FORMATION OF LIGHT RESONANCES IN $\boldsymbol{K}_{\mathrm{S}}^{0} \boldsymbol{K}^{ \pm} \boldsymbol{\pi}^{\mp}$ AND $\boldsymbol{\eta} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}$CHANNELS IN $\gamma \gamma$ COLLISIONS AT LEP*

Igor Vodopianov
Representing the L3 Collaboration
Petersburg Nuclear Physics Institute
Orlova Roscha, 188350 Gatchina, Russia

(Received June 21, 2000)
The $K_{\mathrm{S}}^{0} K^{ \pm} \pi^{\mp}$ and $\eta \pi^{+} \pi^{-}$final states in two-photon collisions are studied with the L3 detector at LEP using data collected at centre of mass energies from 183 to 202 GeV . The mass spectrum of the $K_{\mathrm{S}}^{0} K^{ \pm} \pi^{\mp}$ final state shows an enhancement around 1470 MeV , which is identified with the pseudoscalar $\eta(1440)$. This state is observed in the $\gamma \gamma$ collisions for the first time and the value of its two-photon width is obtained. In the $\eta \pi^{+} \pi^{-}$ channel only the $f_{1}(1285)$ is observed, upper limits for the formation of η (1440) and η (1295) are given.

PACS numbers: 14.40.Aq, 14.40.Cs

1. Introduction

Resonance formation in two-photon interactions offers a clean environment to study the spectrum of hadronic final states. In this paper we study the reaction $\gamma \gamma \rightarrow K_{\mathrm{S}}^{0} K^{ \pm} \pi^{\mp}$ and $\gamma \gamma \rightarrow \eta \pi^{+} \pi^{-}$using data collected by the L3 detector at LEP at $\sqrt{s}=183-202 \mathrm{GeV}$ for a total integrated luminosity of $449 \mathrm{pb}^{-1}$.

The mass region between 1200 MeV and 1600 MeV is expected to contain several resonances [1]. Two are pseudoscalars ($\left.J^{P C}=0^{-+}\right) \eta(1440)$ and $\eta(1295)$, and three are axial vector mesons $\left(J^{P C}=1^{++}\right) f_{1}(1285), f_{1}(1420)$ and $f_{1}(1510)$. At present most of measurements were performed in hadron collisions and by studying the radiative decay of the J / ψ. In two-photon collisions only the $f_{1}(1285)$ [2,3] and $f_{1}(1420)$ [3,4] were observed in tagged events. For the $\eta(1440)$ and $\eta(1295)$ upper limits for their two-photon width were given $[4,5]$. The $\eta(1440)$ was therefore considered a glueball candidate.

[^0]
2. The $K_{S}^{0} K^{ \pm} \boldsymbol{\pi}^{\mp}$ channel

Events are selected by requiring four tracks in the L3 central tracker associated to two vertices: $K^{ \pm} \pi^{\mp}$, associated to the primary vertex, and a K_{S}^{0} decaying into $\pi^{+} \pi^{-}$at a secondary vertex. Candidates for $K_{\mathrm{S}}^{0} K_{\mathrm{S}}^{0}$ events and events with photons are excluded. The $d E / d x$ measurement is used for particle identification. This selection results in the $K_{\mathrm{S}}^{0} K^{ \pm} \pi^{\mp}$ mass spectrum shown in Fig. 1. The fit of a Gaussian signal over a polynomial background gives the parameters: $M=1473 \pm 8 \mathrm{MeV}$ and $\sigma=46 \pm 7 \mathrm{MeV}$, consistent with η (1440) and $f_{1}(1420)$ [1].

Fig. 1. The $K_{\mathrm{S}}^{0} K^{ \pm} \pi^{\mp}$ mass spectrum for $P_{\mathrm{T}}^{2}<0.2 \mathrm{GeV}^{2}$. The total number of events is 290 . A Gaussian fit of the peak gives: (66 ± 11) events, $M=1473 \pm 8 \mathrm{MeV}$ and $\sigma=46 \pm 7 \mathrm{MeV}$.

TABLE I
Peak parameters for the P_{T}^{2} bins given in Fig. 2

subfigure	$P_{\mathrm{T}}^{2}, \mathrm{GeV}^{2}$			$N_{\text {EVENT }}$	M, MeV	σ, MeV
a	0	-	0.02	37 ± 9	1481 ± 12	48 ± 9
b	0.02	-	0.2	28 ± 7	1473 ± 11	37 ± 8
c	0.2	-	1	29 ± 9	1435 ± 10	32 ± 10
d	1	-	7	21 ± 6	1452 ± 11	35 ± 10
d	1	-	7	10 ± 4	1290 ± 12	29 ± 10

Spin-zero production is suppressed when a photon has a high virtuality, high four-momentum transfer squared Q^{2}, contrary to spin-one production, suppressed at low Q^{2}. Therefore we analyse the Q^{2} dependence of the peak yield. The maximum Q^{2} of the two virtual photons is close to the total transverse momentum of the event, $P_{\mathrm{T}}^{2}=\left(\sum \overrightarrow{p_{\mathrm{T}}}\right)^{2}$. Fig. 2 presents the $K_{\mathrm{S}}^{0} K^{ \pm} \pi^{\mp}$ spectra for different P_{T}^{2} ranges. The peak parameters obtained by the fit are given in the Table I.

Fig. 2. $K_{\mathrm{S}}^{0} K^{ \pm} \pi^{\mp}$ spectra for four P_{T}^{2} ranges: (a) $0-0.02 \mathrm{GeV}^{2}$, (b) $0.02-0.2 \mathrm{GeV}^{2}$, (c) $0.2-1 \mathrm{GeV}^{2}$ and d) $1-7 \mathrm{GeV}^{2}$. In the last P_{T}^{2} bin the $f_{1}(1420)$ peak is also seen.

The differential cross section $d \sigma / d P_{T}^{2}$ (Fig. 3) is analysed using simulation for the pseudoscalar and the axial vector meson production. The Monte Carlo program GaGaRes [6] is used to reproduce all Q^{2} dependences of resonance production. When comparing $d \sigma / d P_{T}^{2}$ with Monte Carlo a compatibility test gives a confidence level $\mathrm{CL}<10^{-4}$ for pure $J^{P}=0^{-}$ ($\eta(1440)$) or pure $J^{P}=1^{+}\left(f_{1}(1420)\right)$ hypotheses. Fitting a combination of $J^{P}=0^{-}$and $J^{P}=1^{+}$waves to the data (with a free normalisation) one gets $\mathrm{CL}=30 \%$. Thus both waves are required to reproduce the data. The numbers of events for the spin-zero and spin-one components, estimated by the fit, are 68 ± 10 and 49 ± 9 respectively.

Fig. 3. Differential cross sections $d \sigma / d P_{\mathrm{T}}^{2}$ as function of P_{T}^{2} for the peak observed in the $K_{\mathrm{S}}^{0} K^{ \pm} \pi^{\mp}$ channel. The data are indicated by points with error bars. The solid line is the sum of spin-zero and spin-one simulations fitted to data. The pseudoscalar (dashed line) and the axial vector (dashed-dotted line) contributions are also shown.

The two-photon width of the $\eta(1440)$ is evaluated for $P_{\mathrm{T}}^{2}<0.02 \mathrm{GeV}^{2}$ (Fig. 2(a)). The Monte Carlo gives an efficiency $\varepsilon=0.74 \%$. The contribution of the spin-one component to this P_{T}^{2} bin is 2%. We obtain:

$$
\Gamma_{\gamma \gamma}(\eta(1440)) \operatorname{BR}(\eta(1440) \rightarrow K \bar{K} \pi)=\left(234 \pm 55_{\text {stat }} \pm 17_{\text {syst }}\right) \mathrm{eV} .
$$

This value is in agreement with the upper limit of 1.2 keV reported by the CELLO Collaboration [4]. (The branching ratio BR for decay $\eta(1440) \rightarrow$ $K \bar{K} \pi$ is not known.)

3. The $\eta \pi^{+} \pi^{-}$channel

This channel is selected by taking into account only the events with two charged particles and two photons. A kinematical constraint fit for the η mass is used.

Fig. 4 shows the $\eta \pi^{+} \pi^{-}$invariant mass spectra for different P_{T}^{2} ranges. The spectra are dominated by the $\eta^{\prime}(958)$ resonance. For high P_{T}^{2} (Fig. 4(c))

Fig. 4. $\quad \eta \pi^{+} \pi^{-}$mass spectrum for different P_{T}^{2} ranges: (a) total spectrum, (b) $P_{\mathrm{T}}^{2}<0.02 \mathrm{GeV}^{2}$ and (c) $P_{\mathrm{T}}^{2}>0.02 \mathrm{GeV}^{2}$.
we observe a significant signal which we identify with the $f_{1}(1285)$. A Gaussian fit gives $M=1280 \pm 4 \mathrm{MeV}$ and $\sigma=20 \pm 3 \mathrm{MeV}$. There is no peak in the region $1200-1500 \mathrm{MeV}$ in the low P_{T}^{2} events (Fig. 4(b)). The efficiency is $\varepsilon=2.0 \%$ for these masses. The absence of a signal leads to upper limits:

$$
\begin{aligned}
& \Gamma_{\gamma \gamma}(\eta(1440)) \mathrm{BR}(\eta(1440) \rightarrow \eta \pi \pi)<88 \mathrm{eV} \text { with } \mathrm{CL}=90 \% \text { and } \\
& \Gamma_{\gamma \gamma}(\eta(1295)) \mathrm{BR}(\eta(1295) \rightarrow \eta \pi \pi)<61 \mathrm{eV} \text { with } \mathrm{CL}=90 \%
\end{aligned}
$$

These values are lower than the upper limit of 300 eV reported by the Crystal Ball Collaboration [5].

4. Conclusions

The pseudoscalar meson $\eta(1440)$ is observed for the first time in untagged $\gamma \gamma$ collisions in the $K_{\mathrm{S}}^{0} K^{ \pm} \pi^{\mp}$ decay channel. The presence of both spin zero $\eta(1440)$ and spin one $f_{1}(1420)$ components is required by the $d \sigma / d P_{\mathrm{T}}^{2}$ distribution. For $\eta(1440)$ the two-photon width times Branching Ratio is determined.

Neither $\eta(1440)$ nor η (1295) are observed in the decay channel $\eta \pi^{+} \pi^{-}$. The upper limits for their two-photon widths are determined.

The $f_{1}(1285)$ is observed in both $K_{\mathrm{S}}^{0} K^{ \pm} \pi^{\mp}$ and $\eta \pi^{+} \pi^{-}$channels. For the $K_{\mathrm{S}}^{0} K^{ \pm} \pi^{\mp}$ channel it is the first observation in $\gamma \gamma$ collisions.

I would like to express my gratitude to the two-photon physics group of the L3 Collaboration in particular to M.N. Focacci-Kienzle and V.A. Schegelsky.

REFERENCES

[1] Particle Data Group, C. Caso et al., Eur. J. Phys. C3, 1 (1998).
[2] Mark II collaboration, G. Gidal et al., Phys. Rev. Lett. 59, 2012 (1987); Phys. Rev. Lett. 59, 2016 (1987).
[3] TPC-2 γ collaboration, H. Aihara et al., Phys. Rev. D38, 1 (1988); Phys. Lett. B 209, 107 (1988).
[4] CELLO collaboration, H.J. Behrend et al., Z. Phys. C42, 367 (1989).
[5] Crystal Ball collaboration, D. Antreasyan et al., Phys. Rev. D36, 2633 (1987).
[6] R. van Gulik, Nucl. Phys. B82 (Proc. Suppl.), 311 (2000); G.A. Schuler, F.A. Berends, R. van Gulik, Nucl. Phys. B523, 423 (1998).

[^0]: * Presented at the Meson 2000, Sixth International Workshop on Production, Properties and Interaction of Mesons, Cracow, Poland, May 19-23, 2000.

