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We consider a possibility of two-boson pairing in a dilute 2D Bose-
gas on a lattice with strong hard-core repulsion U and a Van der Waals
attractive tail V. The phase diagram of Bose gas consisting of one sort of
structureless bosons contains only two regions: the usual one particle Bose—
Einstein condensation (BEC) and the region of total phase separation on
the Mott—-Hubbard Bose solid and dilute Bose gas. But in the system with
two sorts of structureless bosons the creation of the two-particle condensate
((bb) # 0) is possible. We show that the full set of equations for stability
of homogeneous two-particle condensate is satisfied.

PACS numbers: 03.75.Fi, 74.20.Mn

1. Introduction

The problem of two-particle pairing in Bose systems is interesting not
only from the point of view of 2D Bose systems in magnetic traps but also for
the theories of biexcitons in semiconductors, Schwinger bosons in magnetic
systems and holons in HTSC. In the latter case a possible two-holon pairing
in the slave—boson theories of superconductivity can restore a required charge
2e of a Cooper pair. The first attempt of the investigation of the possibility of
two-particle pairing versus one particle Bose—Einstein condensation belongs
to Valatin and Butler [1]. Later on Nozieres and Saint-James [2| showed
that in 3D structureless Bose gas with attractive tail either standard one-
particle BEC is more energetically beneficial or phase separation takes place
earlier than the two-particle Bose pairing. As a next step Rice and Wang [3]
conjectured that the two-particle Bose condensation is possible in 2D hard-
core Bose gas with attractive tail. Later on the present authors showed
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that the Bose gas without internal structure with attractive interaction is
unstable against phase separation [5]. Hence there is no region of two-
particle Bose-condensate ((bb) # 0 while (b) = 0) in this type of models.

The aim of the present paper is to show that there is the set of models, in
which the two-particle pairing can be realized. In particular we demonstrate
that in the case of Hubbard model for a Bose gas consisting of two sorts of
bosons with repulsion between the particles of the same sort and attraction
between the particles of different sorts the stability conditions against the
phase separation are satisfied. Hence in these systems the two-particle Bose
condensate can exist.

2. Two-particle pairing of structureless bosons on a lattice

First let us remind the properties of two-particle condensate in a Bose
gas. We will consider a Bose gas on a 2D square lattice with onsite repulsion
U and nearest neighbors attraction V described by the Hamiltonian

H:—th;{bj—f-%Zn?—aninj, (1)
i ij
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where n; = b;-rbi is a 2D boson density. The bound state energy is given
by the pole in the T' matrix problem [4,5|. Due to hard-core repulsion the
bound state exists only for the potential strength V > V., where V., = 4t
is a threshold value (see for details [5]). The energy of the bound state is
given by

By = 8Wexp{‘71} , 2)

where W is a bandwidth and A = (V — V) /7V.
The possibility of the pairing in medium is determined by the existence
of the pole in the solution of the Bethe—Salpeter equation

coth
1+7(2 //dpzdpy ( —

where the |¢| are respectively eigenfunctions for s-, p- and d-wave pairing
and T'(2u) is a corresponding T' matrix. The conservation of particles gives
an equation for the chemical potential

// exp 1}—1’ W

where E, = p?/2m + |fi] is the spectrum of almost an ideal Bose gas.

) |61 = (3)
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The system of the equations (3) and (4) has a solution for an s-wave
channel at temperature T, ~ Tp/In\ where Ty = 27n/m is degeneracy
temperature. It corresponds to critical temperature of two-particle pairing.

The real collapse of the system is prohibited by strong onsite repulsion U,
but the system can be unstable towards phase separation onto two clusters.
First cluster has ny — 1 and is localized due to Mott—Hubbard consider-
ations. And second cluster has a density of particles no — 0. A simple
analysis shows that the phase separation takes place for V > V5 ~ 2t.

As a result we obtain the following phase diagram for the system of
the structureless bosons: for V' < 2¢ we have at low density the standard
one-particle BEC. For V' > 2t the phase separation takes place. For large
densities n = ne < 1 (ne =1 for structureless bosons) the system undergoes
a transition to the Mott—Hubbard Bose solid.

3. Possibility of two-particle pairing for the two-band
Bose—Hubbard model

Now let us show that there is a class of models with two-particle con-
densation. We will consider the two-band Hubbard model for two sorts of
structureless bosons. The Hamiltonian of the system has the form

H=—-t, Za a]_thbTb + Uaa m‘f’% . 2 _—ananzba

)

where t, and %, n, and n;, are, respectively, the hopping matrix elements
and densities for bosons of sorts a and b. For simplicity we will consider
the case t, = t;, and assume that the bottoms of the bands coincide. In the
Hamiltonian U,, and Uy, are Hubbard onsite repulsions for bosons of sorts
a and b. Finally Uy, is an onsite attraction between bosons of two different
sorts. Note that the same Hamiltonian describes the two-layer situation
with interlayer attraction and intra-layer repulsion.

Let us consider the low density limit with equal densities of both sorts of
bosons, that is when both n, = ny = n < 1. In this limit we must replace
the Hubbard interaction Ug, by the corresponding T" matrix. The relevant
expression for the T' matrix Ty is given by

- U,
Tab(E) P

: (5)

Uan | 28 7

where E = E+ W,
The results of the previous section for the bound state (2) and critical
temperature are still valid. But in this case we should substitute a coupling
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constant by A = mU,,/(47). Note that there is no threshold for pairing in
this case. We also want to mention that in this case the coherence length
can be larger than a mean distance between particles (§ = 1/v/2mEy, > a =
1/4/n). Therefore, the pairs can be not only local but also extended.

Let us investigate the stability of the system against phase separation.
The chemical potential in leading approximation can be written in the fol-
lowing form g = Tuana — |Ebound|/2 and py = Tppny — [Epound|/2. By
direct calculations it is easy to see that all required conditions for stabil-
ity are satisfied: Ouq/0Ong > 0; Oup/Ony > 0 and (Oua/0na)(Ous/Ony) —
(Opa/Onp)(Oup/0ng) > 0 for T, > 0 and Ty, > 0. Hence the system is
stable against phase separation.

Now we complete the phase diagram for the system with two sorts of
bosons. The resulting phase diagram is quite different from one for the
system consisting from one sort of structureless bosons. It has no region of
phase separation. At low densities for repulsive U, we have usual BEC, but
for attractive Uy, we have already the s-wave two-particle pairing. For large
densities n = n. ~ 1 the system undergoes a transition to the Mott—Hubbard
Bose solid.

In conclusion we showed the possibility of realization of two-particle par-
ing in the system of two sorts of bosons with repulsion between the same
type of bosons and attraction between different sorts. We demonstrated that
the necessary conditions for stability of homogeneous two particle conden-
sation are satisfied. The more direct applications of the present results with
two sorts of bosons are connected with SU(2) slave-boson theories of high
T, superconductivity and Schwinger-boson theories of 2D magnets.
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