 0 the partition function Z(N4, κ0 = 0) is
a sum of all manifolds without an extra weight. This sum is an object of
intensive mathematical studies [115, 116]. The goal of these studies is to
prove the existence of the exponential bound Z(N4, κ0 = 0) ≤ ecN4 . Of
course, this is equivalent to the existence of the thermodynamic limit of the
model. So far there is no such proof and one has to rely on the numerical
results.

One can show, as we shall see later, that the pseudo-critical value κ0,cr,
at which the system enters the generic branched polymer phase is finite, or
more precisely, it is bounded from above by a finite value independent of
N4. On the other hand, it is known that the branched polymer phase has a
well defined thermodynamic limit. Combining these two facts, one concludes
that there exists a finite value of κ0, for which the equation (7.5) is fulfilled.
This suffices to end the proof of existence of the thermodynamic limit. In
our opinion this is the strongest numerical evidence for the existence of the
thermodynamic limit. What is nontrivial here is that the pseudo-critical
value κ0,cr does not move to infinity when N4 is increased as would happen
if there was no thermodynamic limit.

Numerical simulations were performed for three topologies : the sphere
S4 and tori S1 × S1 × S1 × S1 , S3 × S1. In all these cases the free energy
density f(κ0) was found numerically to have the same thermodynamic limit
[58].

Let us now outline the basic facts gathered using the computer simula-
tions about the phase structure of the model.

Simplicial gravity has two phases, crumpled and elongated, named to
reflect their geometrical properties. The elongated phase corresponds es-
sentially to the branched polymer phase [50]. In this phase typical simpli-
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cial manifolds are populated with baby universes which form the genera-
tion trees. The susceptibility exponent is γ = 1/2. The puncture-puncture
correlation function is in this phase given by the universal formula (3.16),
(3.17) for branched polymers. The only dependence on κ0 enters the for-

Fig. 7. Minbu trees for configurations taken at random from the elongated phase

(left) and the crumpled phase (right). Each link on the tree corresponds to a

minimal neck on the simplicial manifold, and the end points of the link correspond

to two parts of the simplicial manifold on both sides of the minimal neck. The

number of links emerging from a vertex of the tree corresponds to the number of

minimal necks found directly on the part of simplicial manifold associated with

the vertex. The trees carry only topological information about the connectivity

of minbus. The vertical ordering seen on the picture results from visualization

procedure and has no relevance for the tree structure. The tree on the left hand

side has many generations and no distinguishable points. The tree on the right

hand size is short and has one singular vertex drawn as a root of the tree. There

are so many links emerging directly from the singular vertex that the visualization

procedure failed to draw them as separate lines but drew a densely covered triangle

instead.
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mula through one universal parameter a as in the formula (3.16). In figure 7
we show the minbu trees constructed on simplicial manifolds picked up ran-
domly from two different phases of simplicial gravity. The tree on the left
hand side comes from the branched polymer phase. A vertex on the tree
corresponds to a minbu and a link to the minimal neck between neighbour-
ing minbus. One can define a distance between vertices on such a tree as a
number of links between them. Then one can measure a minbu-minbu corre-
lation function analogous to the puncture-puncture correlation function [39].
The results fit perfectly the branched polymer correlation function (3.16) as
shown in figure 8. This means that the minbu trees are indeed branched
polymers.
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Fig. 8. The minbu-minbu correlation function measured on minbu trees in the

elongated phase of simplicial gravity (dashed line), compared with the universal

formula G(r) ∼ 2are−ar2/N for the branched polymers (solid line) (3.16).

The branching structure of minbus collapses when the system enters the
crumpled phase. The collapse is related to the appearance of a singular
vertex on the minbu tree [37, 38]. On the tree on the right hand side in
figure 7, the tree has only few generations and one vertex has many branches.
This is the singular vertex. One can check that the number of branches
emerging from the singular vertex grows with the total number of minbus.
This is shown in figure 9. To distinguish this minbu from the rest, one
calls it the mother universe. The volume of the mother universe grows
extensively with the total volume of the simplicial manifold [39]. The reason
for this rapid growth is related to the singular vertices residing on the mother
universe. There are two singular vertices at a distance one. They form a
singular link [38]. The volume of the neighbourhood of the singular vertices
grows proportionally to the total volume. The situation is analogous to
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Fig. 9. The distribution of the minbu orders in the crumpled phase of simplicial

gravity at κ0 = 2.0 for three different N4 = 4000, 8000, 16000. The position of the

peak corresponding to the singular minbu vertex shifting proportionally to N4.

collapsed branched polymers. Simplicial manifolds have infinite Hausdorff
dimension in this phase.

Let us finish the survey of properties of the model by describing what
happens at the phase transition. The standard way of investigating the be-
haviour of a model at a phase transition is to perform the finite size analysis
of quantities related to derivatives of the free energy. For the transition
driven by κ0 one investigates the second cumulant :

c2(κ0, N4) =
1

N4

∂2F (N4, κ0)

∂κ2
0

=
〈N2

0 〉 − 〈N0〉2
N4

(7.6)

which has an interpretation of the heat capacity and is a measure of thermo-
dynamic fluctuations. The cumulant is related to the integrated correlation
function of the curvature so its behaviour indirectly measures the signal from
the two point function [51,117]. In particular, if the transition is second or-
der, this signal may be related to the occurrence of long range correlations
in the system.

In the thermodynamic limit, N4 → ∞, the fluctuations are expected
to approach a N4–independent value c2(κ0) except at the transition point
where the large N4 behaviour is approximately given by the finite size scaling
formula :

c2(κ0, N4) ∼ N
α/dHν
4 f((κ0 − κ0,cr)N

1/dHν
4 ) (7.7)

where α and ν are the standard critical indices. They are related by the
Fisher scaling relation α = 2 − dHν. The value of the product dHν is
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bounded by the thermodynamic inequality : 1 ≤ dHν. In the limiting case
dHν = 1, the transition is of first order. In this case the exponent α = 1.
The prefactor in the scaling formula (7.7) grows linearly with N4. When
1 < dHν < 2 and 0 < α < 1, the transition is of second order. The
prefactor in (7.7) grows as a power of N4, between zero and one. Finally,
when dHν > 2 and α < 0, the prefactor in (7.7) does not grow with N4 and
then c2 approaches a finite constant at the transition.

Finite size analysis of the second cumulant shows that the large N4 be-
haviour is in agreement with the first order scaling [51]. The observed linear
rise with the volume of the maximum of the heat capacity is related to the
latent heat. Hence one expects a double peak structure in the N0/N4 dis-
tribution. Indeed, such a structure has been found (see figure 10) at some
pseudo-critical value of κ0 [51, 52].
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Fig. 10. The distribution of N0 at κ0 = 2.516 for N4 = 32000 measured in the

computer simulations. The vertical axis corresponds to the number of entries for

a given N0.

To summarize, there are two phases separated by a first order phase
transition. This means that there is no continuum theory associated with
this critical point. We shall discuss the issue of the continuum theory at the
end of the section.

Before doing this let us come back to the thermodynamics. The scaling
properties of the elongated phase are exactly the same as those of the generic
branched polymers as shows the analysis of the minbu-minbu correlations.
The analysis of the minbu trees suggests that the correspondence to branched
polymers can be extended to the crumpled phase as well, when taken with
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some precaution [39]. Indeed, the distribution of vertex orders on the minbu
trees has a peak departing from the rest of the distribution when the number
of minbus grows. Compare figure 2 and figure 9.

The application of the balls-in-boxes model can be extended beyond the
effective theory for minbu trees. Namely, the model gives also a plausible
explanation of the appearance of the singular vertices on the simplicial man-
ifold. If one repeats the same line of arguments as in the section on random
surfaces, one obtains a constrained mean field approximation for the distri-
bution of the vertex orders of simplicial manifolds. The partition function
for the ensemble with N0 vertices and N4 4-simplices is approximated as
follows :

z(N4, N0) =
∑

{qi}

p(q1) . . . p(qN0
)δ(q1 + . . . qN0

− 5N4) (7.8)

and one ends up with the balls-in-boxes model with the density ρ = 5N4/N0.
If one lowers N0, keeping N4 fixed, the density decreases and one triggers
the transition to the collapsed phase with singular vertices. The mean field
approximation assumes the independence of orders of vertices as a first ap-
proximation. The approximation does not give any particular form of p(q).
Some numerical estimates for the weights p(q) were given in [53]. In the stan-
dard numerical setup one uses the (κ0,N4) ensemble. In this ensemble, the
average N0 grows with κ0. Thus one expects the low density phase for large
κ0 and the high density for small κ0. Indeed this is the case. Moreover the
(κ0, N4) ensemble corresponds to the (κ,N) ensemble of the balls-in-boxes
model (4.12) which has a discontinuous phase transition with a double peak
distribution of M/N (figure 3). As we have seen, this is what one observes
in the numerical data for simplicial gravity, too (figure 10). Introducing
some next order corrections to the mean-field approximation by taking into
account the geometrical structure of four dimensional simplicial manifolds
one can explain appearance of the singular links as well [39].

The phase structure of the model discussed in the present section re-
sembles the phase structure of random surfaces above D = c = 1. The
respective line in the (α,D) plane (see figure 4) crosses only the branched
polymer phase and the collapsed phase, exactly as in four dimensions. We
know that in two dimensions, the system enters the branched polymer phase
when the entropy of spiky conformal configurations becomes dominant. The
entropy is confronted with the measure term whose dominance would mean
that the system is in the collapsed phase. There is no other possibility on
the line above D = 1. To open the physical window for the gravity phase
in two dimensions, one has to change the matter content of the theory by
decreasing the central charge c = D below one. This is an important lesson.

One can similarly expect that the phase structure of four dimensional
simplicial gravity depends on the matter dressing of the theory [35, 63].
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Outside the physical window the system is realized either by the branched
polymer phase or by the collapsed phase. The question is now how to find
the window for the gravitational phase. To start with, one can formulate a
more moderate goal, and ask how to prevent the system from entering the
collapsed or the branched polymer phase. This problem has been addressed
recently [59, 63]. Again it is useful to refer to the analogy with the two
dimensional case. The instability of the Liouville phase is caused by the
entropy of spiky configurations of the conformal field [60–62]. One can now
try to repeat the arguments to the effective action for the conformal mode
in four dimensions [59]. The coefficient standing in front of the conformal
anomaly :

Q2 =
1

180

(

NS +
11

2
NF + 62NV − 28

)

+ Q2
grav (7.9)

depends on the matter content of the theory through the number of scalar
fields NS , vector fields NV and fermions NF , coupled to gravity [118]. The
−28 comes from the ghost sector. The contribution from gravitons Q2

grav

has not been calculated since it strongly depends on the ultraviolet physics
for which the perturbative treatment fails. The coefficient Q2 plays the role
of the effective central charge in the theory and it enters the estimates of the
free energy of spiky conformal configurations. The reasoning is analogous
as for the Liouville action in two dimensions [60–62]. It turns out, that for
Q2 less than a certain critical value : Q2 < Q2

crit the system is dominated
by the entropy of spikes which means that the system is in the branched
polymer phase4. Hence, contrary to two dimensions, one expects that the
fewer degrees of freedom coupled to four dimensional gravity, the higher is
the probability for the system to be in the branched polymer phase. An
inspection of the formula (7.9) shows that the strongest increase of the con-
formal charge Q2 comes from vector fields. In the paper [59], the value of
Q2

crit − Q2
grav was estimated to be of order unity. If this is true, this means

that by adding few generations of vector fields, one should be able to pre-
vent the branching induced by the entropical instability of the conformal
factor. Indeed, contrary to the previous investigations where some other
matter fields were used [27, 69–71], which did not affect significantly the
phase structure of simplicial gravity, the recent simulations with a varying
number of vector fields [63] have shown that, when three vector fields are
minimally coupled to gravity, the model has no branched polymer phase.
Instead a new phase is created, where the value of the susceptibility expo-
nent is negative, similarly as in the Liouville phase of the two dimensional
gravity. Now we can readdress the question about the existence of a critical

4 Note, that in two dimensions the analogous inequality is in the opposite direction
c > 1.
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point in the extended model with the matter fields and about the order of
the phase transition.

To summarize, statistical physics of four dimensional complexes with
the simplest geometrical action depending on the number of points and the
number of four simplices is well understood. It is, however, not related to
the continuum physics and we understand why. We hope that the problem
can be cured by extending the phase structure of the model by adding the
appropriate matter fields.

8. Summary

We have reviewed statistical models of random lattices used as a regu-
larization of the problem of summing over the internal random geometry of
one, two and four dimensional objects. The degree of difficulty in solving
the problem grows with the dimensionality of the system, as one might have
naively expected. On the other hand, we have shown that there are some
common mechanisms and features, like the geometrical collapse or the exis-
tence of the branched polymer phase, which are almost independent of the
dimensionality of the problem. Indeed, although the collapsed phase looks
slightly different in one, two or four dimensions, the primary feature, namely
that it is related to the existence of singular vertices created as a surplus
anomaly, is common for all cases. The same universality can be found in the
branched polymer phase.

The most interesting part of the theory, ie the physical window, where
the discrete models can be related to the continuum physics, is dimension
dependent.

In two dimensions, in the Liouville phase, related to the continuum
physics, the universal properties of the model, like the scaling dimensions,
are entirely determined by a single parameter being the conformal charge of
the theory. There is a discrete series of unitary models of conformal matter
coupled minimally to gravity with the central charge in the range between
zero and one which have a realization as statistical models on dynamical
triangulations. The Liouville phase is basically a theory of the conformal
factor.

The situation is more complicated in four dimensions where the theory is
much more complex and requires extending the analysis beyond the confor-
mal sector. But already the analysis of the conformal sector imposes some
restrictions on the combinations of the numbers of various fields needed to
avoid the conformal instability. One expects that there are some other con-
ditions one has to impose on the number of generations of various fields,
which lead to a specific mixture of fields for which the theory is well defined.

I am grateful to J. Ambjørn, P. Bialas, S. Bilke, D. Johnston, J. Ju-
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rkiewicz, A. Krzywicki, B. Petersson, J. Tabaczek and G. Thorleifsson for
many stimulating discussions and the fruitful collaboration. A part of my
research in this area was done when I was a fellow of the Alexander von
Humboldt Foundation and then a DFG fellow at the University of Bielefeld
and when I was visiting the Niels Bohr Institute in Copenhagen and the
LPTHE in Orsay. I would like to thank for hospitality in all these places.
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