FORMATION OF LIGHT RESONANCES IN $K_{\rm S}^0 K^{\pm} \pi^{\mp}$ AND $\eta \pi^+ \pi^-$ CHANNELS IN $\gamma \gamma$ COLLISIONS AT LEP*

Igor Vodopianov

Representing the L3 Collaboration

Petersburg Nuclear Physics Institute Orlova Roscha, 188350 Gatchina, Russia

(Received June 21, 2000)

The $K_{\rm S}^0 K^{\pm} \pi^{\mp}$ and $\eta \pi^+ \pi^-$ final states in two-photon collisions are studied with the L3 detector at LEP using data collected at centre of mass energies from 183 to 202 GeV. The mass spectrum of the $K_{\rm S}^0 K^{\pm} \pi^{\mp}$ final state shows an enhancement around 1470 MeV, which is identified with the pseudoscalar η (1440). This state is observed in the $\gamma\gamma$ collisions for the first time and the value of its two-photon width is obtained. In the $\eta\pi^+\pi^$ channel only the $f_1(1285)$ is observed, upper limits for the formation of η (1440) and η (1295) are given.

PACS numbers: 14.40.Aq, 14.40.Cs

1. Introduction

Resonance formation in two-photon interactions offers a clean environment to study the spectrum of hadronic final states. In this paper we study the reaction $\gamma\gamma \to K_{\rm S}^0 K^{\pm}\pi^{\mp}$ and $\gamma\gamma \to \eta \pi^+\pi^-$ using data collected by the L3 detector at LEP at $\sqrt{s} = 183$ -202 GeV for a total integrated luminosity of 449 pb⁻¹.

The mass region between 1200 MeV and 1600 MeV is expected to contain several resonances [1]. Two are pseudoscalars $(J^{PC} = 0^{-+})\eta$ (1440) and η (1295), and three are axial vector mesons $(J^{PC} = 1^{++}) f_1(1285), f_1(1420)$ and $f_1(1510)$. At present most of measurements were performed in hadron collisions and by studying the radiative decay of the J/ψ . In two-photon collisions only the $f_1(1285)$ [2,3] and $f_1(1420)$ [3,4] were observed in tagged events. For the η (1440) and η (1295) upper limits for their two-photon width were given [4,5]. The η (1440) was therefore considered a glueball candidate.

^{*} Presented at the Meson 2000, Sixth International Workshop on Production, Properties and Interaction of Mesons, Cracow, Poland, May 19–23, 2000.

2. The $K^0_{S} K^{\pm} \pi^{\mp}$ channel

Events are selected by requiring four tracks in the L3 central tracker associated to two vertices: $K^{\pm}\pi^{\mp}$, associated to the primary vertex, and a $K_{\rm S}^0$ decaying into $\pi^+\pi^-$ at a secondary vertex. Candidates for $K_{\rm S}^0 K_{\rm S}^0$ events and events with photons are excluded. The dE/dx measurement is used for particle identification. This selection results in the $K_{\rm S}^0 K^{\pm}\pi^{\mp}$ mass spectrum shown in Fig. 1. The fit of a Gaussian signal over a polynomial background gives the parameters: $M = 1473\pm8$ MeV and $\sigma = 46\pm7$ MeV, consistent with η (1440) and $f_1(1420)$ [1].

Fig. 1. The $K_{\rm S}^0 K^{\pm} \pi^{\mp}$ mass spectrum for $P_{\rm T}^2 < 0.2 \,{\rm GeV}^2$. The total number of events is 290. A Gaussian fit of the peak gives: (66±11) events, $M = 1473\pm8$ MeV and $\sigma = 46\pm7$ MeV.

TABLE I

subfigure	$P_{\rm T}^2,~{\rm GeV}^2$			$N_{\rm EVENT}$	M, MeV	σ , MeV
a	0	_	0.02	37 ± 9	1481 ± 12	48 ± 9
b	0.02	_	0.2	28 ± 7	1473 ± 11	$37\pm~8$
с	0.2	_	1	29 ± 9	1435 ± 10	32 ± 10
d	1	_	7	21 ± 6	1452 ± 11	35 ± 10
d	1	_	7	10 ± 4	1290 ± 12	29 ± 10

Peak parameters for the $P_{\rm T}^2$ bins given in Fig. 2

Spin-zero production is suppressed when a photon has a high virtuality, high four-momentum transfer squared Q^2 , contrary to spin-one production, suppressed at low Q^2 . Therefore we analyse the Q^2 dependence of the peak yield. The maximum Q^2 of the two virtual photons is close to the total transverse momentum of the event, $P_T^2 = (\sum \vec{p}_T)^2$. Fig. 2 presents the $K_S^0 K^{\pm} \pi^{\mp}$ spectra for different P_T^2 ranges. The peak parameters obtained by the fit are given in the Table I.

Fig. 2. $K_{\rm S}^0 K^{\pm} \pi^{\mp}$ spectra for four $P_{\rm T}^2$ ranges: (a) 0–0.02 GeV², (b) 0.02–0.2 GeV², (c) 0.2–1 GeV² and d) 1–7 GeV². In the last $P_{\rm T}^2$ bin the $f_1(1420)$ peak is also seen.

The differential cross section $d\sigma/dP_{\rm T}^2$ (Fig. 3) is analysed using simulation for the pseudoscalar and the axial vector meson production. The Monte Carlo program GaGaRes [6] is used to reproduce all Q^2 dependences of resonance production. When comparing $d\sigma/dP_{\rm T}^2$ with Monte Carlo a compatibility test gives a confidence level CL< 10^{-4} for pure $J^P = 0^-$ (η (1440)) or pure $J^P = 1^+$ ($f_1(1420)$) hypotheses. Fitting a combination of $J^P = 0^-$ and $J^P = 1^+$ waves to the data (with a free normalisation) one gets CL= 30%. Thus both waves are required to reproduce the data. The numbers of events for the spin-zero and spin-one components, estimated by the fit, are 68±10 and 49±9 respectively.

Fig. 3. Differential cross sections $d\sigma/dP_{\rm T}^2$ as function of $P_{\rm T}^2$ for the peak observed in the $K_{\rm S}^0 K^{\pm} \pi^{\mp}$ channel. The data are indicated by points with error bars. The solid line is the sum of spin-zero and spin-one simulations fitted to data. The pseudoscalar (dashed line) and the axial vector (dashed-dotted line) contributions are also shown.

The two-photon width of the η (1440) is evaluated for $P_{\rm T}^2 < 0.02 \text{ GeV}^2$ (Fig. 2(a)). The Monte Carlo gives an efficiency $\varepsilon = 0.74\%$. The contribution of the spin-one component to this $P_{\rm T}^2$ bin is 2%. We obtain:

$$\Gamma_{\gamma\gamma} (\eta (1440)) \operatorname{BR}(\eta (1440) \to KK\pi) = (234 \pm 55_{\mathrm{stat}} \pm 17_{\mathrm{syst}}) \operatorname{eV}.$$

This value is in agreement with the upper limit of 1.2 keV reported by the CELLO Collaboration [4]. (The branching ratio BR for decay η (1440) $\rightarrow K\bar{K}\pi$ is not known.)

3. The $\eta \pi^+ \pi^-$ channel

This channel is selected by taking into account only the events with two charged particles and two photons. A kinematical constraint fit for the η mass is used.

Fig. 4 shows the $\eta \pi^+ \pi^-$ invariant mass spectra for different $P_{\rm T}^2$ ranges. The spectra are dominated by the $\eta'(958)$ resonance. For high $P_{\rm T}^2$ (Fig. 4(c))

Fig. 4. $\eta \pi^+ \pi^-$ mass spectrum for different $P_{\rm T}^2$ ranges: (a) total spectrum, (b) $P_{\rm T}^2 < 0.02 \text{ GeV}^2$ and (c) $P_{\rm T}^2 > 0.02 \text{ GeV}^2$.

we observe a significant signal which we identify with the $f_1(1285)$. A Gaussian fit gives $M = 1280 \pm 4$ MeV and $\sigma = 20 \pm 3$ MeV. There is no peak in the region 1200–1500 MeV in the low P_T^2 events (Fig. 4(b)). The efficiency is $\varepsilon = 2.0\%$ for these masses. The absence of a signal leads to upper limits:

$$\Gamma_{\gamma\gamma}(\eta \ (1440)) \operatorname{BR}(\eta \ (1440) \to \eta \pi \pi) < 88 \text{ eV with } \operatorname{CL} = 90\%$$
 and $\Gamma_{\gamma\gamma}(\eta \ (1295)) \operatorname{BR}(\eta \ (1295) \to \eta \pi \pi) < 61 \text{ eV with } \operatorname{CL} = 90\%$

These values are lower than the upper limit of 300 eV reported by the Crystal Ball Collaboration [5].

4. Conclusions

The pseudoscalar meson η (1440) is observed for the first time in untagged $\gamma\gamma$ collisions in the $K_{\rm S}^0 K^{\pm} \pi^{\mp}$ decay channel. The presence of both spin zero η (1440) and spin one $f_1(1420)$ components is required by the $d\sigma/dP_{\rm T}^2$ distribution. For η (1440) the two-photon width times Branching Ratio is determined. Neither η (1440) nor η (1295) are observed in the decay channel $\eta \pi^+ \pi^-$. The upper limits for their two-photon widths are determined.

The $f_1(1285)$ is observed in both $K_S^0 K^{\pm} \pi^{\mp}$ and $\eta \pi^+ \pi^-$ channels. For the $K_S^0 K^{\pm} \pi^{\mp}$ channel it is the first observation in $\gamma \gamma$ collisions.

I would like to express my gratitude to the two-photon physics group of the L3 Collaboration in particular to M.N. Focacci-Kienzle and V.A. Schegelsky.

REFERENCES

- [1] Particle Data Group, C. Caso et al., Eur. J. Phys. C3, 1 (1998).
- [2] Mark II collaboration, G. Gidal et al., Phys. Rev. Lett. 59, 2012 (1987); Phys. Rev. Lett. 59, 2016 (1987).
- [3] TPC-2γ collaboration, H. Aihara et al., Phys. Rev. D38, 1 (1988); Phys. Lett. B 209, 107 (1988).
- [4] CELLO collaboration, H.J. Behrend et al., Z. Phys. C42, 367 (1989).
- [5] Crystal Ball collaboration, D. Antreasyan et al., Phys. Rev. D36, 2633 (1987).
- [6] R. van Gulik, Nucl. Phys. B82 (Proc. Suppl.), 311 (2000); G.A. Schuler,
 F.A. Berends, R. van Gulik, Nucl. Phys. B523, 423 (1998).