\textbf{\textit{11B-NMR STUDIES OF WEAKLY FERROMAGNETIC BaB}_6^*}

\textit{SH. MUSHKOLAJ, J.L. GAVILANO, D. RAU, H.R. OTT}

Laboratorium für Festkörperphysik, ETH-Hönggerberg, 8033 Zürich, Switzerland

\textit{A. BLANCHI, AND Z. FISK}

National High Magnetic Field Laboratory, Florida State University
Tallahassee, Florida 32306, USA

(Received July 10, 2002)

\textit{BaB}_6 is a weakly ferromagnetic material with a Curie temperature \(T_C\) well above room temperature. From the results of d.c. magnetization measurements on single crystalline \(\text{BaB}_6\), the saturation magnetization at low temperatures is \(8\times10^{-4}(\mu_\text{B}/\text{f.u.})\), in line with other weak ferromagnets of the hexaboride series. The \(^{11}\text{B}-\text{NMR}\) spectra measured on a collection of single crystals of \(\text{BaB}_6\) yield a quadrupolar frequency of 472 KHz, in good agreement with calculated field gradients for this type of materials. The central \(^{11}\text{B}-\text{NMR}\) transition consists of two partially resolved signals, where the frequency displacement between them is of the order of 10 KHz. One of the signals exhibits a positive, the other a negative frequency shift, both of the order of 50 ppm. Between 7 K and room temperature these shifts do not vary with temperature. The temperature dependence of the spin-lattice relaxation rate \(T_1^{-1}(T)\) at the B sites is similar to that of other alkaline-earth hexaborides.

PACS numbers: 75.50.Cc, 76.60.–k, 76.60.Ci

Alkaline-earth hexaboride compounds XB\(_6\) (where X=Ca, Sr and Ba) adopt a simple cubic CsCl-type crystal structure containing divalent metal ions and B\(_6\)-octahedra. In spite of this simple crystal structure they show very puzzling physical properties. \textit{E.g.}, La-doped Ca\(_{1-x}\)La\(_x\)B\(_6\) with \(x=0.005\) and SrB\(_6\) exhibit weak ferromagnetism with very high Curie temperatures \([1, 2]\) of the order of 600 K or more.

* Presented at the International Conference on Strongly Correlated Electron Systems, (SCES02), Cracow, Poland, July 10–13, 2002.

(1537)
In figure 1 we show one example of a hysteresis loop of BaB$_6$, measured at 200 K, using a commercial SQUID magnetometer. From this type of measurements we found that BaB$_6$ orders ferromagnetically with a Curie temperature T_C well above room temperature. The coercive field H_C at 200 K is of the order of 250 Oe and the saturation magnetization at this temperature is $6.5 \times 10^{-4} (\mu_B/\text{f.u.})$. In addition to the ferromagnetic part of the magnetization, we also identify paramagnetic and diamagnetic contributions. The temperature dependence of the magnetic susceptibility $\chi (T)$, measured at 5 T, exhibits a Curie-Weiss behavior with an effective magnetic moment of $5.6 \times 10^{-2}(\mu_B/\text{f.u.})$ and a paramagnetic Curie temperature of $\theta = -6$ K. The diamagnetic offset is $-2 \times 10^{-6} (\text{emu/mol of f.u.})$ [3]. Similar results were obtained for other weak ferromagnets in the hexaboride series.

$$M_{\text{sat}} = 6.5 \times 10^{-4} (\mu_B/\text{f.u.})$$
$$H_C = 250 \text{ Oe}$$
$$T=200 \text{ K}$$

![Fig. 1. Hysteresis loop $M(H)$ of BaB$_6$ at 200K.](image)

In order to obtain additional microscopic information on the magnetic features of BaB$_6$, we made NMR measurements on 11B nuclei. For these measurements we have used two types of standard spin-echo NMR techniques: sweeping the magnetic field H at a constant frequency ν and sweeping the frequency at a constant magnetic field, respectively, and by recording the spin-echo intensity as a function of H or ν. The wide NMR spectra which include the central line and quadrupolar wings were measured by magnetic field sweeping. High resolution measurements of the central line alone were performed at a fixed magnetic field and changing stepwise the frequency. From our measurements of the wings of the 11B-NMR (data not shown here [3]), we extract a quadrupolar frequency for the 11B nuclei of 472 KHz,
which implies an electric field gradient at the B sites of 1.09×10^{21} V/m2.

This value is in good agreement (better than 5 %) with theoretical values predicted for BaB$_6$ \[4\].

Figure 2 depicts the central transition ($-1/2 \leftrightarrow +1/2$) for 11B nuclei taken at 85 K in a field of 7.06 T. The central transition consists of two partially overlapping signals with frequency shifts of +60 ppm and -40 ppm, respectively. The frequency shifts have been measured by comparing the position of the two peaks of the 11B central line in BaB$_6$ with the resonant frequency of 11B nuclei in liquid B(OH)$_3$. Between 7 K and room temperature the 11B NMR line shifts do not vary with temperature. The width of each of the two individual 11B NMR-signals is 10 KHz and their intensities are approximately equal. One may interpret the results for the 11B NMR central line as an indication that in BaB$_6$ the B sites experience two magnetically different environments. The appearance of two peaks in the 11B central line seems to be independent of the concentration of conduction electrons, because it has also been observed in hexaborides with very different transport properties, such as CaB$_6$, La-doped CaB$_6$ (Ca$_{1-x}$La$_x$B$_6$ for $x = 0.005$, $x = 0.1$ and $x = 0.2$), BaB$_6$, LaB$_6$ and YbB$_6$ \[3, 5\].

Fig. 2. Central signal of the 11B-NMR Spectrum of BaB$_6$ at 7.2 T. The solid line represents the best fit to the data at 85 K using the sum of two Gaussian functions.
The temperature dependence of the spin-lattice relaxation rate $T_1^{-1}(T)$ measured in a constant magnetic field of 5.2 T is very different in two different T-regions. At temperatures above a crossover temperature of approximately 5 K, T_1^{-1} is, on the average, temperature independent and at temperatures below 5 K it decreases very rapidly with decreasing temperature. These results for the spin-lattice relaxation rate are very similar to the cases of $\text{Ca}_{0.995}\text{La}_{0.005}\text{B}_6$ and SrB_6 [6].

REFERENCES