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Although the notion of entropy lies at the core of statistical mechan-
ics, it is not often used in statistical mechanical models to characterize
phase transitions, a role more usually played by quantities such as various
order parameters, specific heats or susceptibilities. The relative entropy
induces a metric, the so-called information or Fisher–Rao metric, on the
space of parameters and the geometrical invariants of this metric carry in-
formation about the phase structure of the model. In various models the
scalar curvature, R, of the information metric has been found to diverge at
the phase transition point and a plausible scaling relation postulated. For
spin models the necessity of calculating in non-zero field has limited ana-
lytic consideration to one-dimensional, mean-field and Bethe lattice Ising
models. We extend the list somewhat in the current note by considering
the one-dimensional Potts model, the two-dimensional Ising model coupled
to two-dimensional quantum gravity and the three-dimensional spherical
model. We note that similar ideas have been applied to elucidate possi-
ble critical behaviour in families of black hole solutions in four space-time
dimensions.
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1. Introduction

The notion of entropy,

S = −
∑

α

pα ln (pα) , (1)

lies at the heart of statistical mechanics where pα is the probability of being
in state α. It gives a measure of the number of microstates Ω accessible to a
system S = lnΩ . It is also possible to define a relative entropy with respect
to some reference set of configurations of probability rα (such as those at
the critical point or zero temperature),

G(p|r) = −
∑

α

pα ln

(

pα

rα

)

. (2)

If θ represents parameters characterizing the class of models under consider-
ation, the relative entropy, G, induces a metric for two “close” configurations
θ and θ + δθ:

dl2 = G (p(θ)|p(θ + δθ)) . (3)

Since G(p|p) = 0 and ∂G/∂θ = 0 we find

dl2 =
∂2G

∂θi∂θj
dθidθj . (4)

If we assume a Gibbs-type distribution for the pα,

pα =
1

Z
exp(−θiΦi) −→ S = 〈θiΦi〉 + lnZ , (5)

then the metric may be written as

dl2 =
∂2 lnZ

∂θi∂θj
dθidθj . (6)

This metric is well known in statistics as the Fisher–Rao metric, and charac-
terizes the “closeness” of probability distributions [1]. For a one-parameter
distribution the expectation value is the Fisher information, I(θ), given by

I(θ) =

〈

− ∂2

∂θ2
lnZ

〉

, (7)

and is inversely related to the variance: I(θ)Var(θ) = 1. In the multiparam-
eter case this generalizes in an obvious manner to the covariance matrix.
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Various authors [2–4] have observed that the geometric invariants of the
metric, in particular the curvature, R, might be used to characterize the
phase structure of statistical mechanical models. The first observation to
note is that a non-interacting model, the ideal gas, has a flat geometry since
Rideal = 0. The suggestion was then that the curvature was a measure of
the strength of interaction, an observation confirmed by a calculation in the
case of a van der Waals gas (which is interacting):

RvdW =
4

3

αβ

v̄

F (α, β)

D(α, β)2
, (8)

where β is the inverse temperature, α the pressure, and v̄(α, β) and F (α, β)
are expressions appearing in the equation of state. This shows that the
curvature diverges along the spinodal line where D(α, β) = 0.

These examples suggest that phase transitions are manifested as diver-
gences in the scalar curvature associated with the Fisher–Rao metric, at
least in two-parameter models. A natural question to ask is whether any
of the standard scaling exponents associated with a transition can then be
extracted from the behaviour of the curvature. This is best pursued by con-
sideration of some specific examples. If we consider a spin model in field,
the manifold of parameters, M, is two-dimensional and parametrised by
(θ1, θ2) = (β, h). In this case, the components of the Fisher–Rao metric
take the particularly simple form

Gij = ∂i∂jf , (9)

where f is the reduced free energy per site and ∂i = ∂/∂θi. With the metric
given in Eq. (9), R may be calculated succinctly as

R = − 1

2G2

∣

∣

∣

∣

∣

∣

∂2
βf ∂β∂hf ∂2

hf

∂3
βf ∂2

β∂hf ∂β∂
2
hf

∂2
β∂hf ∂β∂

2
hf ∂3

hf

∣

∣

∣

∣

∣

∣

, (10)

where G = det(Gij). Since the only scale present near criticality for a
model displaying a higher-order transition is the correlation length, ξ, it
has been hypothesised on dimensional grounds that R ∼ ξd, where d is the
dimensionality of the system [2–4]. If we assume that hyperscaling holds,
νd = 2 − α, this leads to

R ∼ |ξ|(2−α)/ν . (11)

To test the behaviour of R, one requires models which are solvable in
field in order to obtain analytic expressions, and these are rather thin on
the ground. Indeed, R has been calculated for the mean-field and Bethe-
lattice Ising models [5] and the above scaling behaviour verified. It has also
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been calculated for the one-dimensional Ising model [3] where it takes the
remarkably simple form

RIsing = 1 +
coshh

√

sinh2 h+ e−4β
. (12)

In this case R is positive definite and diverges only at the zero-temperature,
zero-field “critical point” of the model. The correlation length is given by

ξ−1 = − ln (tanh(β)) , (13)

so that ξ ∼ exp(2β) near criticality, and (11) holds there with α = 1, ν = 1
as expected1.

Given this rather short list of examples, any further additions would
be very worthwhile in order to see which features are generic and which
are particular to the models concerned. We expand the list incremen-
tally here, looking at the one-dimensional Potts model, the two-dimensional
Ising model coupled to two-dimensional quantum gravity and the three-
dimensional spherical model, which shares the critical exponents of the just
mentioned coupled Ising model. We also discuss the application of similar
ideas to critical behaviour in various families of black holes. The present pa-
per is essentially an amalgam of results presented in [6–8], with some added
discussion of related work in black hole physics.

2. One

The partition function for the 1D q-state Potts model is given by

ZN (y, z) =
∑

{σ}

exp



β
N
∑

j=1

(

δ(σj , σj+1) −
1

q

)

+ h
N
∑

j=1

(

δ(σj , 1) −
1

q

)



 ,

(14)
where the spins, σj ∈ {1, . . . , q}, are defined on the sites, j ∈ {1, . . . , N}, of
the lattice and where we have defined y = exp(β) and z = exp(h) for later
calculational convenience. The model may be solved by transfer matrix
methods [9], just as the 1D Ising model. For general q the full transfer
matrix T (y, z) may be written as q − 2 diagonal elements, (y − 1)(yz)−1/q ,
and a 2 × 2 factor t(y, z):

t(y, z) =
1

(yz)1/q

(

yz z1/2
√
q − 1

z1/2
√
q − 1 y + q − 2

)

. (15)

1 The Bethe lattice model also satisfies the postulated scaling, although there are some
subtleties coming from the exponent α being zero [5].
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The partition function is ZN (y, z) = TrT (y, z)N and the eigenvalues of
T (y, z) are λ0, λ1, . . . , λq−1, where

λ0

λ1

}

=
1

2

[

y(1 + z) + q − 2 ±
√

(y(1 − z) + q − 2)2 + (q − 1)4z
]

(yz)−1/q

(16)
and λ2, . . . , λq−1 = (y − 1)(yz)−1/q . The reduced free energy per site in the
thermodynamic limit, N → ∞, is thus given by f = − lnλ0.

It is straightforward to use this expression for the free energy in Eq. (10)
to obtain the curvature, R. In the current notation we re-derive the expres-
sion for the Ising model2 as

RIsing = 1 +
y(1 + z)

√

y2 − 2y2z + y2z2 + 4z
. (17)

The expression for general q is similar in form to this, and is

RPotts = A(q, y, z) +
B(q, y, z)
√

η(q, y, z)
, (18)

where the coefficients A(q, y, z) and B(q, y, z) are smooth functions of y and
z and do not diverge for finite (physical) temperature or field. Furthermore

η(q, y, z) = [y(1 − z) + q − 2]2 + (q − 1)4z . (19)

The expressions for A(q, y, z) and B(q, y, z) are very lengthy for general q
(although still easily obtained) so we do not reproduce them here.

In zero-field (z = 1) the expression for R is much more compact and is
written for general q as

R =
(y + q − 1)(4y2 + (q − 2)y − (q − 2)(q − 1))

(q − 1)(2y + q − 2)2
. (20)

We see that as y ranges from 1 to ∞, R ranges from (4 − q)/(q − 1) to ∞.
In particular, the sign of the y = 1 (β = 0) limit of R changes at q = 4,
although the general morphology of R as a function of y and z remains the
same for all q > 2 as we shall see below.

The correlation length for the one-dimensional Potts model is defined in
a similar manner to that of the Ising model,

ξ−1 = − ln

(

λ1

λ0

)

, (21)

2 There is a factor of two difference in the definitions of β, h between the Ising and
Potts notations coming from the different spin definitions.
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so ξ ∼ y for z = 1, y → ∞. We thus retrieve the scaling of R for the one-
dimensional Potts model expected from Eq. (11), namely R ∼ y as y → ∞.
The exponents, as for the Ising model, are α = 1, ν = 1.

The general features of R at non-zero temperature and field are perhaps
easiest seen in a contour plot as a function of y and z. In Fig. 1 we show
the Ising (q = 2) case which has certain non-generic features. The ±h
symmetry of the Ising model appears as a z → 1/z symmetry in the plot of
R. In addition, one can see that R is positive for all y and z. The maximum
of R for a given y value lies along the zero field line at z = 1. In Fig. 2,
R is plotted for the 3-state Potts model, We see that there is no longer a
z → 1/z symmetry and that R is no longer positive definite.
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Fig. 1. A plot of R for the one-dimensional Ising model for y = 1 . . . 10, z = 0 . . . 5.

The positivity of R and the expected z → 1/z symmetry are both apparent.

Some years ago Lee and Yang [10] addressed the question of how the
singularities associated with field-driven phase transitions in Ising-like spin
models on lattices arose in the thermodynamic limit. This was later ex-
tended by various authors to other models and to temperature-driven tran-
sitions [11,12]. Lee and Yang observed that the zeroes of the partition func-
tion for a spin model in a complex external field on a finite lattice would
give rise to singularities in the free energy. In the thermodynamic limit these
complex zeroes move in to pinch the real axis, signalling the onset of a phys-
ical phase transition. Typically, the loci of zeroes are lines in the complex
field or temperature plane and when the endpoints of such lines occur at
non-physical (i.e. complex) external field values they can be considered as
ordinary critical points with an associated edge critical exponent, usually
dubbed the Lee–Yang edge exponent [11].
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Fig. 2. A plot of R for the one-dimensional 3-state Potts model for y = 1 . . . 10,

z = 0 . . . 5. R is no longer positive definite for physical values of y, z and there is

no z → 1/z symmetry. In addition the maximum of R does not lie at z = 1.

The Lee–Yang zeroes for the one-dimensional Potts model on a periodic
chain with N sites are given by the solutions [9, 13] of

ZN = (λ1)
N + (λ0)

N = 0 , ⇔ λ1 = exp

(

inπ

N

)

λ0 , (22)

where λ0,1 are the eigenvalues given in Eq. (16) and n is odd. In the ther-
modynamic limit the locus of zeroes is determined by |λ0| = |λ1| or

η(q, y, z) = [y(1 − z) + q − 2]2 + (q − 1)4z = 0 , (23)

which can be satisfied for complex (in the q = 2 Ising case, purely imaginary)
values of h.

From these considerations, it is clear that R will also diverge as the locus
of zeroes is approached for both Ising and Potts models if we allow ourselves
the liberty of an analytic continuation of the field to complex h values once
R has been calculated, since R = A+ B/

√
η and A,B are finite as η → 0.

The presence of the square root means that the divergence is characterised
by an exponent σ = −1/2 which is the Lee–Yang edge exponent for the
one-dimensional Potts (and Ising) model [11].

The status of these observations is a little unclear to us, since the cal-
culation of R has assumed a real metric geometry throughout and such an
arbitrary continuation in the final expression might be rather dangerous. It
is nonetheless interesting that the Lee–Yang edge transition is still visible
as a divergence in R.
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3. Two

The solution of the Ising model on an ensemble of Φ
4 (4-regular) or

Φ
3 (3-regular) planar random graphs was first presented by Boulatov and

Kazakov [14], who were motivated by string-theoretic considerations, since
the continuum limit of the theory represents matter coupled to 2D quantum
gravity. They considered the partition function for the Ising model on a
single n vertex planar graph with connectivity matrix Gn

ij :

Zsingle(G
n, β, h) =

∑

{σ}

exp



β
∑

〈i,j〉

Gn
ijσiσj + h

∑

i

σi



 , (24)

then summed it over all n vertex graphs {Gn} resulting in

Zn =
∑

{Gn}

Zsingle(G
n, β, h) , (25)

before finally forming the grand-canonical sum over graphs with different
numbers n of vertices

Z =
∞
∑

n=1

( −4gc

(1 − c2)2

)n

Zn , (26)

where c = exp(−2β). This last expression could be calculated exactly as
matrix integral over N ×N Hermitian matrices,

Z = − ln

∫

Dφ1 Dφ2 exp

(

−Tr

[

1

2
(φ2

1 + φ2
2)

− cφ1φ2 −
g

4

(

ehφ4
1 + e−hφ4

2

)

])

, (27)

where the N → ∞ limit is to be taken to pick out the planar diagrams and
the potential appropriate for Φ

4 (4-regular) random graphs has been shown.
When the matrix integral is carried out the solution is given in parametric

form by

Z =
1

2
ln

(

z

g

)

− 1

g

z
∫

0

dt

t
g(t) +

1

2g2

z
∫

0

dt

t
g(t)2 , (28)

where the function g(z) is

g(z) =
1

9
c2z3 +

z

3

[

1

(1 − z)2
− c2 +

zB

(1 − z2)2

]

(29)

and B = 2[cosh(h) − 1].
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In the thermodynamic limit the free energy per site is given by

f = ln

(−4cg(z0)

(1 − c2)2

)

, (30)

where z0 = z0(β, h) is the appropriate low- or high-temperature solution of
g′(z) = 0. When h = 0 this may be solved in closed form, and although the
solution is not available explicitly for non-zero h it can still be developed
as a power series in h around the zero-field solutions in order to obtain
expressions for quantities such as the energy, specific heat, magnetization
and susceptibility. It was found that the critical exponents are given by
α = −1, β = 1/2, γ = 2, so the transition was third order with, intriguingly,
the same exponents as the 3D spherical model on a regular lattice [15].

If we carry out a perturbative expansion for the high-temperature solu-
tion, which is symmetric in h and hence a series in even powers, we find

z0 = 1 − 1

u
− (u− 1)(2u2 − 2u+ 1)

(2u− 1)4
h2

+
(u− 1)(2u2 − 2u+ 1)(4u5 − 10u4 + 10u3 − 5u2 + 5u+ 1)

24(2u − 1)9
h4 + . . . ,

(31)

where the coefficients in the series are most naturally expressed in terms of
u = exp(−β) =

√
c, as above.

The expected scaling form of the various components of R for a generic
spin model in field is discussed at some length in [16], and we now recapitu-
late these results briefly for comparison with the specific results for the Ising
model on planar random graphs. The starting point is the scaling form of
the free energy per spin near the critical point,

f(ε, h) = λ−1f(ελaε , hλah) , (32)

where ε ≡ βc − β and aε, ah are the scaling dimensions for the energy and
spin operators. For ε > 0, i.e., in the unbroken high-temperature phase, we
can use standard scaling assumptions to write this as

f(ε, h) = ε1/aεψ+(hε−ah/aε) , (33)

where ψ+ is a scaling function and we also define A = 1/aε and C = −ah/aε

for later convenience. In terms of the standard critical exponents A = 2−α
and A+ C = β.
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This generic scaling form can now be substituted into Eq. (10) to find
the scaling behaviour of the scalar curvature (10) near criticality (i.e. h = 0,
ε→ 0),

R =
(A+ 2C)[(A+ 2C) − (A− 2)]

2A(A− 1)ψ+(0)
ε−A (34)

or, translating back to the standard critical exponents,

R =
γ(γ − α)

2(2 − α)(1 − α)ψ+(0)
εα−2 . (35)

The discussion in [16] was intended to be as general as possible, one should
note that for Ising-like models with a ±h symmetry all odd derivatives of
the scaling function w.r.t. h will vanish so ∂3

hf = 0 rather than εA+3Cψ
′′′

+ (0).
This does not affect the stated scaling relations.

However, one feature of these scaling relations does have an impact
on the observed scaling for the Ising model. Generically one expects that
∂2

βf = A(A − 1)εA−2ψ+(0), which contributes to both the metric and the
determinant involved in calculating R. If A > 2, i.e. α < 0, this naively
suggests a vanishing ∂2

βf at criticality, which will in general not be the case.
There would instead be a contribution from a regular term, which would
give a constant at the critical point. Having such a constant term, which
we take to be A(A− 1)φ(0) for notational convenience, modifies the scaling
form of R in the case α < 0, A > 2 to

R =
(A+ 2C)2

2A(A− 1)φ(0)
ε−2 (36)

or

R =
γ2

2(2 − α)(1 − α)φ(0)
ε−2 , (37)

so the critical exponent α no longer appears in the scaling exponent.
By virtue of the Boulatov and Kazakov solution of the Ising model on pla-

nar random graphs [14] we can explicitly confirm these observations. Since
α = −1, β = 1/2, γ = 2, we have A = 3, C = −5/2 and the modified dis-
cussion of scaling should apply. We can now take the series expansion for z0
from Eq. (31), insert this into g(z) and use the resulting expression for f in
Eq. (30) to calculate the various terms that appear in the scalar curvature
R as power series in h2. We find that the leading terms at h = 0, with
εu ≡ u− ucr = ε/2 + . . . and ucr = 1/2, and using β, h as co-ordinates are

R ∼ 225

704
ε−2
u + . . . =

225

176
ε−2 + . . . . (38)

A glance back at Eq. (37) shows that the modified scaling for A > 2 that
these incorporate is, indeed, followed.
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4. Three

Berlin and Kac [17] introduced the spherical model (and the Gaussian
model) in an attempt to understand how generic some of the features of
Onsager’s solution [18] of the 2D Ising model are for ferromagnetic spin
models, particularly for other dimensions. In the spherical model, the ±1
condition on the value of the Ising spins is relaxed, whilst retaining a global
constraint on the total spin magnitude. With si denoting the value of a spin
at a site i of a hypercubic lattice, the partition function is [14]

Z =

∫

ds1 . . . dsN exp



β
∑

〈ij〉

sisj + h
∑

i

si



 δ

(

∑

i

s2i −N

)

, (39)

where N is the total number of sites. This can be evaluated by exponen-
tiating the constraint and using steepest descent, resulting in the following
expression for the reduced free energy per site in the thermodynamic limit,
N → ∞:

f =
1

2
ln

(

π

β

)

+ βz − 1

2
g(z) +

h2

4β(z − d)
, (40)

where

g(z) =
1

(2π)d

2π
∫

0

dω1 . . . dωd ln

(

z −
d
∑

k=1

cos(ωk)

)

. (41)

The saddle-point value of z which appears in the expression for the free
energy in Eq. (40) is determined from

g′(z) = 2β − h2

2β(z − d)2
. (42)

The solution reveals no transition for d = 1 and 2, and a transition with the
exponents α = −1, β = 1/2, γ = 2 for d = 3.

It is useful to note that, with h = 0, Eq. (42) gives

dz

dβ
=

2

g′′(z)
, (43)

and hence

d2z

dβ2
= −4g(3)(z)

[g′′(z)]3
. (44)

The critical point is given by z = d = 3 and h = 0 [14], and the behaviour of
g(z) in this region is determined by differentiating Eq. (41) twice and then
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expanding for the small ωk values which give the dominant contribution. In
three dimensions one finds

g′′(z) ∼ − 1

2
√

2π
(z − 3)−1/2. (45)

A further differentiation gives

g(3)(z) ∼ 1

4
√

2π
(z − 3)−3/2, (46)

and an integration yields

g′(z) =
1√
2π

(z − 3)1/2 + g′(3) , (47)

where g′(3) = (18 + 12
√

2 − 10
√

3 − 7
√

6)[K(2
√

3 +
√

6 − 2
√

2 − 3)]2 ≈
0.505 462 019 . . . is the massless 3D lattice propagator at the origin, which
can be expressed in terms of one of the three classical Watson integrals
[19] and hence is given by the standard elliptic integral K(k2). This latter
expression can be combined with Eq. (42) with h = 0 to give

(z − 3) ∼ 8π2(βc − β)2 ∼ ε2, (48)

in which βc = g′(3)/2 ≈ 0.252 731 009 . . . . Eqs. (45) and (46) may then be
substituted in Eqs. (43) and (44) to give the scaling of dz/dβ and d2z/dβ2,

lim
z→3

dz

dβ
= lim

z→3
{−4

√
2π(z − 3)1/2} = 0 ,

lim
z→3

d2z

dβ2
= 16π2 , (49)

which we shall employ below in the calculation of the scalar curvature.
We now move on to examine the scaling of the various terms contributing

to R in Eq. (10) for the spherical model. As we have remarked, the h→ −h
symmetry in the free energy per site, f , of the spherical model means that
any terms with an odd number of h derivatives will automatically be zero
when h = 0, hence fβh = fββh = fhhh = 0. This leaves the non-zero terms
in the scaling region

fββ ∼ 1

2β2
c

,

fhh ∼ 1

16π2βc(βc − β)2
∼ ε−2,

fβββ ∼ 16π2 − 1

β3
c

,

fhhβ ∼ 1

8π2βc(βc − β)3
− 1

16π2β2
c (βc − β)2

∼ ε−3. (50)



Information Geometry, One, Two, Three (and Four) 4935

We see that the expected general scaling of each term (for α < 0) does
indeed apply and that overall we have, as in Eq. (37),

R ∼ ε−2. (51)

We thus see that calculating the scaling of R for the 3D spherical model for
which α = −1 gives results in accordance with expectations from general
scaling arguments which take into account the negative α, similarly to the
Ising model on planar random graphs.

5. Four

The thermodynamics of black holes has been a subject of abiding interest
since the pioneering work of Hawking [20] and similar ideas to those discussed
in the previous sections for statistical mechanical models have also been
applied to investigations of the critical behaviour of various families of black
hole solutions in general relativity. Critical behaviour has arisen in several
contexts in the study of black holes, ranging from the Hawking–Page [21]
phase transition in hot Anti-de-Sitter space and the pioneering work by
Davies [22] on the thermodynamics of Kerr–Newman black holes, to the
idea that the extremal limit of various black hole families might be regarded
as a bona-fide critical point [23–26].

It is the latter that is perhaps the closest to the work described here. In
these studies the metrics used are the Ruppeiner metric

gij = −∂i∂jS(E,Na) , (52)

and the Weinhold [27] metric

gij = ∂i∂jE(S,Na) , (53)

where S is the entropy and E the energy, with the Na being other extensive
variables such as scalar charges. Both metrics are related to the Fisher–Rao
metric we have used by Legendre transforms of the appropriate variables,
and have also been employed in a statistical mechanical context.

For example [26], a Reissner–Nordström black hole has a Weinhold metric
of the form

dl2W =
1

8S(3/2)

((

1 − 3Q2

S

)

dS2 − 8QdQdS + 8SdQ2

)

, (54)

where Q is the charge, and we can see that one of the metric components
vanishes at S = 3Q2. This led Davies [22] to suggest that there was a
phase transition at this point, but transforming to the Ruppeiner metric
and choosing new co-ordinates gives a flat metric with R = 0 everywhere.
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On the other hand Kerr black holes which possess a spin J display a
curved Ruppeiner geometry with a scalar curvature

R =
1

4M2

√

1 − J2

M4 − 2
√

1 − J2

M4

(55)

that diverges at the extremal limit

J

M2
= ±1 . (56)

It would thus appear that the general framework of looking for the signal
of phase transitions in the geometric invariants of the information metric
(or related metrics) can also be employed in these circumstances. Indeed,
the AdS/CFT correspondence identifies Hawking–Page type transitions with
deconfinement in the dual gauge theories [24,28] so it might be profitable to
explore the information geometry view of such transitions further.

D.J. and W.J. were partially supported by EC IHP network “Discrete
Random Geometries: From Solid State Physics to Quantum Gravity” HPRN-
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