QUASI-2D FERMI SURFACES OF THE
MAGNETIC COMPOUND CeAgSb$_2$*

Y. INADA, A. TAMIZABEL, Y. SAWAI, S. IKEDA, H. SHISHIDO
T. OKUBO, M. YAMADA, Y. ONUKI

Graduate School of Science, Osaka University
Toyonaka Osaka, 560-0043, Japan

AND T. EBIHARA

Department of Physics, Faculty of Science, Shizuoka University
836 Ohya, Shizuoka 422-8529, Japan

(Received July 10, 2002)

We have succeeded in growing high-quality single crystals of CeAgSb$_2$, and carried out the de Haas-van Alphen (dHvA) experiment. Cylindrical Fermi surfaces were observed, together with closed Fermi surfaces. The effective cyclotron mass is in the range from 0.9 to 32 m$_0$. Large cylindrical Fermi surfaces occupying half of the Brillouin zone were detected, which are highly different from small Fermi surfaces in the reference compounds LaAgSb$_2$ and YAgSb$_2$ with a semimetallic character. CeAgSb$_2$ is the first example in which the 4f electron becomes itinerant and possesses the magnetic moment.

PACS numbers: 71.18.+y, 71.27.+a

1. Introduction

RTEX$_2$(R: rare earth, T: transition metal) crystallizes in the tetragonal ZrCuSi$_2$ type structure (space group P4/nmm) [1, 2]. The crystal structure of CeAgSb$_2$ can be understood from the stacking arrangement of Sb-CeSb-Ag-CeSb layers [1]. It shows the magnetic ordering below 9.7 K. The magnetic structure is reported to be ferromagnetic with a small ordered moment of 0.33 μ_B [3], although the magnetization curve is highly anisotropic and cannot be understood from the simple ferromagnetic structure [2].

* Presented at the International Conference on Strongly Correlated Electron Systems, (SCES02), Cracow, Poland, July 10–13, 2002.
The dhvA and Shubnikov–de Haas (SdH) experiments on CeAgSb$_2$ as well as on reference compounds YAgSb$_2$ and LaAgSb$_2$ were reported by Meyers et al. [4]. A small Fermi surface was observed for CeAgSb$_2$. On the other hand, the Fermi surface in YAgSb$_2$ and LaAgSb$_2$ was found to consist of a cylindrical Fermi surface and a few kinds of closed (ellipsoidal) ones. The reason why larger Fermi surfaces were not observed in CeAgSb$_2$ was mainly due to the fact that the measurement was carried out at a high temperature of 2.1 K and the specific heat coefficient γ is reported to be 75 mJ/K2-mol for the polycrystalline sample of CeAgSb$_2$ [5], which is larger than that of LaAgSb$_2$ ($\gamma = 2.62$ mJ/K2-mol) [6].

We have thus done the dhvA experiment by standard field-modulation method at low temperatures down to 30 mK and in high magnetic fields up to 170 kOe to clarify the electronic state.

2. Experimental and discussion

Single crystals were grown by the self-flux method, as described in ref [2]. The starting materials were 3N(99.9% pure)-Ce, 5N-Ag and 5N-Sb. The typical size was 8×5×3 mm3, being flat in the (001) plane.

![Fig. 1. Temperature dependence of (a) electrical resistivities and (b) anisotropic ratio, ρ_{101}/ρ_{100}, in CeAgSb$_2$.](image-url)

Figure 1 (a) shows the temperature dependence of the electrical resistivity in the current J along [1 0 1] and [0 0 1]. The residual resistivity ρ_0 and residual resistivity ratio ρ_{RT}/ρ_0 were 1.25 $\mu\Omega\cdot$cm and 522 for the current J \parallel [001] and 0.37 $\mu\Omega\cdot$cm and 210 for the current J \parallel [100], respectively, indicating a high-quality sample. The temperature dependence of the resistivity ratio between J \parallel [001] and [100] is shown in Fig. 1 (b). Anisotropy of the resistivity is large: the ratio is 8.3 at room temperature and 17 around 10 K, reflecting the quasi-two dimensional electronic state. The electrical resistivity in both
directions decreases steeply below $T_{ord} = 9.7$ K. The temperature dependence of the electrical resistivity below 3 K follows:

$$\rho = \rho_0 + AT^2 + BT(1 + 2T/\Delta)\exp(-\Delta/T).$$ \hspace{1cm} (1)

The third term in Eq. (1) is applicable to the magnetic compound with a spin gap of Δ. The value of Δ are 7.6 K for $J \parallel [001]$ and 9.7 K for $J \parallel [100]$, respectively.

![Diagram](image)

Fig. 2. (a) Typical dHvA oscillation and (b) the corresponding FFT spectrum in CeAgSb$_2$

Figure 2 shows a typical dHvA oscillation and its fast Fourier transform (FFT) spectrum for $H \parallel [001]$. Here, the dHvA frequency $F (= hC_F / 2\pi e)$ is proportional to the extremal (maximum or minimum) cross-sectional area S_F of the Fermi surface. Three groups of branches, $c_{1,2,3}$, were observed at high magnetic fields ranging 100 to 169 kOe. The frequencies of these branches increase approximately as a function of $1/\cos \theta$, where θ is a tilted field angle from [001] to [100]. These branches correspond to cylindrical Fermi surfaces. The presence of these branches indicates the quasi-two dimensional electronic state as expected from the anisotropy of the electrical resitivities shown in Fig. 1.

These branches possess rather heavy cyclotron masses, $32m_0$ for branch c_1, $20m_0$ for branch c_2 and $10m_0$ for branch c_3. The cross-section of branch c_1 in CeAgSb$_2$ ($F = 1.12 \times 10^8$ Oe) occupies approximately half of the Brillouin zone because the cross-sectional area of the Brillouin zone corresponds to 2.2×10^8 Oe in the (001) plane.

In the localized f-electron systems, the Fermi surfaces of a cerium compounds is similar to those of corresponding reference La or Y compounds. The main dHvA frequencies in CeAgSb$_2$ are, however, an order of magnitude larger than those in LaAgSb$_2$ or YAgSb$_2$. Namely, the largest cylindrical Fermi surface in LaAgSb$_2$ or YAgSb$_2$ corresponds to 1.7×10^7 Oe, which means a small Fermisurface. LaAgSb$_2$ or YAgSb$_2$ are a semimetallic with a small electronic specific heat coefficient $\gamma \approx 1$ mJ/K2 mol.
It is concluded that one 4f-electron per cerium in CeAgSb$_2$ contributes the volume of the Fermi surface, indicating a band electron in CeAgSb$_2$. CeAgSb$_2$ is the first example in which the 4f electron becomes itinerant and possesses the magnetic ordered moment.

This work was supported by the Grant-in-Aid for COE Research (10CE2004) of the Ministry of Education, Culture, Sports, Science and Technology of Japan.

REFERENCES